
METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

14 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

METHODS OF MALWARE
PERSISTENCE ON MAC OS X

Patrick Wardle
Synack, USA

Email patrick@synack.com

ABSTRACT
As Mac OS X continues to increase in popularity, OS X malware
(once a rare phenomenon) is now more common than ever.
Therefore, it is essential for cybersecurity and malware analysts
to possess an in-depth understanding of OS X and how it may be
attacked by persistent, malicious code.

This paper presents a detailed analysis of Apple’s anti-malware
mechanisms (revealing several signifi cant weaknesses), before
diving into the bowels of the Mac startup process. Here, points
of persistence are detailed comprehensively. Following this,
examples of OS X malware are examined to illustrate how code
may abuse the OS in order to achieve reboot persistence.

Finally, a novel open- source tool is discussed that can enumerate
and display persistent OS X binaries that are set to execute
automatically upon reboot. Armed with such a tool, users can
ensure that they are protected against both current and future
persistent OS X threats.

BACKGROUND
Before diving into methods of persistence abused by OS X
malware, it is important to understand why such a topic is truly
relevant.

As is obvious to even the most naïve amongst us, Macs have
become more prevalent than ever. According to a recent study by
the International Data Corporation (IDC), Apple is now the
number three US computer vendor, making up almost 15% of
computer sales [1]. Moreover, if ‘iDevices’ (iPhones, iPads, etc.)
are added to the equation, Apple devices
outsold Windows PCs globally in Q4 of 2013
[2].

One of the driving forces behind the
increased adoption of Apple computers is
the notion that OS X is immune to malware.
This claim was propagated by Apple, who
claimed ‘[Mac OS X] doesn’t get PC
viruses. A Mac isn’t susceptible to the
thousands of viruses plaguing
Windows-based computers’ [3].

Ironically, the fi rst personal computer virus
discovered in the wild (Elk Cloner), was a
Mac virus that infected Apple IIs [4]. Since
then, Mac malware has fl ourished. Just last
year, over 30 new OS X malware families
were discovered, some infecting the
corporate systems of companies such as
Apple, Facebook, and Twitter [5, 6].

APPLE’S ANTI-MALWARE ENHANCEMENTS
AND THEIR FLAWS
In recent versions of OS X, Apple has introduced a myriad of
security enhancements which aim to thwart malware. Examples
of these enhancements include: XProtect (Apple’s built-in
anti-virus solution), Gatekeeper (which verifi es downloaded
software), sandboxing (which prevents Mac Store applications
from accessing OS-level components), and signed-code
requirements (where signatures are verifi ed and only signed
kernel extensions can be loaded). While these are spun by
Apple’s marketing team as proactive security measures, in reality
they are more reactive and act as an acknowledgement of the
OS X malware problem. Moreover, while they are a step in the
right direction, many of these security enhancements are trivial
to bypass.

XProtect

Apple’s attempt at an anti-virus product is internally referred to as
XProtect. Implemented within the CoreServicesUIAgent, it uses
signatures from /System/Library/CoreServices/CoreTypes.bundle/
Contents/Resources/XProtect.plist to detect OS X malware.

Figure 2 shows an entry from the XProtect signature fi le.

Figure 1: Mac’s growth 2009–2013.

Figure 2: XProtect’s signature for LaoShu.A.

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

15VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

The highlighted entry in Figure 2 aims to detect the
OSX/LaoShu.A malware by matching a SHA1 hash and a
fi lename (‘worty’). While the benefi t of such an exact match/
detection scheme is zero false positives, there are several major
downsides. For one, a slight change in the malware (the renaming
of a fi le, or a recompilation to change the hash), will prevent a
match, and thus detection, from being made. The malware will
remain undetected and will be able to execute. Another obvious
downside to XProtect’s signature-based malware detection
scheme is that new malware will never be detected.

Besides the weaknesses in the detection scheme used by
XProtect, it is plagued by other design issues. In its current
implementation, XProtect only scans binaries that contain a
quarantine attribute. This attribute is set by the application that
downloaded the binary (e.g. a browser), not the OS. This is
problematic, as an exploit-based attack that manually downloads
malware will, of course, do so without setting the quarantine
attribute. As such, these binaries will not be scanned, allowing
downloaded malware to execute without fear of detection.

Gatekeeper

According to Apple, Gatekeeper helps protect Macs from
malicious apps that are downloaded and installed from the
Internet [6].

Figure 3: Gatekeeper in action.

Contrary to popular belief, Gatekeeper (like XProtect), is fairly
limited in the attacks it can prevent. Specifi cally, it is limited to
only preventing attacks where users are coerced into
downloading and installing malicious content (e.g. fake Flash
installers or ‘media plug-ins’), from infected or rogue websites.
This is due to the fact that Gatekeeper will only examine
binaries that contain a quarantine attribute. As previously
mentioned, this attribute must be set by the downloading
application. Thus binaries downloaded as the result of a
‘drive-by’ exploit-based attack will not be subjected to
examination. Interestingly, this is precisely how employees of
Apple, Facebook and Twitter were recently infected by malware
which ‘bypassed OS X Gatekeeper protection’ [7].

Another shortcoming is based on the fact that, in its default
confi guration, Gatekeeper may allow any signed application to

execute. Hence if a malware sample is signed with a valid Apple
Developer ID (code-signing certifi cate), it may be able to
‘bypass the Gatekeeper security feature’ [8].

Signed applications

Borrowing from iOS, OS X now verifi es all binary signatures.
This is important as it allows the OS to verify that binaries have
not been subverted (e.g. infected by a virus). Binary infection is a
powerful technique as it affords an attacker a way to persist, hide,
and inherit trust. For example, imagine a malicious piece of code
that infects Safari. Every time the user launches Safari, the
malicious code is also executed (persistence). Since the malicious
code may exist solely within the infected binary, no external
malicious fi les or processes are required (stealth). Finally, as the
browser is expected to access network resources, malicious code
hosted within its process space should also be able to access the
network (inheriting trust), even if a personal fi rewall is installed.

So what happens if malware infects a signed application or
binary? Well, when loading signed binaries (or applications),
the OS loader will check the digital signature. Any
modifi cations will invalidate this signature, easily allowing the
loader to detect any subversions. By design, the OS loader will
then immediately terminate (crash) the modifi ed binary.

Figure 4: OS X loader terminating a modifi ed signed
application.

On OS X (unlike iOS), unsigned apps are allowed to execute
freely. During the loading process, the OS loader checks
whether the binary is signed by looking for an embedded
LC_CODE_SIGNATURE block. If it fi nds one, it verifi es the
binary’s signature. However, research has revealed that if the
LC_CODE_SIGNATURE signature block is removed, the
loader performs no verifi cations, allowing the binary to be
modifi ed with no consequences. This is a rather big security
issue, as any signed application can be unsigned, then infected
with viral code, and will still be allowed to execute.

To illustrate this security weakness, a python script (unsign.py)
was created to ‘unsign’ and infect Apple’s signed applications.
The script is shown in Figure 5.

Figure 5: Unsigning (and modifying) an Apple signed
application.

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

16 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

As shown in Figure 4, Safari was previously terminated when
the OS loader detected a modifi cation. However, as Figure 5
illustrates, once unsigned, Safari, can be modifi ed, and still able
to execute without interference or termination.

Signed kernel extensions
In order to protect the kernel from malicious code (i.e. rootkits),
all kernel extensions (or ‘kexts’) are required to be signed on
OS X Mavericks. An unsigned or modifi ed kext will fail to load.
Unfortunately for Apple, it turns out that this anti-malware
mechanism is trivial to bypass. The fi rst method of bypassing
these code-signing requirements is described in [9]. In a
nutshell, the user-mode daemon that loads kernel extensions
(kextd) is responsible for verifying the signature. Yes, the
signature is verifi ed in user mode – fail! This is clearly a
security issue, since it means that an attacker can easily subvert
(turn off) the user-mode checks, then load any unsigned kext. As
described in [9], this can be accomplished by injecting code into
the kextd, then patching out the code-signing checks (in the
checkKextSignature() function). For illustrative purposes, this
can also be accomplished via a debugger, as shown in Figure 6.

Figure 6: Patching out kext code-signing requirements.

The publicly described technique requires some pretty low-level
hacking (e.g. code injection and in-memory patching). Research
performed at the start of the year revealed a non-public, 0-day
technique that allowed any unsigned kext to be loaded1. By fi rst
stopping the daemon that is responsible for loading kernel
extensions (kextd), then attempting to load the unsigned kext
with the kextload command, an alternate code path is executed.
This code path loads the kext directly into the kernel, bypassing
the logic that enforces the kext code-signing requirements.

In the case of computer security, ignorance is not bliss. The
various weaknesses in the OS X anti-malware/security
mechanisms presented above should be a cause for concern for
the ever-growing Mac user base, especially as OS X malware is
an ever-growing threat. One way to combat such threats is to
gain a thorough understanding of the Mac system startup
process, identifying methods of persistence that are abused by

1 This technique (or a slight variation) was later discussed independently
at Black Hat Asia by Team T5 [10].

OS X malware. With this information, persistent malware may
be detected generically or, ideally, even prevented.

MAC SYSTEM STARTUP
Before cataloguing methods of persistence abused by OS X
malware, it is important to understand what happens when a
Mac is powered on.

The boot/startup process is somewhat complex, but can be
broken down into easily understandable stages. These stages
include power-on/boot, kernel initialization, the execution of
launchd daemon, and the LoginWindow process. It should be
noted that many of the low-level technical details of the startup
process are beyond the scope of this paper. However, interested
readers are encouraged to consult [11] for a very comprehensive
and thorough discussion of the entire startup process.

Early startup covers everything from power-on, until the kernel
(OS X) begins execution. Once power is present, the bootROM
takes over. The bootROM, or fi rmware, is the fi rst code to
execute. It verifi es memory, begins hardware initialization and
selects the OS partition. Once complete, the bootROM executes
the boot.efi program. This performs a variety of actions such as
initializing the device tree (IO registry), locating and loading the
kernel into memory, loading any boot kernel extensions, and
fi nally jumping to the kernel’s entry point.

Once the early boot stage is complete, OS X begins its
initialization. This starts with the kernel, which is composed of
various sub-systems (each of which must be initialized). First,
the Mach subsystem is initialized, then IOKit loads all
device-specifi c kexts. Finally, the BSD subsystem initializes,
which most notably includes executing launchd, the fi rst
user-mode process.

Launchd, as its name suggests, launches all daemons and agents
(both of which are somewhat conceptually similar to Windows
services). As the fi rst process (pid of 0x1), it is an ancestor of all
other processes.

The fi nal step before reaching the desktop is authenticating the
user. This is handled by the LoginWindow process, which
authenticates the user, sets up their environment, and then hangs
around to manage the user’s session. Once the user is presented
with their desktop, the Mac system startup process is complete.

METHODS OF PERSISTENCE
A decent understanding of the Mac startup process provides the
necessary background for examining the ways in which it may
be abused to achieve persistence. Before diving in, recall that
persistence is essential for malware, as it ensures that whenever
a computer is restarted, the malicious code is automatically
re-executed by the OS.

Low-level/pre-OS X

Starting at the lowest level, there are several options for
persistence. While these options are complex, and often
hardware specifi c, they run ‘below’ (before) the OS, and thus
are very diffi cult to detect. Possible low-level options for
persistence may include: re-fl ashing the fi rmware, installing a

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

17VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

malicious EFI component, or even infecting boot.efi . It should
be noted that, due to the complexities of these techniques, each
could fi ll a paper unto themselves. For a more in-depth analysis
of low-level methods of persistence, interested readers should
consult [12], an intriguing paper on Mac EFI rootkits.

Kernel extensions

Since code in the kernel runs at the highest privilege level, it is
a great place for advanced malware to live. Malware that
executes here is often referred to as a rootkit. It is fairly trivial
to create a persistent kernel extension that will automatically
be executed by the OS whenever the computer is restarted.
First, a kext can be created via the ‘Generic Kernel Extension’
template in XCode, as described in Apple’s documentation
[13]. It is important to set the kext’s match category (in its
Info.plist) to ‘IOResources.’ As described in [11], this is ‘a
special provider class that provides system-wide resources’
and ensures that, once installed, the kext will automatically be
started by OS X.

To install a kext persistently, it should be copied into one of the
OS X kext directories: /System/Library/Extensions or /Library/
Extensions.

Once copied to an install directory, the kext should be set to be
owned by root and, optionally, the kernel cache rebuilt. If these
steps are followed, the kext will automatically be loaded each
time the OS is (re)loaded.

Figure 7: Installing a persistent kernel extension.

As mentioned previously, starting with OS X Mavericks, kext
extensions must be signed. However, malware may abuse
several previously stated methods in order to bypass this
requirement.

Launch daemons/agents

While code that runs in the kernel is very powerful, it is diffi cult
to get right. Running in user mode is far simpler and thus often
preferable. Launch daemons and agents are the
‘Apple-approved’ way to persist non-application binaries (e.g.
software updaters, anti-virus products, etc.). Both launch
daemons and launch agents are commonly abused by OS X
malware as a means to gain persistence. Launch daemons are
non-interactive, and run before user login. On the other hand,
launch agents run once the user has logged in, and may be
interactive. Creating a persistent launched daemon or agent is as
simple as creating the binary, then placing a confi guration
property list in one of the launch daemon or agent directories, as
shown in Table 1.

Property lists (or ‘plists’ in Apple parlance) are xml fi les that are
used by OS X to store serialized objects. In the case of the
launch daemons and agents, there is a plist for each daemon or

agent that contains required confi guration information. These
fi les are processed by the OS as part of its initialization process
and can contain key value pairs that may instruct the OS to
automatically start the daemon or agent. Figure 8 shows a
snippet from an example launch daemon/agent confi guration
plist fi le. Besides containing the path to the binary image of the
daemon or agent (and any program arguments), it also contains
a key value pair (RunAtLoad: true), to indicate that it should be
started automatically by the OS.

Figure 8: A launch daemon/agent plist.

Cron jobs

Containing a large amount of BSD code and logic within its
core, OS X presents many ‘Unix-y’ fl avoured persistence
mechanisms that may be abused by OS X malware. Cron jobs
are an example of exactly this. OS X supports cron jobs, which
can be used to execute a command or script at certain
intervals. For example, Figure 9 illustrates how a cron job can
be created to echo some text each minute. To register the cron
job, the command to execute is saved to fi le, then registered
via the crontab command. To confi rm the registration of the
command, the crontab command is re-executed with the ‘-l’
parameter.

Figure 9: Cron job creation/enumeration.

Login/logout hooks
By creating a login or logout hook, a script or command can
automatically be executed whenever a user logs in or out. Apple
states that these hooks are deprecated [14], but they still work

Launch daemon (plist)
directories

Launch agent (plist)
directories

/System/Library/
LaunchDaemons

/System/Library/
LaunchAgents

/Library/LaunchDaemons /Library/LaunchAgents and
~/Library/LaunchAgents

Table 1: Launch daemon/agent plist directories.

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

18 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

on OS X Mavericks. The ‘defaults’ command can be used to
create such a hook. Simply specify a write action, the
com.apple.loginwindow.plist fi le, and then script or command to
persist (see Figure 10).

Figure 10: Creation of a login hook.

Login items

For applications, login items are the ‘Apple-approved’ way to
persist. Anything that’s registered as a login item is visible in a
GUI, via the System Preferences app. Login items are stored
in the user’s Library/Preferences directory, in a plist fi le
named com.apple.loginitems.plist. This fi le contains an entry
for each login item, which contains the name of the item,
whether it should be hidden, and base64-encoded data
containing the path to the persistent application. Login items
can be created via the GUI, programmatically by utilizing the
‘launch services’ API, or by directly manipulating the login
item’s plist (com.apple.loginitems.plist).

Sandboxed login items

With the introduction of the application sandbox, applications
downloaded from the Mac application store can no longer create
or register themselves as traditional login items. To maintain
compatibility, Apple designed a new way in which sandboxed
applications could create login items. In order to register an
application persistently in this manner, two applications are
required: a main application and a helper. The application to
persist (the helper), should be placed into a LoginItems
sub-directory of the main application, as shown in Figure 12.

Figure 12: Required layout for a sandboxed login item.

Once executed, the main application should invoke the
SMLoginItemSetEnabled() function. This function causes the
helper application to persist, and ensures that it will
automatically be executed whenever the user logs in.

Figure 13: Code to persist a sandboxed login item.

Re-opened applications

OS X recently introduced a feature that automatically reopens
applications whenever the user (re)logs in. The applications to
reopen are stored in a plist within the user’s Library/
Preferences/ByHost directory. Viewing the contents of this plist
reveals keys such as the ID of the application, whether to hide it,

Figure 11: Login item: in the GUI and plist.
Figure 14: Plist entry of a re-launched application

(terminal.app).

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

19VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

and of course the path to the application. While there is not a
(documented) programmatic API to manipulate the re-opened
application plist directly, it may be possible to modify it directly
in order to gain persistence.

Startup items

Another deprecated technique that still works on OS X
Mavericks is ‘startup items’. Apple documentation explains that
startup items allow a command or script to automatically be
executed during OS X initialization. Creating a startup item
involves placing two fi les into a startup item directory. The fi rst
fi le is a script that is to be executed automatically. The other fi le
must be named ‘StartupParameters.plist’ and must contain a
‘Provides’ key that contains the name of the script fi le. Both of
these fi les should be placed in a sub-directory in either the
/System/Library/StartupItems or /Library/StartupItems
directory. The name of the sub-directory must be the same as
the name of the script fi le (and the value of the ‘Provides’ key in
the StartupParameters.plist). Figure 15 illustrates the required
fi le-system layout of a startup item.

Figure 15: Directory structure of a startup item.

Rc.common

RC scripts are used in another BSD-fl avoured persistence
technique that works on OS X, allowing scripts or commands to
automatically be executed. For example, the rc.common fi le can
be edited to insert arbitrary commands that will automatically
execute when OS X starts.

Figure 16: Injecting commands into rc.common.

Launchd.conf

Recall that launchd is the fi rst user-mode program to execute
during OS X’s initialization. The launchd.conf fi le, as its name
suggests, contains confi guration parameters for launchd. As
launchd.conf can contain arbitrary commands (via the bsexec
command), malware can inject malicious instructions in order to
achieve persistence.

Figure 17: Injecting commands into launched.conf.

DYLD_INSERT_LIBRARIES

Via the DYLD_INSERT_LIBRARIES environment variable,
OS X provides a way to load arbitrary dynamic libraries
(‘dylibs’) into a process. Specifi cally, when loading a process,
the dynamic loader will examine the DYLD_INSERT_
LIBRARIES variable and load any libraries it specifi es. By
abusing this technique, an attacker can ensure that a malicious
library will persistently be loaded into a targeted process
whenever that process is started.

There are two main ways to set the DYLD_INSERT_
LIBRARIES environment variable so that arbitrary libraries will
be loaded into a specifi c (targeted) process. When targeting a
launch daemon or agent, an ‘EnvironmentVariables’ dictionary
may be added to launch item’s plist. For targeting an
application, the application’s Info.plist can be altered to contain
a ‘LSEnvironment’ dictionary, see Figure 18.

Figure 18: The application’s Info.plist is altered to contain a
‘LSEnvironment’ dictionary.

Mach-O binary infection

Computer viruses are one of the oldest forms of malware.
Viruses infect fi les by injecting viral code in order to replicate.
However, this viral code can also provide persistence: any time
the infected binary is executed, the virus code will be executed
as well. Since OS X binaries (and applications) can be unsigned,
viral infection may be back in fashion! There are many ways to
infect an OS X (mach-O) binary. The simplest method,
described initially by the (in)famous VX’er roy g biv, involves
injecting some viral code into a target binary, then hijacking the
entry point to point to the virus code.

Figure 19 shows the LC_MAIN load command within an
uninfected macho-O binary. This load command contains the
‘Entry Offset,’ or entry point, which may be hijacked during
infection (to point to the viral code).

Figure 19: Mach-O binary structure/entry offset.

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

20 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Application-specifi c persistence
The fi nal persistence mechanism covered in this paper is more
of a generic class: application-specifi c persistence. Many
applications (such as browsers) support plug-ins, which are
generally dynamic libraries that are loaded automatically when
the application is run. While plug-ins can legitimately extend
the functionality of an application, malware can abuse this
functionality to gain persistence. Applications that may be
subverted include browsers such as Safari, Firefox and Chrome,
or others such as iTunes [15].

It should be noted that sometimes it may be challenging to
coerce an application to execute a malicious plug-in (it might
load the plug-in, then decide it doesn’t like it). However, if the
persistent plug-in exports a constructor (see Figure 19), it will
automatically be executed (by the OS loader) as soon as it is
loaded. Thus, even if the host application rejects the plug-in, it
is too late as persistent code execution has already been
achieved.

Figure 20: Dynamic library (plug-in) constructor.

Rest in peace
While researching methods of malware persistence, several
previously functional persistence techniques were found to
have either been fully deprecated or removed in OS X

Mavericks. These include modifying environment.plist,
modifying com.apple.SystemLoginItems.plist and setting an
‘AutoLaunchedApplicationDictionary’ within the /Library/
Preferences/loginwindow fi le.

While these methods of persistence are (or were?) common in
older OS X malware samples, they are likely to fade into
oblivion as they no longer work on the latest version of OS X.

PERSISTENT OS X MALWARE
While not all of the methods of persistence presented are (yet)
abused by OS X malware, many are. The following section
examines several OS X malware samples and reveals their
persistence mechanisms.

OSX/CallMe

A few years ago, somebody (likely the Chinese government),
started targeting Tibetan activists with malicious Word
documents that attempted to exploit CVE-2009-0563. The
payload of these attacks was named OSX/CallMe [16]. This
malware was fairly basic, providing the attackers with the
ability to execute arbitrary commands on an infected host, as
well as exfi ltrating the victim’s contacts (address book) [17].
In order to persist, CallMe installs itself as an auto launched
launch daemon. Specifi cally, it creates a launch daemon plist,
realPlayerUpdate.plist, within the /Library/LaunchDaemons
directory that references the malware’s binary,
.realPlayerUpdate (see Figure 21).

OSX/Flashback

Flashback shattered the notion that OS X was immune to
malware. By exploiting a known, but unpatched Java
vulnerability, Flashback was able to automatically infect users
as they visited a compromised or malicious website. At its
height, it amassed over 600,000 infected hosts, making it the
most ‘successful’ OS X malware to date [18]. Flashback’s goal

Figure 21: CallMe’s launch daemon persistence.

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

21VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

was simply fi nancial gain – by injecting ads into users’ web
sessions. To ensure it was (re)executed each time an infected
computer was rebooted, it installed itself as a user launch agent
(com.java.update.plist, .jupdate). (See Figure 22.)

OSX/Crisis
According to online sources, OSX/Crisis is ‘an expensive
rootkit used by governments’ [19]. Delivered via targeted
exploits, it provides extensive surveillance capabilities by
collecting audio, images, screenshots and keystrokes. Crisis also
employs some fairly sophisticated stealth capabilities via a
rootkit (kernel) component that can hide processes and fi les.
Figure 23 illustrates some pseudo-disassembly, revealing the
malware building a path to a fi le within the user’s launch agent
directory. In other words, the disassembly shows the malware
preparing to persist as a launch agent.

OSX/Janicab
Janicab is a somewhat unique OS X malware sample, as it is
written in Python (though compiled for distribution). The
malware is also signed with an Apple Developer ID, probably in
an attempt hide its maliciousness and thwart Gatekeeper. Since
it is written in Python, the malware is easy to analyse and
uncovering its persistence mechanism is trivial. As may be seen
in the malware installer’s code, a cron job (set to execute every
minute) is created to ensure that the malware is persisted (see
Figure 24). It should be noted that once the malware is installed,
the crontab -l command easily reveals the malicious cron job.

OSX/Kitmos
Kitmos is another OS X malware sample that targets activists.
Discovered on an activist’s computer during the Oslo Freedom
Forum Workshop, Kitmos takes screenshots and uploads them
to a remote command and control server [20]. As the
disassembly in Figure 25 shows, the malware invokes the
LSSharedFileListInsertItemURL() function to add itself as a
login item for the current user. Once registered as a login item,
the malware will automatically be (re)executed by the OS
whenever the user logs in.

Figure 22: Flashback’s launch agent persistence.

Figure 23: Crisis’ launch agent persistence.

Figure 24: Janicab’s cron job persistence.

Figure 25: Kitmos’ login item persistence.

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

22 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

OSX/Yontoo

It is fairly common for malware to use social engineering
tricks to coerce the user into infecting themselves. Yontoo
masquerades as an ‘HD video codec’ to trick users who visit
compromised or malicious websites into installing the
malware. The malware creates malicious plug-ins for Safari,
Firefox and Chrome. This allows the malware to automatically
be executed whenever the user launches their browser. Once
loaded into the context of the browser’s process content, the
plug-ins transmit information about the loaded pages to a
remote server as well as injecting ads into the user’s browsing
session (see Figure 26).

OSX/Renepo

Renepo is an older OS X malware sample that disables security
mechanisms before downloading and executing other ‘hacker
tools’ such as password crackers [21]. Since this malware is a
script (which helpfully includes comments), it is easy to
understand its installation and persistence logic. As shown in
Figure 27, it persists as a startup item.

OSX/MacProtector

MacProtector is a fake (or ‘rogue’) anti-virus product. When a
user visits a compromised or malicious website, MacProtector
tries to convince the user that their computer is infected and that
they should download an application to ‘fi x’ it [22].
Unfortunately, if the user allows the downloaded installer to
complete, they become infected with MacProtector. Reverse
engineering this malware reveals that it installs itself as a login
item. Though this will cause the malware to persist, it will also
make it appear in the GUI (as well as in the login item’s plist).
(See Figure 28.)

OSX/Clapzok

The previously discussed OS X malware samples are generally
all stand- alone binaries or applications. OSX/Clapzok bucks this
trend: it is a classic virus that infects binaries both to spread and
to gain persistence [23]. It works by injecting viral code into a
binary, then hijacking the entry point. However, since Clapzok
infects signed apps (without un-signing them), it will likely

Figure 26: Yontoo’s browser extension(s) persistence.

Figure 27: Renepo’s startup item persistence.

Figure 28: MacProtector’s login item persistence.

Figure 29: Clapzok’s mach-O infection persistence [23].

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

23VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

cause major annoyances and, as a result, will be easily
discovered (see Figure 29).

KNOCKKNOCK
Research into persistence mechanisms on OS X has revealed
many locations within the boot process and OS startup sequence
that can be abused by malicious code. As we have shown in this
paper, many OS X malware variants exist in the wild that are
abusing several of these persistence mechanisms. Although
Apple has introduced several anti-malware mitigations, these
clearly fall short, as OS X users worldwide continue to be
infected.

In order to generically detect persistent OS X malware, a new
tool has been created that can enumerate and display persistent
OS X binaries. Named KnockKnock, its goal is simple: to tell
you who’s there! Armed with this tool, users can ensure that
they are protected against both current and future OS X threats.

There are many methods of persistence on OS X – and new ones
are sure to be found. As such, the open-source, Python-based
KnockKnock [24] was designed to use a plug-in-based
architecture, where each plug-in can scan for a particular
persistence technique. When new persistence techniques are
discovered, KnockKnock can easily be extended with new plug-
ins. Luckily, as its core performs most of the work, writing a
plug-in is incredibly simple. This is illustrated in the example in
Figure 30, which shows the main logic for a plug-in that
enumerates all launch daemons that are set to execute
automatically as a Mac computer boots up.

As the code snippet in Figure 30 illustrates, it only takes about
10 lines of Python code for this plug-in to enumerate a specifi c
persistence class. (For more details, including a comprehensive
plug-in-writing guide, see [24].)

KnockKnock has the ability to display persistent OS X binaries
that are set to execute automatically at each boot. Since
KnockKnock takes such an unbiased approach, it can generically
detect persistent OS X malware today, as well as in the future. It
should be noted though, that this approach will also list
legitimate binaries. However, as KnockKnock can fi lter out

unmodifi ed Apple-signed binaries, the output is reduced by a
factor of roughly 90%, generally leaving a handful of binaries
that can quickly be examined and verifi ed manually.

The screenshots in Figures 31 and 32 show KnockKnock
revealing various OS X malware infections, including
OSX/Janicab (cron job) and OSX/CallMe (launch daemon).

CONCLUSION
Even in the latest version of Mac OS X, Apple’s anti-malware
mitigations fall far short, allowing OS X malware to become an
ever more pervasive reality. However, by thoroughly

Figure 30: KnockKnock launch daemon plug-in.

Figure 31: KnockKnock Janicab (runner.pyc) detection.

Figure 32: KnockKnock CallMe (.realPlayerUpdate) detection.

METHODS OF MALWARE PERSISTENCE ON MAC OS X WARDLE

24 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

understanding the Mac’s startup process, points of persistence
can be identifi ed, which allow for the generic detection of
malware. KnockKnock, an open-source tool, aims to aid in this
detection and to ensure that everyday users are protected against
both current and future OS X threats.

REFERENCES
[1] IDC Worldwide Quarterly PC Tracker, 9 January 2014.

http://www.idc.com/getdoc.jsp?containerId=prUS2459
5914.

[2] Apple passing Microsoft. http://ben-evans.com/
benedictevans/2014/2/12/apple-passes-microsoft.

[3] Apple homepage. 2012. http://www.apple.com/.

[4] Ször, P. The Art of Computer Virus Research and
Defense. Symantec Press. 2005.

[5] F-Secure Threat Report, H1 2013. http://www.f-secure.
com/static/doc/labs_global/Research/Threat_Report_
H1_2013.pdf.

[6] OS X: About Gatekeeper. http://support.apple.com/kb/
ht5290.

[7] Mac malware that infected Facebook bypassed OS X
Gatekeeper protection. http://arstechnica.com/
security/2013/03/mac-malware-that-infected-facebook-
bypassed-os-x-gatekeeper-protection/.

[8] Researchers fi nd more versions of digitally signed Mac
OS X spyware. http://www.macworld.com/
article/2039640/researchers-fi nd-more-versions-of-
digitally-signed-mac-os-x-spyware.html.

[9] Breaking OS X signed kernel extensions with a NOP.
http://reverse.put.as/2013/11/23/breaking-os-x-signed-
kernel-extensions-with-a-nop.

[10] You can’t see me. http://www.blackhat.com/docs/asia-
14/materials/Tsai/Asia-14-Tsai-You-Cant-See-Me-A-
Mac-OS-X-Rootkit-Uses-The-Tricks-You-Havent-
Known-Yet.pdf.

[11] Levin, J. Mac OS X and iOS Internals: To the Apple’s
Core. Wrox. 2012.

[12] DE MYSTERIIS DOM JOBSIVS Mac EFI Rootkits.
http://ho.ax/De_Mysteriis_Dom_Jobsivs_Black_Hat_
Paper.pdf.

[13] Creating a Device Driver with Xcode. https://developer.
apple.com/library/mac/documentation/Darwin/
Conceptual/KEXTConcept/KEXTConceptIOKit/iokit_
tutorial.html#//apple_ref/doc/uid/20002366.

[14] Customizing Login and Logout. https://developer.apple.
com/library/mac/documentation/macosx/conceptual/
bpsystemstartup/chapters/CustomLogin.html.

[15] iTunes Evil Plugin Proof of Concept. http://reverse.put.
as/2014/02/15/appledoesntgiveafuckaboutsecurity-
itunes-evil-plugin-proof-of-concept/.

[16] New Targeted Attack on Tibetan Activists Using OS X
Discovered. http://www.intego.com/mac-security-blog/
new-targeted-attack-on-tibetan-activists-using-os-x-
discovered/.

[17] New CallMe malware discovered. http://www.
thesafemac.com/new-callme-malware-discovered/.

[18] Kaspersky Lab confi rms Flashfake/Flashback botnet
infected more than 600,000 Mac OS X Computers.
http://www.kaspersky.com/about/news/virus/2012/
Kaspersky_Lab_Confi rms_Flashfake_Flashback_
Botnet_Infected_more_than_600_000_Mac_OS_X_
Computers_Describes_Ramifi cations_and_Remedies.

[19] New OSX/Crisis or Business Cards Gone Wild.
http://www.intego.com/mac-security-blog/new-osx-
crisis-business-cards-gone-wild/.

[20] OSX Kitmos analysis. http://blog.sbarbeau.fr/2013/05/
osx-kitmos-analysis.html.

[21] Renepo worm targets Mac OS X users, Sophos reports.
http://www.sophos.com/en-us/press-offi ce/press-
releases/2004/10/va_renepo.aspx.

[22] Mac Security Threats: How Vulnerable Is Apple?
http://content.time.com/time/business/
article/0,8599,2075218,00.html.

[23] Clapzok.A: reversing the OS X part of a multiplatform
PoC infector. http://reverse.put.as/2013/05/31/clapzok-
a-reversing-the-os-x-part-of-a-multiplatform-poc-
infector/.

[24] KnockKnock. https://github.com/synack/knockknock.

