
MAY 2014

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

NEW GENERATION BOTNET
Neurevt fi rst appeared over a year ago – its many
components cover a large number of the most
popular malicious functionalities, including
downloading malware, DDoS attacks and website
sniffi ng. He Xu discusses the major changes
that have been introduced into the most recent
generation of the botnet.
page 4

ELEVATION OF PRIVILEGE
Elevation of privilege (EoP) vulnerabilities can
allow a program to run arbitrary code, regardless of
that program’s current permission level – as a result,
they draw a lot of attention from malware authors.
Wayne Low describes two of the EoP vulnerabilities
exploited by the Turla malware family.
page 8

CYBER INVESTIGATION
The current information landscape is pretty
lacking when it comes to information about cyber
investigations. Most reports on cybercrime cover
only the results of an investigation, omitting the
process, the investigative techniques and the specifi c
attack scenarios. Alisa Esage uses a real-world
example to shed some light on the typical cyber
investigation process.
page 21

2 COMMENT

 A grown-up industry

3 NEWS

 Decrease in number of breaches; increase in
 cost of breaches

 Q1 breach data revealed

 MALWARE ANALYSES

4 Neurevt botnet: new generation

8 Anatomy of Turla exploits

18 The curse of Necurs, part 2

21 FEATURE

 On cyber investigations. Case study: a
 money transfer system robbery

27 SPOTLIGHT

 Greetz from academe: fi lm at eleven

28 END NOTES & NEWS

2 MAY 2014

COMMENT

Editor: Helen Martin / Martijn Grooten

Technical Editor: Dr Morton Swimmer

Chief of Operations: John Hawes

Security Test Engineer: Scott James

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

A GROWN-UP INDUSTRY
The recently announced1 changes at Virus Bulletin have
given us plenty of reason to look forward. But they
have also provided us with an excuse to look back at the
25-year history of the company.

One episode that is remembered with a mixture of
nostalgia and frustration at VB’s headquarters is that of
W97M/ColdApe2, a 1999 virus that, among other
things, sent an email from each infected machine to
nick@virusbtn.com, the email address of erstwhile VB
Editor Nick FitzGerald.

Reading about ColdApe, I couldn’t help but notice
how much things have changed in the last 15 years.
A discussion I stumbled across between Nick and the
author of the virus3 on the alt.comp.anti-virus newsgroup
not only highlighted the fact that such dialogues took
place frequently and in the open, but it also gave the
impression of mere child’s play compared with the
threats we see today that are perpetrated by organized
criminals and nation states.

At the same time, the distinction between good and
bad was always very clear: there were those writing
the viruses and those fi ghting them, and the two were
separate worlds. The idea that someone from one of
those worlds could fi nd employment in the other was
1 http://www.virusbtn.com/virusbulletin/archive/2014/04/vb201404-
shape-of-things
2 http://www.eset.com/us/threat-center/encyclopedia/threats/
w97mcoldapea/
3 https://groups.google.com/forum/#!topic/alt.comp.anti-virus/1a4_
CdnLdPY

unthinkable – and has been the topic of many heated
discussions at VB conferences over the years.

Many security researchers still make a distinction
between good and bad actors, though there is increasing
disagreement over who fi ts into which category. There is
even less agreement on which actions are bad – and quite
often it depends on the circumstances.

Running a device at the corporate gateway to prevent
employees from accessing malicious websites is
generally considered an advisable thing to do. Running
the same device at a country’s ISPs to prevent its citizens
from accessing websites that are not in line with the
government’s view is considered by most to be heavy
censorship.

Hacking into a company’s website to steal data relating
to millions of its customers is a very serious crime.
Hacking into the same website to demonstrate the
existence of a vulnerability could result in the site owner
awarding the hacker a bug bounty in appreciation.

A few years ago, we quietly changed the tagline of
the VB website from ‘fi ghting malware and spam’ to
‘covering the global threat landscape’. This was not
because we considered that malware and spam were no
longer interesting, but because we realized that fi ghting
them could only be done in a broader security context.

As Virus Bulletin is going through some big changes, we
plan to increase our scope further and look even more at
other areas of IT security – of course, while continuing
to report on malware and spam.

Through both the VB conference and Virus Bulletin
magazine, VB has shared the details of high-quality
research and thought-provoking opinions. We will
continue to do so, and our new publication format will
certainly help with that.

We will also be on the look-out for contributions from
researchers working in different areas of security
– or perhaps with a different view on security. The
well-known expression states that great minds think
alike, but in fact, great minds often think in very
different ways, and bringing them together can lead to
even greater things.

Great minds tend to have strong opinions too. (At least
those in security do – after all, security matters.) It will
be inevitable that some of the things we publish will
cause some controversy: people may disagree with an
opinion expressed, with some research that is being
performed or even with the ethics behind that research.
We’re a grown-up industry, and we should be able to
deal with such controversies. It will benefi t us all.

Here’s to the next 25 years!

‘We plan to increase
our scope further
and look even more
at other areas of IT
security.’
Martijn Grooten, Virus Bulletin

http://www.virusbtn.com/virusbulletin/archive/2014/04/vb201404-shape-of-things
http://www.eset.com/us/threat-center/encyclopedia/threats/w97mcoldapea/
https://groups.google.com/forum/#!topic/alt.comp.anti-virus/1a4_CdnLdPY

3MAY 2014

VIRUS BULLETIN www.virusbtn.com

NEWS

VB2014 SEATTLE
24–26 SEPTEMBER 2014

Join the VB team in Seattle, WA, USA for the IT
security event of the year.

What: • Three full days of presentations by
 world-leading experts

 • Anti-malware tools & techniques

 • Network security

 • Hacking & vulnerabilities

 • Mobile threats

 • Spam & social networks

 • Cybercrime

 • Last-minute hot topic presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Westin Seattle

When: 24–26 September 2014

Price: $1895

 Early bird rate $1705.50 until 30 June

BOOK ONLINE AT
WWW.VIRUSBTN.COM

SEATTLE
2014

DECREASE IN NUMBER OF BREACHES;
INCREASE IN COST OF BREACHES
This year’s Information Security Breaches survey, released
to coincide with the Infosecurity Europe event in London,
has revealed that over the last year, the number of security
breaches affecting UK businesses has decreased slightly –
but there has been a signifi cant rise in the cost of individual
breaches.

The survey, which is commissioned by the UK’s
Department for Business, Innovation and Skills and
conducted by PWC, found that 81% of large organizations
suffered a security breach within the last year, compared
with 86% the previous year, while 60% of small businesses
suffered a breach in the last year, compared with 64% a
year ago.

While a decrease in the number of security breaches may
appear to be good news, the bad news is that the scale and
cost of individual breaches has increased dramatically.
Large organizations reported the average cost of the worst
breaches they suffered to be in the range of £600k to £1.5m
in the last year, compared with a range of £450k–£850k a
year ago. Meanwhile, small businesses saw the average cost
of their worst breaches rise from £35k–£65k a year ago to
£65k–£115k in the last 12 months.

More encouragingly, the report also noted that overall
investment in IT security is on the increase across all
business sectors, with a particularly marked increase in IT
security spending in small businesses.

The full report can be downloaded (PDF) from
https://www.gov.uk/government/publications/information-
security-breaches-survey-2014.

Q1 BREACH DATA REVEALED
According to a report by SafeNet, Inc., more than 200
million data records were stolen in the fi rst quarter of 2014
– representing an increase of 233 per cent over the same
period last year. The fi rm noted that of the 254 breaches
recorded, only in one per cent of cases were strong
encryption, key management or authentication solutions in
place to protect the data.

It will come as little surprise that the fi rm’s Breach Level
Index shows the fi nancial industry to have been hit the
hardest, accounting for 56 per cent of all data records
lost or stolen. Meanwhile, 20 per cent of all lost or stolen
records came from the technology industry, nine per cent
from the health care sector, and just one per cent from the
retail industry.

The statistics break down into approximately three breaches
each day, with more than 93,000 records stolen per hour.

https://www.gov.uk/government/publications/information-security-breaches-survey-2014
http://www.virusbtn.com/conference/vb2014/

VIRUS BULLETIN www.virusbtn.com

4 MAY 2014

NEUREVT BOTNET: NEW
GENERATION
He Xu
Fortinet, Canada

The infamous Neurevt (a.k.a. Betabot) botnet fi rst appeared
in March 2013. It has many components, covering a large
number of the most popular malicious functionalities
– such as downloading malware, DDoS attacks and website
sniffi ng. In this article, we discuss the major changes that
have been introduced into the latest generation of the botnet.

SINGLE BOT SPLITS INTO LOADER AND
MODULE
The latest version of Neurevt doesn’t execute its malicious
code directly, but instead acts as a normal loader (Figure
1). It fi nds the encrypted block (shown in red in Figure 1)
by looking out for the 0x10 length signature in the block’s
header. Then it extracts the module binary from the block
and places it in a newly allocated section of memory (the
block structure detail is listed below as enc_block). It then
replaces the module’s default confi g block with its own local
confi g block (shown in blue in Figure 1) – the block size
may differ a little between loader and module.

typedef struct enc_block {

 CHAR Signature[0x10];

 DWORD key;

 DWORD EncSize;

 DWORD DecSize;

CHAR Block[*]

};

Figure 1: The bot acts as a normal loader.

Next, the loader updates the values of the two DWORD
bitsmarks in the replaced confi g block, changing them from
the default 0 to 1 (see Figure 2), and loads the confi g block
according to the module’s PE structure. Finally, the loader
calls the entry point of the module.

ABNORMAL PE STRUCTURE
The module cannot run independently because it requires
the loader’s initialization. In addition, its structure differs
from the standard PE structure. Let’s look at the section
table (Figure 3).

Figure 3: Special section table of module.

The raw sizes are all too large to run independently. As a
result, the loader and module are inseparable. This also
means that the embedded binary can remain stable for a
long time without needing to change anything. This is much
easier for maintenance.

SPECIAL INJECTION MECHANISM
The previous variant’s preferred injection target was
C:\windows\system32\wuauclt.exe, but the latest version
injects its main code into a newly created process, C:\
windows\explorer.exe.

However, it does not modify the entry point code of the
compromised process or create a new remote thread starting
from its malicious code. Instead, it modifi es ntdll.dll’s
export function ZwContinue (Figure 5), and then jumps to a
tiny section of newly allocated memory to recover the API’s
original code (Figure 4) and create a new thread which
executes the malware’s major code.

Figure 4: Original code of ZwContinue.

Figure 2: Bitsmark update.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5MAY 2014

Figure 5: Modifi ed code of ZwContinue.

COPY API CODE AND BACKUP API
To avoid deep analysis and tracking by security researchers,
the bot copies various API codes to itself – in particular
those that start with ‘Zw’ and which are mostly
ntdll.dll export functions. This means that most API
breakpoints don’t work for Neurevt.

Let’s look at an example for calling the ZwResumeThread
API. The default API code is shown in Figure 6.

Figure 6: Default code of ZwResumeThread.

After the bot’s modifi cation, all of the code is copied to
local memory, as shown in Figure 7.

Things are a little different because the bot merges the
code of two APIs together locally. This could be used as a
possible clue for indicating that a system has been infected
by Neurevt. As a backup, the bot still supports normal API
calls when the copy code mechanism fails.

NEW REPLICATION PATH AND
PROTECTION
Since the special ClsID directory name feature has become
well known, the bot has stopped using it. It still replicates
itself in the %COMMONPROGRAMFILES%\ directory,
but the subsequent child directory is hard-coded in the
binary, so different variants have different directory names.
The following list shows several of the replication paths
that we have observed. The fi lename is random on each
replication attempt:

• %COMMONPROGRAMFILES%\CreativeAudio\
jnmhzdjtt.exe

• %COMMONPROGRAMFILES%\nvv svc\rjmynangs.exe

• %COMMONPROGRAMFILES%\Winsys\nrmhzdjtb.exe

• %COMMONPROGRAMFILES%\
WindowsUpdaterAgent0\jwvzdqgtr.exe

Without the protection of the special ClsID directory name,
the bot adds an advanced inline hook feature in order to
hide itself.

RANDOM C&C LINK PARAMETERS
To make detection more diffi cult, the bot adds a random
parameter to the end of its C&C link. It will randomly select
one of the following parameters while communicating with
the C&C server:

Parameter Examples

null */order.php

id */order.php?id=<number>

pid */order.php?pid=<number>

page */order.php?page=<number>

Our investigation suggests that these parameters are
actually meaningless. The number values do not provide
real information relating to the system. However, this
information gives us another tip for identifying the latest
generation of the malware.

Figure 7: Code is copied to local memory.

VIRUS BULLETIN www.virusbtn.com

6 MAY 2014

RANDOM SEND PACKAGE STRUCTURE
Let’s look at the last variant fi rst. The earlier variant uses
fi xed parameter names in the post content (see Figure 8).
The initial package uses ps0, ps1, cs1, cs2 and cs3 to carry
local information to the C&C server. This makes it easy to
detect according to these parameters.

Figure 8: Previous variant’s send package.

The encryption for the ps1 value is RC4 and the key is taken
from the initial confi g block. Figure 9 shows the sending
package after decryption.

Figure 9: Ps1 block plain text.

The cs1, cs2 and cs3 values are encrypted using a simple
XOR encryption (see Figure 10). The DWORD keys are
hard-coded in the bot’s code and should be the same among
most variants: \x1D\xCC\xB9\xEA.

Figure 10: The cs1, cs2 and cs3 values use a simple XOR
encryption.

Now let’s get back to the latest generation, which makes
detection signifi cantly more diffi cult by changing most of
the parameter names to random strings (Figure 11). The
number of parameters has increased from fi ve to eight – so
it can carry more information.

There are still some small signs that could be used by a
fi lter to detect the package – for example, starting from the
fourth parameter, the name tail is always a number, and it
increases by one each time.

The encryption has changed too, and can be categorized in
two parts. The fi rst (or the second) parameter whose value

Figure 11: Most parameter names are random strings.

Figure 12: Decryption of third parameter.

is not only numbers is added to a random key that will be
combined with a hard-coded key as the fi nal RC4 key to
decrypt the third parameter (Figure 12) – which should be
the same as ps1 in the previous variant.

The second part is for decryption of the name-tail-number-
increasing parameters: the encryption is XOR with a fi xed
DWORD key \x22\xF0\x71\xC2 that has already changed
from old variants.

Figure 13: XOR with fi xed DWORD key.

So fi nally, we get the complete plain text of the sending
package. Comparing this with Figure 10, the bot
could collect two more pieces of information about
the compromised system, such as CPU and video card
information. We can see that the bot is executed under
the VirtualBox system, so the C&C server could refuse its
connection or never give a real response.

RECEIVED PACKAGE IMPROVEMENT

The received package structure and algorithm has also been
updated. First, the two-byte fi xed signature at the start,
\xD8\xFF, has been removed, so the total package could be
treated as a random data block before decryption.

VIRUS BULLETIN www.virusbtn.com

7MAY 2014

The current structure is as follows:
typedef struct recv_pack{

 DWORD HdrKey;

 DWORD BodyKey;

 CHAR Header[0x5C];

 CHAR Body[*]

};

The detailed Header structure is the same as before, as is the
body. However, the key-generation mechanism has changed
slightly – the bot will not use the hard-coded key directly,
but uses a XOR db algorithm with db key ‘\xCB’ to decrypt
the header. It uses another hard-coded key combined
with the second DWORD value and then uses a XOR db
algorithm with db key ‘\x1F’ to decrypt the body.

Figure 14 shows the fi nal decrypted pack.

Figure 14: Decrypted pack.

As we have seen, the C&C server only uses the fi rst block
for executing specifi c commands. It spreads other malware
using the .dwfi le command with additional parameters. Our
investigations show that the current variant is spreading the
Andromeda and Dorkbot malware.

The block types vary according to the size list in the confi g
header. Currently, the bot only uses the fi rst four blocks,
which is the same as the previous variant. The fi rst block is
for commands, the second is for the domain blacklist, the
third is for the website sniffer, and the fourth block is for
updating the confi guration.

The bot could support 0x25 / 38d different commands and
there is a trick: the bot does not save any command string
locally, only a checksum list for comparing the calculated
command string value. So unless we received the actual
command, we would not know it is plain text.

Since we fi rst saw Neurevt we have collected the following
commands and their related indexes:

Command Index Description
.dwfi le 0x05 Download and run other malware
.update 0x07 Download and run its update binary
.botkill 0x11 Erase all local system information
.ddos 0x12 DDoS attack
.browser 0x19 Open Internet browser

SECOND BLOCK ACTS AS DDOS ATTACK
In the second block, the bot has changed the fake IP from
the local 127.0.0.1 to a real Internet IP – currently only that
belonging to Google, so it likes a special DDoS.

Figure 16: DDoS function.

CONCLUSION
With its newly designed random parameters, Neurevt’s
communication with its C&C server is much safer than
before. The modifi cation for encrypting the sending and
receiving of packages, could cause many vendors’ detections
to fail. The compatible commands structure could prompt
previous purchasers of the malware to update to the latest
version and without too much adaptation. Needless to say,
we will continue to track the activity of the Neurevt botnet.

REFERENCES
[1] https://www.virusbtn.com/virusbulletin/

archive/2013/11/vb201311-Neurevt.

[2] https://blog.gdatasoftware.com/blog/article/a-new-
bot-on-the-market-beta-bot.html.

[3] https://www.sinister.ly/Thread-120-Beta-Bot-
Coded-in-C-Incredibly-Advanced-HTTP-Bot.

Figure 15: The bot does not save any command string locally.

https://www.virusbtn.com/virusbulletin/archive/2013/11/vb201311-Neurevt
https://blog.gdatasoftware.com/blog/article/a-new-bot-on-the-market-beta-bot.html
https://www.sinister.ly/Thread-120-Beta-Bot-Coded-in-C-Incredibly-Advanced-HTTP-Bot

VIRUS BULLETIN www.virusbtn.com

8 MAY 2014

ANATOMY OF TURLA EXPLOITS
Wayne Low
F-Secure, Finland

Nowadays, most computer users are taught not to open
executable fi les from an unknown source. They are also
encouraged to log into their computer using a limited user
account instead of the administrator account, because in the
event of a malicious fi le unwittingly being run, the restricted
permission settings of a user account would serve as a
passive mitigation tactic to prevent unrestricted access to
the system and/or data on the machine, thereby limiting the
extent of any possible damage.

However, in some circumstances logging in as an
administrator is unavoidable. To allow for this eventuality
while still making a malware author’s life more challenging,
Microsoft introduced the User Account Control (UAC)
feature to its operating systems, starting with Windows
Vista.

One way in which the UAC feature can be circumvented is
to gain an elevation of privilege – which allows someone
who only has access to a limited user account environment
to perform actions that would otherwise be restricted to
the administrator’s account. This is why an elevation of
privilege (EoP) vulnerability draws a lot of attention from
malware authors.

This article focuses on EoP vulnerabilities exploited by the
Turla malware family, discovered by G Data [1], which is
not only involved in cyber-espionage but is also used in the
sphere of vulnerability exploitation.

WHAT IS AN ELEVATION OF PRIVILEGE
VULNERABILITY?

An EoP vulnerability is a fl aw or loophole in a piece of
software which, if successfully exploited, could allow a
program to run arbitrary code, regardless of that program’s
current permission level.

Typically, to gain an elevation of privilege for their
malicious programs on the Windows OS, malware authors
will exploit an EoP vulnerability in the Windows kernel. If
the exploitation is successful, an exploit program running
in the standard user account context may be escalated to the
context of the system account – meaning that it can perform
any operation on the computer at the highest permission
level, even though security features such as UAC are
present.

Microsoft has issued patches for various Windows kernel
vulnerabilities that can be leveraged in this way. However,

attacks using these vulnerabilities are still effective against
users who have not yet patched their systems.

TYPES OF TURLA EXPLOITS

Generally, Turla targets three EoP vulnerabilities: two in
Microsoft Windows and one in Oracle VirtualBox. The
good news is that these vulnerabilities have been patched
and in each case the latest versions of the products are not
vulnerable.

There are two Windows kernel vulnerabilities that are
manipulated by Turla, namely MS09-025 and MS10-015.
Researchers fi rst spotted the MS09-025 vulnerability in
the notorious cyber-espionage malware Stuxnet/Flame [2],
while MS10-015 was discovered by Tavis Ormandy in
2010 [3]. After analysing a sample of the malware, we
realized that the author fi rst deploys the simpler exploit,
then moves on to the more complex one if the prior
exploitation is not successful.

Having proof-of-concept (POC) code available for an
exploit can help researchers to gain a better understanding
of how the exploitation works. We checked the Metasploit
Framework for available POC code – the Framework is
a handy platform not just for malware authors looking
to adopt an exploit for malicious purposes, but also for
security researchers trying to understand an exploit.

Currently, POC code is available for MS10-015 but not for
MS09-025. The MS10-015 exploit was implemented and
ported to the Metasploit Framework by the Metasploit team
[4] shortly after the vulnerability itself was discovered. (We
will skip analysis of MS10-015 in this article since source
code is publicly available.)

Even though the MS09-025 exploit code is not
available on the Metasploit Framework, researchers can
reverse-engineer samples to try to understand how the
exploit works. Based on our analysis, we consider that
MS09-025 is a pretty interesting vulnerability and can
easily be exploited by using two undocumented Win32k
native API functions.

MS09-025
According to the Microsoft Security Bulletin description
of MS09-025, the vulnerability was caused by a Windows
Driver Class registration and Windows Kernel Pointer
Validation issue [5]. As shown in Figure 1, the fi rst issue
can easily be identifi ed when the exploit sample is opened
with IDA Pro.

Take note of the code highlighted in yellow in Figure 1,
indicating a wrapper for the Win32k function described in

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

9MAY 2014

the Microsoft Security Bulletin that will lead to elevation of
privilege. The details of how this function causes the EoP
vulnerability will be discussed later.

The entire exploitation work fl ow consists of fi ve steps:

1. Create a ‘Button’ class Windows object with an
arbitrary Windows name.

2. Customize the shellcode and return the shellcode
entry point virtual address to the caller.

3. Call the win32k!NtUserRegisterClassExWOW
function to modify the upper 16-bit function address
found in the gpsi.mpFnidPfn function table over the
shellcode entry point address obtained in Step 2.

4. Call the win32k!NtUserRegisterClassExWOW again
to modify the lower 16 bits of the same function
address as modifi ed in Step 3.

5. At this point, the vulnerability can be triggered via
the win32k!NtUserMessageCall Win32k native
function, which in turn executes the shellcode entry
point.

In short, there are two vulnerable functions that are
responsible for triggering this EoP vulnerability. However,
these functions are not exported by the Windows library
(DLL), but even if the vulnerable functions cannot be
retrieved via the Windows library, it is still possible to

execute them directly via a system call or SYSENTER
instruction.

Figure 2: Call to the win32k!NtUserMessageCall function
via the SYSENTER instruction.

Figure 1: Wrapper Win32k function leads to MS09-025.

VIRUS BULLETIN www.virusbtn.com

10 MAY 2014

For instance, g_dwSSINtUserRegisterClassExWOW is a
system call number or system service number that is used to
identify which Windows system function will be executed by
the kernel when a function is invoked from user-mode. The
system call number may vary depending on the OS version.
On Windows XP SP2, the system call number for win32k!
NtUserRegisterClassExWOW is 0x1E8 and the system call
number for win32k!NtUserMessageCall is 0x1CC.

Both of these function entry points are defi ned in the
nt!KeServiceDescriptorTableShadow data structure:
kd> lmvm win32k

start end module name

bf800000 bf9c2800 win32k (pdb symbols) \
symbols\win32k.pdb\8F51F3B8BFB742E49E1C50FC54A9630F2\
win32k.pdb

 Loaded symbol image fi le: win32k.sys

 Mapped memory image fi le: \symbols\win32k.sys\
47E0E1061c2800\win32k.sys

 Image path: \SystemRoot\System32\win32k.sys

 Image name: win32k.sys

 Timestamp: Wed Mar 19 17:46:46 2008 (47E0E106)

 CheckSum: 001D1603

 ImageSize: 001C2800

 File version: 5.1.2600.3335

 Product version: 5.1.2600.3335

 File fl ags: 0 (Mask 3F)

 File OS: 40004 NT Win32

 File type: 3.7 Driver

 File date: 00000000.00000000

 Translations: 0409.04b0

 CompanyName: Microsoft Corporation

 ProductName: Microsoft® Windows® Operating System

 InternalName: win32k.sys

 OriginalFilename: win32k.sys

 ProductVersion: 5.1.2600.3335

 FileVersion: 5.1.2600.3335 (xpsp_sp2_
gdr.080319-1240)

 FileDescription: Multi-User Win32 Driver

 LegalCopyright: © Microsoft Corporation. All
rights reserved.

kd> dds nt!KeServiceDescriptorTableShadow l8

8055b6a0 80503940 nt!KiServiceTable

8055b6a4 00000000

8055b6a8 0000011c

8055b6ac 80503db4 nt!KiArgumentTable

8055b6b0 bf999980 win32k!W32pServiceTable

8055b6b4 00000000

8055b6b8 0000029b

8055b6bc bf99a690 win32k!W32pArgumentTable

kd> dds win32k!W32pServiceTable + 1e8 * 4 l1

bf99a120 bf81f3f8 win32k!NtUserRegisterClassExWOW

kd> dds win32k!W32pServiceTable + 1cc * 4 l1

bf99a0b0 bf80ef95 win32k!NtUserMessageCall

Figure 3: Functions lying under the vulnerable function win32k!NtUserRegisterClassExWOW.

VIRUS BULLETIN www.virusbtn.com

11MAY 2014

We will fi rst look into the win32k!NtUserRegisterClassE
xWOW function, which allows some kernel pointers to be
overwritten in the Windows GUI subsystem device driver,
win32k.sys, which in turn could result in arbitrary code
execution.

Before calling win32k!NtUserRegisterClassExWOW, there
are certain prerequisites that need to be satisfi ed in order to
exploit the vulnerability properly:

• The function ID (fnID) value must be provided as a
function argument.

• The WNDCLASSEX.cbWndExtra value must be
provided as a function argument.

The following section will explain how the bogus values
mentioned above can cause vulnerability when the
vulnerable function (with bogus parameters) is called
directly from user-mode.

After analysing the function, we deduced that the vulnerable
code is located in the internal function beneath win32k!NtU
serRegisterClassExWOW (see Figure 3).

Basically, the vulnerable win32k!NtUserRegisterClassExW
OW function eventually calls the win32k!InternalRegisterC
lassEx function. When the bogus values are passed directly
as function parameters, it is easy to alter the values in the
mpFnidPfn (fnID) table stored in the global SERVERINFO
structure (see Figure 4), because the Windows kernel does
not properly validate the parameters passed to this function.
Note that _gpsi is a pointer to this structure [6].

The assembly code in Listing 1 shows the vulnerable
code in the win32k!InternalRegisterClassEx function that
modifi es the fnID table.

Listing 2 shows a snapshot of the _gpsi structure before the
vulnerable function is executed, while Listing 3 shows a
snapshot of the original values in the fnID table.

A pseudo-code exploits the vulnerability (shown in Figure 5).

Figure 4: SERVERINFO data structure.

.text:BF81EF6A mov cx, [ebx+3Ch] ; cx = WNDCLASSEX.cbWndExtra value

.text:BF81EF6E add cx, 0A4h ; ShellcodeAddress = WNDCLASSEX.cbWndExtra + sizeof(WND)

.text:BF81EF73 movzx eax, ax ; eax = fnID index

.text:BF81EF76 and eax, 0FFFF3FFFh ; fnID = fnID&0xFFFF3FFF

.text:BF81EF7B mov edx, _gpsi ; global gpsi SERVERINFO structure

.text:BF81EF81 mov [edx+eax*2-48Ch], cx ; Write ShellcodeAddress to gpsi data structure according to fnID

Listing 1: Vulnerable code in the win32k!InternalRegisterClassEx function that modifi es the fnID table.

kd> dc poi(win32k!gpsi)

bc5d0650 00480031 00000000 00000400 bf90b69e 1.H.............

bc5d0660 bf80eda0 bf8f3cef bf915e4d bf80eda0 <..M^......

bc5d0670 bf80eda0 bf8e82ae bf915e6c bf915e6c l^..l^..

bc5d0680 bf915e6c bf915e6c bf915e6c bf915e6c l^..l^..l^..l^..

bc5d0690 bf915e6c bf915e6c bf915e6c bf90bf5b l^..l^..l^..[...

bc5d06a0 bf92fee1 bf915e6c bf915e6c bf915e6c l^..l^..l^..

bc5d06b0 bf915e6c bf83b682 bf886b77 bf842e42 l^......wk..B...

bc5d06c0 bf885a59 bf87c831 bf915e6c bf915e6c YZ..1...l^..l^..

Listing 2: Snapshot of the _gpsi structure before the vulnerable function
is executed.

kd> dc poi(win32k!gpsi) + c

bc5d065c bf90b69e bf80eda0 bf8f3cef bf915e4d <..M^..

bc5d066c bf80eda0 bf80eda0 bf8e82ae bf915e6c l^..

bc5d067c bf915e6c bf915e6c bf915e6c bf915e6c l^..l^..l^..l^..

bc5d068c bf915e6c bf915e6c bf915e6c bf915e6c l^..l^..l^..l^..

bc5d069c bf90bf5b bf92fee1 bf915e6c bf915e6c [.......l^..l^..

bc5d06ac bf915e6c bf915e6c bf83b682 bf886b77 l^..l^......wk..

bc5d06bc bf842e42 bf885a59 bf87c831 bf915e6c B...YZ..1...l^..

bc5d06cc bf915e6c bf834789 bf866280 bf915e6c l^...G...b..l^..

Listing 3: Snapshot of the original values in the fnID table.

VIRUS BULLETIN www.virusbtn.com

12 MAY 2014

We specify the target function address that we want to
modify in LOWORDFnIdIndex as an index to the fnID
table during the fi rst function call to win32k!NtUserRegiste
rClassExWOW:

1. WORD LOWORDFnidIndex = 0x256;

2. Wrapped_NtUserRegisterClassExWOW(LOWORDFnidIndex,
 L”cls1”);

After the fi rst function call, the lower 16-bit target
function address will be changed in the fnID table:

eax=00000256 ebx=bc6883f0 ecx=0000409d
edx=0000005c esi=f4b15ce0 edi=bc68844c

eip=bf81ee8a esp=f4b15c14 ebp=f4b15c6c iopl=0
nv up ei pl nz na pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030
gs=0000 efl =00000206

win32k!InternalRegisterClassEx+0x13f:

bf81ee8a 6681c1a400 add cx,0A4h

kd> ? cx + A4

Evaluate expression: 16705 = 00004141

eax=00000256 ebx=bc6883f0 ecx=00004141
edx=bc5d0650 esi=f4b15ce0 edi=bc68844c

eip=bf81ee9d esp=f4b15c14 ebp=f4b15c6c iopl=0
nv up ei pl nz na pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030
gs=0000 efl =00000206

win32k!InternalRegisterClassEx+0x152:

bf81ee9d 66898c4274fbffff mov word ptr
[edx+eax*2-48Ch],cx ds:0023:bc5d0670=eda0

kd> ? poi(win32k!gpsi) + eax*2 - 48Ch

Evaluate expression: -1134754192 = bc5d0670

As can be seen in Listing 4, the lower 16-bit address
of the pointer at 0xbc5d0670 has been changed.

We pass HIWORDFnidIndex for the second function call to
win32k!NtUserRegisterClassExWOW:

1. WORD HIWORDFnidIndex = 0x257;

2. Wrapped_NtUserRegisterClassExWOW(HIWORDFnidIndex,
 L”cls2”);

After the second function call, the higher 16-bit target
function address will be changed in the fnID table:

eax=00000257 ebx=bc689138 ecx=0000409d edx=0000005c
esi=f4b15ce0 edi=bc689194

eip=bf81ee8a esp=f4b15c14 ebp=f4b15c6c iopl=0 nv up
ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000
efl =00000202

win32k!InternalRegisterClassEx+0x13f:

bf81ee8a 6681c1a400 add cx,0A4h

kd> ? cx + A4

Evaluate expression: 16705 = 00004141

eax=00000257 ebx=bc689138 ecx=00004141 edx=bc5d0650
esi=f4b15ce0 edi=bc689194

eip=bf81ee9d esp=f4b15c14 ebp=f4b15c6c iopl=0 nv up ei
pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000
efl =00000202

win32k!InternalRegisterClassEx+0x152:

bf81ee9d 66898c4274fbffff mov word ptr
[edx+eax*2-48Ch],cx ds:0023:bc5d0672=bf80

kd> ? poi(win32k!gpsi) + eax*2 - 48Ch

Evaluate expression: -1134754190 = bc5d0672

Figure 5: Snippet of the function defi nition code that alters
the kernel pointer in the fnID table.

kd> dc poi(win32k!gpsi) + c

bc5d065c bf90b69e bf80eda0 bf8f3cef bf915e4d <..M^..

bc5d066c bf80eda0 bf804141 bf8e82ae bf915e6c AA......l^..

bc5d067c bf915e6c bf915e6c bf915e6c bf915e6c l^..l^..l^..l^..

bc5d068c bf915e6c bf915e6c bf915e6c bf915e6c l^..l^..l^..l^..

bc5d069c bf90bf5b bf92fee1 bf915e6c bf915e6c [.......l^..l^..

bc5d06ac bf915e6c bf915e6c bf83b682 bf886b77 l^..l^......wk..

bc5d06bc bf842e42 bf885a59 bf87c831 bf915e6c B...YZ..1...l^..

bc5d06cc bf915e6c bf834789 bf866280 bf915e6c l^...G...b..l^..

Listing 4: The lower 16-bit address of the pointer at 0xbc5d0670 has
been changed.

kd> dc poi(win32k!gpsi) + c

bc5d065c bf90b69e bf80eda0 bf8f3cef bf915e4d <..M^..

bc5d066c bf80eda0 41414141 bf8e82ae bf915e6c AAAA....l^..

bc5d067c bf915e6c bf915e6c bf915e6c bf915e6c l^..l^..l^..l^..

bc5d068c bf915e6c bf915e6c bf915e6c bf915e6c l^..l^..l^..l^..

bc5d069c bf90bf5b bf92fee1 bf915e6c bf915e6c [.......l^..l^..

bc5d06ac bf915e6c bf915e6c bf83b682 bf886b77 l^..l^......wk..

bc5d06bc bf842e42 bf885a59 bf87c831 bf915e6c B...YZ..1...l^..

bc5d06cc bf915e6c bf834789 bf866280 bf915e6c l^...G...b..l^..

Listing 5: The content of the modifi ed fnID table.

VIRUS BULLETIN www.virusbtn.com

13MAY 2014

Finally, Listing 5 shows the content of the modifi ed fnID
table.

At this point, we can clearly see that the 32-bit function
address at 0xbc5d0670 has been modifi ed. Therefore we
can conclude that the fnID table can be modifi ed directly
by calling win32k!NtUserRegisterClassExWOW – which
was not intended to be called by any ordinary user-mode
program.

Afterwards, arbitrary code can be executed through the
win32k!NtUserMessageCall function using the appropriate
parameter.

Figure 6: Code snippet that triggers arbitrary code.

Figure 7: NtUserMessageCall function prototype.

Looking at the function prototype of win32k!NtUserMess
ageCall, there are two crucial arguments that determine the
success of arbitrary code execution:

• Msg – Message ID, this can be any value in the range
of 0x400 – 0x1FFFF

• dwType – FNID types, this must be a specifi c value and
is dependent on the target address that we modifi ed in
the fnID table.

Finally, the assembly code of win32k!NtUserMessageCall
shows the usage of these values in the case of arbitrary code
execution:

NtUserMessageCall

.text:BF80EFA5 mov edi, edi

.text:BF80EFA7 push ebp

.text:BF80EFA8 mov ebp, esp

.text:BF80EFAA sub esp, 0Ch

.text:BF80EFAD push esi

.text:BF80EFAE push edi

.text:BF80EFAF call _EnterCrit@0 ; EnterCrit()

.text:BF80EFB4 mov ecx, [ebp+hWnd]

.text:BF80EFB7 call @ValidateHwnd@4 ;
ValidateHwnd(x)

.text:BF80EFBC mov ecx, [ebp+dwType] ; ecx =
dwType = 0xFFFFFFFF

.text:BF80EFBF mov esi, eax

.text:BF80EFC1 test esi, esi

.text:BF80EFC3 jz short loc_BF80EF8A

.text:BF80EFC5 mov eax, _gptiCurrent

.text:BF80EFCA mov edx, [eax+28h]

.text:BF80EFCD mov [ebp+var_C], edx

.text:BF80EFD0 lea edx, [ebp+var_C]

.text:BF80EFD3 mov [eax+28h], edx

.text:BF80EFD6 mov [ebp+var_8], esi

.text:BF80EFD9 inc dword ptr [esi+4]

.text:BF80EFDC

.text:BF80EFDC loc_BF80EFDC: ; CODE
XREF: NtUserMessageCall(x,x,x,x,x,x,x)-7j

.text:BF80EFDC mov eax, [ebp+MsgID] ; eax =
MsgID = 0x1234

.text:BF80EFDF and eax, 1FFFFh

.text:BF80EFE4 cmp eax, 400h

.text:BF80EFE9 jnb short loc_BF80F026

.text:BF80F026 loc_BF80F026: ; CODE XREF: NtUserM
essageCall(x,x,x,x,x,x,x)+44j

.text:BF80F026 push [ebp+ResultInfo]

.text:BF80F029 mov eax, _gpsi

.text:BF80F02E push ebp+lParam]

.text:BF80F031 add ecx, 6 ; ecx = 0xFFFFFFFF +
6 = 5

.text:BF80F034 push [ebp+wParam]

.text:BF80F037 and ecx, 1FFFFh ; ecx <= 0x1FFFF

.text:BF80F03A push [ebp+MsgID]

.text:BF80F03D push esi

.text:BF80F03E call dword ptr [eax+ecx*4+0Ch]
; Call our desired pointer address in modifi ed fnID
table

kd> ? poi(win32k!gpsi) + ecx * 4 + 0c

Evaluate expression: -1134754192 = bc5d0670

kd> dd bc5d0670 l1

bc5d0670 41414141

VIRUS BULLETIN www.virusbtn.com

14 MAY 2014

VIRTUALBOX DRIVER EOP
VULNERABILITY – DISABLING DRIVER
SIGNATURE ENFORCEMENT
Turla also targets the Oracle VirtualBox software for
exploitation. The EoP vulnerability Turla exploits only
exists on VirtualBox versions 1.6.2 and 1.6.0, and was fi rst
disclosed by CoreSecurity in 2008; the vendor patched the
vulnerability within a month [6].

Turla takes advantage of a vulnerable VirtualBox device
driver (VBoxDrv.sys) in order to bypass a very important
Windows security feature called Driver Signature
Enforcement (DSE), which was fi rst introduced in Windows
Vista. Starting with the 64-bit version of Windows Vista,
the driver code signing policy for the Windows OS requires
all driver code to have a digital signature, to increase the
platform’s safety and stability [7]. This means that malware
authors are required to sign their device drivers if they want
to load their malicious driver code on a victim’s machine;
without a valid digital signature, they must get rid of DSE
in order for their malicious products to work.

The vulnerable VBoxDrv.sys is digitally signed by innotek.
Turla’s author discovered an interesting way to utilize the
VBoxDrv.sys driver to avoid DSE, which could then allow
Turla’s own unsigned rootkit driver to be run. Getting rid
of DSE becomes almost trivial with a fi ve-step exploitation
process.

In comparison to the Turla exploit sample, the proof-of-
concept code presented by CoreSecurity [6] against this
same vulnerability is very simplistic. It differs in that the
exploit sample attempts to get rid of DSE and then make the
arbitrary kernel code execution work. We will look into the
details of the exploit sample in the next section.

Before the exploitation process takes place, however, it
is important to locate the nt!g_CiEnabled global variable
found in notskrnl.exe, which is essentially used by Windows

to determine whether the code integrity check is enabled. In
other words, one can manipulate nt!g_CiEnabled to disable
DSE.

FIVE STEPS TO DISABLE DRIVER
SIGNATURE ENFORCEMENT
We won’t discuss how to obtain the nt!g_CiEnabled
address (in brief, it can be found using a byte-pattern search
method). The actual exploitation process will commence
once the nt!g_CiEnabled address has been located. The
process is pretty straightforward: it merely involves multiple
calls to the DeviceIoControl API with specially crafted
parameters passed directly to the vulnerable VBoxDrv.sys.

Figure 8: Code snippet that exploits the vulnerable
VBoxDrv.sys.

Step 1. Set and initialize VBoxDrv’s cookie using
the I/O control code SUP_IOCTL_COOKIE
(see Figure 9). There are some parameter
validations – for instance, the cookie’s magic
word and interface version (SUPDRVIOC_
VERSION) must be defi ned according to the
specifi c VirtualBox version (Figure 10).

Figure 9: Send SUP_IOCTL_COOKIE to VirtualBox driver (Step 1).

VIRUS BULLETIN www.virusbtn.com

15MAY 2014

Figure 10: Important variables for VirtualBox’s cookie
session initialization.

Figure 11: The SUPLDROPEN structure stores VM image
data.

Step 2. Open or create an image with a random
name. In this case, the exploit sample creates
a fake image with the name ‘a’, using the
I/O control code SUP_IOCTL_LDR_OPEN
(see Figure 12). In the VirtualBox device
driver, this I/O control code checks whether
an instance of the faked image exists; if it
does not, it tells the device driver to allocate

Figure 12: Send SUP_IOCTL_LDR_OPEN to VirtualBox driver (Step 2).

a buffer of a size specifi ed in OpenLdrReq.
u.In.cbImage in kernel memory. The buffer is
supposed to hold the actual VM image data,
but in this case, it will be used to store the
shellcode. The result of the operation will
return an image address, known as VMMR0,
which will hold the bogus image data stored
in the OpenLdrReq.u.Out.pvImageBase
pointer.

Step 3. Load the fake image created in Step 2 using
the I/O control code SUP_IOCTL_LDR_
LOAD (see Figure 13). The purpose of this
I/O control code is to copy the shellcode
buffer from SUPLDRLOAD.u.In.achIm into
SUPLDRLOAD.u.In.pvImageBase, which is a
pointer to the VMMR0 image buffer.

 It is compulsory to initialize the entry
point for the Virtual Machine Monitor
(VMM) by specifying the entry point
type in SUPLDRLOAD.u.In.eEPType as
SUPLDRLOADEP_VMMR0. Another purpose
of this I/O control code is to initialize the
following VMMR0 entry point pointers:

• pvVMMR0EntryInt

• pvVMMR0EntryFast

• pvVMMR0EntryEx

 When the VMM is entering the guest OS,
the entry point at VMMR0 will be invoked.
We can, however, control when to trigger the
VMMR0 entry point.

Step 4. VBoxDrv.sys provides another way to
load the VMMR0 entry point, via the
pvVMMR0EntryFast pointer initialized in

VIRUS BULLETIN www.virusbtn.com

16 MAY 2014

Step 3. Before this fast VMMR0 entry point
can be put to use, it must be switched on using
the I/O control code SUP_IOCTL_SET_VM_
FOR_FAST.

Step 5. Finally, the shellcode can be activated via the
fast VMMR0 entry point by using one of the
following control codes:

• SUP_IOCTL_FAST_DO_RAW_RUN

• SUP_IOCTL_FAST_DO_HWACC_RUN

• SUP_IOCTL_FAST_DO_NOP.

Figure 17 shows the responsible function code when one
of the I/O control codes listed above is sent to
VBoxDrv.sys. At label (1), the driver code checks
whether or not the fast I/O control code has been
requested. If it has been requested, it will execute the
supdrvIOCtlFast() function. Upon executing this function,
the shellcode illustrated in Figure 14 will be executed
at label (2). This means that rc contains the value zero
after the shellcode execution. When it comes to label (3),

Figure 15: Send SUP_IOCTL_SET_VM_FOR_FAST to the VirtualBox driver (Step 4).

Figure 16: Send SUP_IOCTL_FAST_DO_NOP to the VirtualBox driver (Step 5).

Figure 13: Send SUP_IOCTL_LDR_LOAD to VirtualBox
driver (Step 3). Figure 14: Shellcode zeroing out the EAX register.

VIRUS BULLETIN www.virusbtn.com

17MAY 2014

pIrp->UserBuffer, which is equivalent to the
nt!g_ciEnabled address that was passed as the third
parameter in the DeviceIoControl API call shown in
Figure 16, will be assigned the value of zero from the rc
variable. This effectively disables DSE, meaning that an
unsigned rootkit driver can be loaded into the Windows
kernel with no obstacles.

Figure 17: Code snippet showing I/O control code function
entry point where the vulnerable code can be found.

CONCLUSION

We have explored two of the vulnerabilities used by
Turla, namely a vulnerability in the Windows GUI
subsystem kernel driver win32k.sys, and a vulnerability
in the VirtualBox driver. Each vulnerability exploitation
serves a different purpose – either gaining full
privileges in Windows or bypassing the Driver Signature
Enforcement (DSE) security feature. Fortunately,
the vulnerabilities have already been patched by the
respective software vendors, so users of the latest versions
of the software should not be affected by attempted
exploitations. These exploits serve as clear examples of

how important it is to make sure that installed software is
always up to date.

Software patching is not a completely effective remedy for
addressing the vulnerability in the VirtualBox driver – at
least not until the driver’s certifi cate signature has been
revoked; until then it is possible that other malware authors
will abuse the same vulnerable VirtualBox driver in the near
future.

REFERENCES

[1] Uroburos – highly complex espionage software
with Russian roots. https://blog.gdatasoftware.com/
blog/article/uroburos-highly-complex-espionage-
software-with-russian-roots.html.

[2] Gostev, A. Back to Stuxnet: the missing link.
http://www.securelist.com/en/blog/208193568/
Back_to_Stuxnet_the_missing_link.

[3] Ormandy, T. Microsoft Windows NT #GP Trap
Handler Allows Users to Switch Kernel Stack.
Seclists.org. http://seclists.org/fulldisclosure/2010/
Jan/341.

[4] Rapid7. Metasploit-framework. Github repository.
https://github.com/rapid7/metasploit-framework/
blob/master/modules/exploits/windows/local/ms10_
015_kitrap0d.rb.

[5] Microsoft Security Bulletin MS11-025 – Important.
http://technet.microsoft.com/en-us/security/bulletin/
ms09-025.

[6] VirtualBox Privilege Escalation Vulnerability.
http://www.coresecurity.com/content/virtualbox-
privilege-escalation-vulnerability.

[7] Windows: Driver Signing Policy.
http://msdn.microsoft.com/en-us/library/windows/
hardware/ff548231%28v=vs.85%29.aspx.

[8] Doxygen. http://doxygen.reactos.org/d9/
dd9/win32ss_2user_2ntuser_2class_8c_
abb452c5cb69c4b54934c086b84a6447a.html.

[9] Windows: WNDCLASSEX structure.
http://msdn.microsoft.com/en-us/library/windows/
desktop/ms633577(v=vs.85).aspx.

[10] j00ru//vx tech blog. A quick insight into the Driver
Signature Enforcement. http://j00ru.vexillium.org/
?p=377.

[11] Download VirtualBox (Old Builds): VirtualBox 1.6.
https://www.virtualbox.org/wiki/Download_Old_
Builds_1_6.

https://blog.gdatasoftware.com/blog/article/uroburos-highly-complex-espionage-software-with-russian-roots.html
http://www.securelist.com/en/blog/208193568/Back_to_Stuxnet_the_missing_link
http://seclists.org/fulldisclosure/2010/Jan/341
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/local/ms10_015_kitrap0d.rb
http://technet.microsoft.com/en-us/security/bulletin/ms09-025
http://www.coresecurity.com/content/virtualbox-privilege-escalation-vulnerability
http://msdn.microsoft.com/en-us/library/windows/hardware/ff548231%28v=vs.85%29.aspx
http://doxygen.reactos.org/d9/dd9/win32ss_2user_2ntuser_2class_8c_abb452c5cb69c4b54934c086b84a6447a.html
http://msdn.microsoft.com/en-us/library/windows/desktop/ms633577(v=vs.85).aspx
http://j00ru.vexillium.org/?p=377
https://www.virtualbox.org/wiki/Download_Old_Builds_1_6

VIRUS BULLETIN www.virusbtn.com

18 MAY 2014

THE CURSE OF NECURS, PART 2
Peter Ferrie
Microsoft, USA

In the fi rst part of this series on the Necurs rootkit [1], we
looked at what it does during start-up and when it is not
loaded as a boot-time driver. This time, we will look at what
Necurs does when it is loaded as a boot-time driver.

BOOT-TIME DRIVER
When Necurs is loaded as a boot-time driver, it remains
resident in memory (unlike when it is loaded as a standard
driver). It sets every entry in its IRP table to point to a
single routine (described below). It attempts to create a
new ‘\Device\NtSecureSys’ device and a ‘\??\NtSecureSys’
symbolic link to the device. The symbolic link allows
the user-mode component to communicate with the
kernel-mode component, and to send I/O control requests
to it.

LOW-FLYING CODE
The rootkit attempts to retrieve the address of the
ObRegisterCallbacks() function. This API was introduced
in Windows Vista. If the rootkit is running on a platform that
supports the API, then it registers callbacks for process and
thread objects, intending to intercept process and thread
creation events before they occur. The rootkit registers itself
using an altitude of ‘20101’. The altitude describes how
low in the stack the callback should be placed. The rootkit
uses a value in the reserved region of ‘FSFilter System’,
corresponding to a level that is even lower than the lowest
documented level.

If the rootkit is running on a platform that does not support
the ObRegisterCallbacks() API, then it queries the build
number of the currently running version of Windows. The
rootkit is specifi cally interested in builds 2600 (Windows
XP), 3790 (Windows 2003) and 6000 (Windows Vista
SP0). The rootkit uses the build number to determine the
function indexes that correspond to the NtOpenProcess()
and NtOpenThread() functions in the Service Descriptor
Table. The rootkit allocates memory for the entire service
table, then maps and locks the pages so that they can be
read without issue. It saves the pointers to the original
NtOpenProcess() and NtOpenThread() functions, and
replaces them with rootkit-specifi c versions.

DATABASE FILES
The rootkit attempts to access the ‘DB1’ registry value under

the ‘\REGISTRY\MACHINE\SYSTEM\CurrentControlSet\
Services\<random numbers>’ key that it created previously
[1]. If the value doesn’t exist, the rootkit creates it later. If
the value does exist, the rootkit requires the data – an array
of zero-terminated Unicode strings – to be at least four bytes
long and even in length. The rootkit uses this array when
determining whether a registry access request should be
allowed.

The rootkit registers a callback for registry operations, but
does so using the CmRegisterCallback() function, which
is documented as being obsolete for Windows Vista and
later. It adds the current thread handle to a thread array that
it carries, and sets the reference count to one. The array is
used for access control for the rootkit functionality. Any
thread handles which appear in the array are allowed to
request that the rootkit performs certain actions or queries
certain information.

The rootkit creates a fi le system fi lter device for the device
that hosts the rootkit fi le, and attempts to attach the fi lter to
the top of the fi le system stack so that it is the fi rst device
to receive all requests. If that request fails (which can occur
if the subsystem has not yet been initialized), the rootkit
creates a thread that runs once every 100ms to attempt to
register the device. The thread runs until it succeeds.

The rootkit attempts to access the ‘DB0’ registry
value under the ‘\REGISTRY\MACHINE\SYSTEM\
CurrentControlSet\Services\<random numbers>’ key. If the
value doesn’t exist, the rootkit creates it later. If the value
does exist, the rootkit requires the data to be a multiple
of 16 bytes in length. The data is an array of MD5 hash
values that form a whitelist of MD5 hashes of memory
images. The rootkit uses this array when determining
whether an already-loaded driver should be allowed to
remain loaded.

The rootkit attempts to access the ‘DB2’ registry
value under the ‘\REGISTRY\MACHINE\SYSTEM\
CurrentControlSet\Services\<random numbers>’ key. If the
value doesn’t exist, the rootkit creates it later. If the value
does exist, then the rootkit requires the data – an array of
FNV-1 hash values that form a whitelist of driver names
– to be a multiple of eight bytes in length. The rootkit uses
this array when determining whether a driver should be
allowed to load.

The rootkit requests the list of loaded modules, then
examines each entry in the list. It is interested in two
key entries: win32k.sys and itself. The rootkit also pays
attention to the order in which they have been loaded. If
the ‘win32k.sys’ module is in the list, the rootkit sets a fl ag
which is checked later. If the rootkit module is seen, then
the blacklist and whitelist behaviour is enabled, if the ‘DB0’
and ‘DB2’ registry values exist.

MALWARE ANALYSIS 3

VIRUS BULLETIN www.virusbtn.com

19MAY 2014

BLACKLIST
If the blacklist behaviour is enabled, the rootkit performs
a case-insensitive comparison of the module name with
each entry in the following list (sorted for easier reading
– the original unsorted list was likely created by adding the
names as they were found):

a2acc.sys

a2acc64.sys

a2gffi 64.sys

a2gffx64.sys

a2gffx86.sys

ahnfl t2k.sys

AhnRec2k.sys

AhnRghLh.sys

amfsm.sys

amm6460.sys

amm8660.sys

AntiLeakFilter.sys

antispyfi lter.sys

AntiyFW.sys

ArfMonNt.sys

AshAvScan.sys

aswmonfl t.sys

AszFltNt.sys

ATamptNt.sys

AVC3.SYS

AVCKF.SYS

avgmfi 64.sys

avgmfrs.sys

avgmfx64.sys

avgmfx86.sys

avgntfl t.sys

avmf.sys

BdFileSpy.sys

bdfm.sys

bdfsfl tr.sys

caavFltr.sys

catfl t.sys

cmdguard.sys

csaav.sys

cwdriver.sys

drivesentryfi lterdriver2lite.sys

dwprot.sys

eamonm.sys

eeCtrl.sys

eeyehv.sys

eeyehv64.sys

eraser.sys

EstRkmon.sys

EstRkr.sys

fi ldds.sys

fortimon2.sys

fortirmon.sys

fortishield.sys

fpav_rtp.sys

fsfi lter.sys

fsgk.sys

ggc.sys

HookCentre.sys

HookSys.sys

ikfi lesec.sys

ino_fl tr.sys

issfl tr.sys

issregistry.sys

K7Sentry.sys

klbg.sys

kldback.sys

kldlinf.sys

kldtool.sys

klif.sys

kmkufl t.sys

KmxAgent.sys

KmxAMRT.sys

KmxAMVet.sys

KmxStart.sys

kprocesshacker.sys

lbd.sys

MaxProtector.sys

mbam.sys

mfehidk.sys

mfencoas.sys

MiniIcpt.sys

mpFilter.sys

NanoAVMF.sys

NovaShield.sys

nprosec.sys

nregsec.sys

nvcmfl t.sys

NxFsMon.sys

OADevice.sys

OMFltLh.sys

PCTCore.sys

PCTCore64.sys

pervac.sys

PktIcpt.sys

PLGFltr.sys

PSINFILE.SYS

PSINPROC.SYS

pwipf6.sys

PZDrvXP.sys

Rtw.sys

rvsmon.sys

sascan.sys

savant.sys

savonaccess.sys

SCFltr.sys

SDActMon.sys

SegF.sys

shldfl t.sys

SMDrvNt.sys

snscore.sys

Spiderg3.sys

SRTSP.sys

SRTSP64.SYS

SRTSPIT.sys

ssfmonm.sys

ssvhook.sys

STKrnl64.sys

strapvista.sys

strapvista64.sys

THFilter.sys

tkfsavxp.sys

tkfsavxp64.sys

tkfsft.sys

tkfsft64.sys

tmevtmgr.sys

tmprefl t.sys

UFDFilter.sys

v3engine.sys

V3Flt2k.sys

V3Flu2k.sys

V3Ift2k.sys

V3IftmNt.sys

V3Mifi Nt.sys

Vba32dNT.sys

vcdriv.sys

vchle.sys

vcMFilter.sys

vcreg.sys

vradfi l2.sys

ZxFsFilt.sys

If a match is found, the rootkit writes some code at the
module’s entrypoint, which causes it to return immediately
with a STATUS_UNSUCCESSFUL result, in turn causing
the driver to be unloaded by Windows, if the code is
executed. It does not stop the driver from running if it
was already active. If the module’s name is not on the
blacklist, then the rootkit will check the fl ags fi eld for
the undocumented ‘VP’ device status. If the fl ag is set,
then the rootkit always allows it. Otherwise, it checks the
whitelist.

VIRUS BULLETIN www.virusbtn.com

20 MAY 2014

WHITELIST

The check for a whitelist entry is complicated. It begins
with the rootkit allocating a block of memory that is equal
in size to the module being checked. The entire contents
of the module are then copied to the block of memory, and
the copied image is relocated as though it were loaded to
a fi xed base of 0x10000. The rootkit supports two kinds of
relocation items: IMAGE_REL_BASED_HIGHLOW and
IMAGE_REL_BASED_DIR64. The imports table is parsed,
but all entries are zeroed out. The rootkit calculates the
MD5 hash of the headers and each of the sections, and then
searches for a match in the MD5 whitelist.

There is a vulnerability in the way in which the rootkit
calculates the hash of the sections, which means that a
knowledgeable person could alter an allowed driver in
such a way that the original MD5 hash would be retained,
but entirely different code could be executed. This
technique could be used to bypass the protections of the
rootkit and then uninstall it. However, we will not go into
the details here.

If the MD5 hash matches one of the entries in the MD5
whitelist, the rootkit allows the driver to remain in memory.
Otherwise, it performs the same code alteration as for the
blacklisted drivers. This creates a race condition whereby
a just-loaded driver might be caught by the code change
and then exit, but a driver that loaded just a little earlier
might complete its entry routine and thus escape the effect
of the alteration. However, it is clear that once the rootkit
has loaded, no unrecognized drivers can be loaded, and no
updated drivers can be installed.

If the whitelist does not exist, the rootkit will create it
by initiating a new thread to gather the information. The
thread waits until the ntdll.dll fi le can be opened, meaning
that the fi le system driver has become active. The thread
makes an attempt once every 200ms until it succeeds. At
that point, all of the critical system drivers will have been
loaded, which the rootkit considers suffi cient time to allow
before creating the whitelist of allowed drivers.

The rootkit enumerates each of the entries in the
‘\REGISTRY\MACHINE\SYSTEM\CurrentControlSet\
Services’ registry hive. The driver is not added to the
whitelist if it has no ‘Type’ registry value, or if the
driver type is not a kernel driver, a fi le system driver, or
a ‘recogniser’ driver. If the driver’s path is ‘system32\
<driver name>’, then the rootkit will reformat the path to
‘\systemroot\system32\<driver name>’. If the driver has
no ‘ImagePath’ registry value, then the rootkit will supply
‘\SystemRoot\System32\Drivers\<driver name>.sys’.
Otherwise, the rootkit will accept the ‘ImagePath’ value,
regardless of what it contains.

The rootkit checks whether the driver name is among the
blacklisted names, and will not add it to the whitelist if it
is. Otherwise, the rootkit opens the fi le, reads the entire
fi le into memory, relocates it to a fi xed base of 0x10000,
and calculates the MD5 hash, as described above. The
rootkit then attempts to fi nd the resource section in
the image. Interestingly, it supports 64-bit fi les in this
routine, even though such fi les are excluded explicitly
during the MD5 calculation, so the code-path is never
executed. The rootkit parses the resource section to fi nd
the version information item, and the digital certifi cate.
If either target is found, the rootkit searches the version
information and/or the digital certifi cate for references
to any entry in the following list (which is sorted for easier
reading):

Agnitum Ltd

Anti-Virus

antimalware

Avira GmbH

Beijing Jiangmin

Beijing Rising

BITDEFENDER LLC

BitDefender SRL

BullGuard Ltd

Check Point Software Technologies Ltd

CJSC Returnil Software

Comodo Inc

Comodo Security Solutions

Doctor Web Ltd

ESET, spol. s r.o.

FRISK Software International Ltd

G DATA Software

GRISOFT, s.r.o.

Immunet Corporation

K7 Computing

Kaspersky Lab

KProcessHacker

NovaShield Inc

Panda Software International

PC Tools

Quick Heal Technologies

Sophos Plc

VIRUS BULLETIN www.virusbtn.com

21MAY 2014

Sunbelt Software

SUNBELT SOFTWARE

Symantec Corporation

VirusBuster Ltd

Any driver that references any of the names on the list will
not be added to the whitelist, but if the driver has not been
excluded, the rootkit will add the MD5 hash to the MD5
whitelist. The rootkit also calculates the FMV-1 hash of the
driver path, and adds that to the FMV-1 whitelist.

After examining each of the services in the registry, the
rootkit performs the same checks for each of the fi les in
the ‘\SystemRoot\System32\Drivers’ directory, and each of
the DLLs in the ‘\SystemRoot\System32’ directory. After
examining each of the DLLs, the rootkit waits until the
‘win32k.sys’ module appears in the loaded module list.
At that point, it queries the list of loaded modules again,
and adds all of the entries that are not on the blacklist,
as described above. There is some duplicated code here,
whereby the rootkit calculates the FMV-1 hash of the
driver path, and adds that to the FMV-1 whitelist again.
This is harmless though, since the duplicated entries will
be removed later.

If the rootkit is running on a version of Windows prior to
Windows Vista, the rootkit adds the ‘ntldr’ and
‘boot.ini’ fi les manually to the FMV-1 whitelist. Otherwise,
it adds the ‘bootmgr’ and ‘\SystemRoot\System32\winload.
exe’ fi les manually to the FMV-1 whitelist. The rootkit
sorts the MD5 and FMV-1 whitelists, and removes any
duplicated entries. It then writes the ‘DB0’ and ‘DB2’
registry values with the contents of the MD5 and FMV-1
whitelists, respectively. The rootkit also registers a callback
which receives control when an image is loaded, before
the image gains execution control. The callback watches
for ‘win32k.sys’ being loaded, and sets the fl ag that the
whitelisting thread checks (if it is not set already). If the
loaded fi le can be opened, the rootkit reads the entire fi le
into memory and then performs the whitelist check, as
described above. Otherwise, the rootkit performs only the
MD5 hash check on the in-memory image. If the image
fails the verifi cation, the rootkit performs the same code
alteration as for the blacklisted drivers.

Next time, we will look at the different IRP functions, and
the details of the rootkit’s stealthing abilities.

REFERENCE

[1] Ferrie, P. The curse of Necurs, part 1. Virus
Bulletin. April 2014, p.4. http://www.virusbtn.com/
pdf/magazine/2014/201404.pdf.

ON CYBER INVESTIGATIONS.
CASE STUDY: A MONEY
TRANSFER SYSTEM ROBBERY
Alisa Esage
Esage Lab, Russia

One thing a responsible CISO or security professional
might notice about the current information landscape is
that it is pretty lacking when it comes to information about
cyber investigations. Most reports on cybercrime cover
only the results of an investigation, completely omitting
the process, and in particular the investigation techniques
and the specifi c attack scenarios. The main objective
of this article is to shed some light on the typical cyber
investigation process, using a real-world example.

The work outlined in this article was carried out a few years
ago as part of a private consulting assignment. However,
all the malicious techniques – and more importantly, all the
technical analysis and investigation techniques – mentioned
hereafter are still absolutely functional.

The case described in this article is quite signifi cant, both
in terms of the fi nancial losses of the attacked company
(estimated at a few million US$), and the scale and
coordination of the attack. It is also quite typical in that the
attack scenario could easily be replicated to a wide range of
targets.

This article provides a high-level overview of the case in
two sections: Section 1 outlines the cyber attack scenario, as
it was reconstructed by the investigation process. Section 2
outlines the investigation process, as it unfolded by means
of specifi c technical analysis measures.

A follow-up article will dive into the technical details of
the investigation process, and will discuss the necessary
prerequisites for a successful cyber investigation.

TERMINOLOGY
To better understand a cyber investigation as a technological
process, it is important to clarify the differences between
the various terms widely used in the IT security industry,
which are often confused:

• Incident response refers to the initial set of actions
undertaken in reaction to a security incident.
Depending on the output of the incident response
process, specifi c other processes are prioritized and
put into action, such as immediate defensive actions
or incident preservation for active countermeasures, a
cyber investigation, or a security audit. The primary
objective of the incident response process is thus

FEATURE

http://www.virusbtn.com/pdf/magazine/2014/201404.pdf

VIRUS BULLETIN www.virusbtn.com

22 MAY 2014

to ascertain the circumstances to allow planning of
further actions.

• Forensics refers to the set of highly formalized and
specialized methods for the extraction, analysis
and packaging of technical evidence for the law
enforcement procedures. The primary objective of
forensic analysis is to provide a judicially compliant
technical analysis of the digital evidence. It is important
to note that forensic science does not provide any
apparatus for correlation of evidence between various
parts of the investigation process.

• Attack attribution refers to the process of discovering
and proving the relations of particular attack methods,
instruments and techniques, as well as the attack as a
whole, to specifi c actors, i.e. persons, groups, nations or
communities.

• Cyber investigation refers to the top-level process which
incorporates, coordinates and correlates various specifi c
technical processes, such as incident response, forensics,
attribution, as well as malware analysis, vulnerability
analysis, website auditing, and so on. The primary
objective of a cyber investigation process is to provide
the most comprehensive picture of the attack, which may
or may not include suggestions as to suspects.

 It is important to note that cyber investigation has
nothing to do with the identifi cation or prosecution
of suspects, which is the sole responsibility of law
enforcement.

CASE STUDY – BACKGROUND
A money transfer provider (‘the Company’) had been
suffering from a mysterious fi nancial fraud. Random
individuals had been claiming and successfully cashing
money transfers at local and foreign departments of the
Company; while their sender records in the Company’s
central database were fi ne, there was nobody who actually
supplied or dispatched the money they received. Thus, the
Company was experiencing fi nancial losses at a rate of
dozens to hundreds of fake money transfers per day, each
transfer being valued between $3,000 and $30,000. The
Company called for help as soon as it had exhausted its
own private measures, such as investigating the possibility
of insider activity and attempting to recognize the fake
transfers to block them. At the start of the investigation, the
attack was still in progress.

1. THE ATTACK
Before we proceed to the attack scenario, it is important to
understand the Company’s infrastructure. When simplifi ed,

it boils down to a centralized client-server network, which is
typical for any money transfer provider.

As shown in Figure 1, there are three types of entities in the
targeted infrastructure:

1. The Company’s HQ (represented by the server
box):

- Stores the money transfers database.

- Serves the Company’s corporate website.

2. The Company’s local offi ces (represented by client
boxes):

- Run e-banking software to connect to the
server’s database.

- Collect money transfers from persons, to store
them in the server’s database.

- Cash-out claimed money transfers to persons
with verifi ed IDs, according to the server’s
database.

3. The Company’s customers (represented by
persons):

- Input and output cash to the Company.

The network communication channel between subsidiary
offi ces and the central server is properly secured:
authorization is required, the client’s IP address is verifi ed,
and the client-server traffi c is strongly encrypted.

Now, let’s see the Company’s operation after it had been
compromised (see Figure 2):

1. A local offi ce computer is compromised and
controlled by the attacker.

2. A fake money transfer record is injected into the
server database by the attacker performing a regular
e-banking transaction from the compromised local
offi ce (except there is no real customer or real
money input).

3. A money mule whose ID was included in the fake
transaction visits a different (or even the same)
local offi ce to collect the money.

4. The attacker receives the laundered money.

It all started with a mass malware infection. A small
trojan was broadcast by means of a standard drive-by
attack or mass-mailing, to build a common botnet. One
of the features of the trojan was to detect the presence of
e-banking systems on the compromised host.

At some point, the Company’s compromised hosts were
noticed by the botmaster as promising (e.g. by correlating
the presence of professional e-banking software with the
compromised computer’s WHOIS data). A number of single

VIRUS BULLETIN www.virusbtn.com

23MAY 2014

Figure 1: The Company in normal operation.

Figure 2: The Company in compromised operation.

VIRUS BULLETIN www.virusbtn.com

24 MAY 2014

payments were faked for the purpose of testing, which
proved successful. Within the next few months, a targeted
attack on the Company was planned and executed.

The attackers’ plan was to compromise as many of the
Company’s local offi ces as possible, performing a rapid
distributed attack and cashing out as much money as
possible before the Company could undertake any defensive
measures. How did they achieve this goal? The Company’s
corporate website was infected with malware. Then,
because payment operators visited their personal accounts
on that website on a daily basis, the malware was planted on
almost every operator’s computer in a matter of days. The
attackers’ malware of choice was Zeus.

In order to infect the website, the attackers scanned it
for vulnerabilities. They managed to fi nd a script which
allowed the upload of arbitrary fi les to a publicly accessible
directory of the web server. A common web backdoor script
was uploaded into that directory, which allowed remote
control of the server’s shell via a regular browser. The
backdoor functionality was then used to inject malicious
iframes into the website’s HTML templates.

Upon execution, the malicious iframes instructed a visitor’s
browser to download an exploit from the attackers’ website
(one of the many). The particular exploit was selected
automatically by a malicious script, depending on the
visitor’s browser version. The exploit then triggered remote
code execution in the browser to download and execute a
sample of the latest generation Zeus malware.

One of the most powerful capabilities of Zeus when
enhanced with extra plug-ins, is to provide support for
custom remote desktop connections without kicking the
current user off or interfering with their input. This feature
was utilized by the attackers to gain remote desktop access
to an operator’s computer while he/she was at work. They
were then able to run the e-banking application on top of the
operator’s authorized session (a technique known as session
riding or session hijacking), and thus to create fake money
transfer records via the e-banking application, signed with
the operator’s digital signature and time-stamped with
the operator’s normal working hours. The money transfer
record contained the ID information for a particular money
mule. The central database server happily accepted the
payment due record, since it was properly authorized and
had originated from a whitelisted IP address.

In the meantime, a money mule approached another local
offi ce of the Company (possibly even in other country) to
claim the fake money transfer. The operator fi rst checked
the claimant’s ID against the centralized database. If a
valid money transfer was found designated to this person,
the operator paid the amount of cash stated in the database
record to the claimant. The claimant then disappeared.

As the Company’s central management entity became aware
of the unfolding attack, they tried to distinguish and block
the faked money transfers. Note that it is nearly impossible
to tell a faked database record from a genuine one, as
long as the stored record is complete with all the required
information, authorization and valid network connection
logs. Luckily, in this case, some of the faked transfers could
be identifi ed by a pattern of several similarly sized amounts
of transferred money.

As soon as a number of fake transfers had been blocked,
the attackers stopped the transactions and started to cover
their traces. After all, they still had core control: the website
fi le upload vulnerability, which might allow them to repeat
the same attack after some time. Luckily for the Company,
the website vulnerability was discovered during the
investigation process.

As one might expect at this point, the output of the
investigation was passed to law enforcement authorities,
and the Company was given guidance on the patching of the
security fl aws as well as the hardening of the entire client-
server infrastructure.

2. THE INVESTIGATION
At the start of the investigation process there was nothing
more to go on than the mysterious fake money transfers.
Nobody had any idea as to exactly how the money transfers
had been faked. However, by that point the Company had
already done its homework and excluded the possibility
of an insider attack. So we knew from the very beginning
that the fake money transfers were initiated by an external
attacker. But how?

• Was the central server compromised, either to create
fake transaction records in the database, or to allow
unauthorized connections from alien clients?

• Were the client computers compromised, to steal
operators’ credentials for a remote attack, or even to
perform the attack directly from the compromised
computer on behalf of the operator?

(Please refer to Figure 3 for a visualization of the
investigator’s decision-making process.)

During a cyber investigation, in order to prioritize the
next steps in the process and to save precious time, it is
important to properly estimate the probability of each
possible scenario. Later, as the investigation unfolds, the
new information will enable us to re-evaluate the initial
estimation, thus allowing unnecessary pieces of work to be
dropped or delayed.

In this case, the server compromise scenario was the least
probable because, statistically, servers are better secured

VIRUS BULLETIN www.virusbtn.com

25MAY 2014

than regular workstations. Because attackers always target
the weakest link, we have to follow their logic when
estimating the likelihood of particular attack vectors.

A quick analysis of the server’s traffi c logs showed that fake
transactions had been initiated by a considerable number of
workstations in the Company’s local offi ces, as identifi ed
by their IP addresses. So our fi rst step was to perform a
forensic analysis of the compromised workstations. We
started looking for traces of malicious software, since that
would be the most probable fi nding, and only if we were
unable to fi nd any traces of malicious software would we
proceed to deeper analysis.

In this case, deeper analysis proved unnecessary, as we
found that every compromised computer was infected with
malware. It’s worth noting that every infected computer had
an anti-virus product installed, and some of them even had
a few anti-virus products installed. This information was
not enough to understand the attack, of course, but it was
enough to defi ne and prioritize the next steps, guided by the
new questions:

• How were the clients infected with malware? Was
it a targeted attack, a web exploit, a net worm, or a
malicious Flash drive or CD, planted on the operators’
machines?

• How was the malware used to fake the money
transfers? Was it via stolen credentials, or a hijacked
session, or something else?

Two analytical processes were considered equally necessary
at this point: fi rst, to perform an analysis of the malware,
and second, to analyse the workstations’ networking logs.
The workstations were based on standard editions of
Microsoft Windows, so no internal logging was available,
and in some cases, even proxy/router logs were unavailable

or limited. In such cases, if the evidence is scarce, it is
important to inter-correlate even the tiniest pieces of
information to understand the bigger picture.

From analysing both the malware and the network logs, we
learned the following:

• Every compromised computer was infected with the
same version of the Zeus trojan.

• Every compromised computer had visited the same
malicious websites at some point before the attack, and
had downloaded suspicious executable modules from
them.

• The malicious websites were visited immediately after
the browser homepage had been visited (that is, the
Company’s corporate website).

• Immediately after a client was compromised, it started
to generate all kinds of suspicious traffi c to malicious
servers, compromised legitimate websites, and no-name
VPS hosts.

• In some cases, network log records revealed a
highly intensive, extended fl ow of outgoing traffi c
accompanied by low incoming traffi c – a pattern
suggesting a remote desktop connection such as VNC
or RDP.

• During the attack, in some cases, a text fi le was
downloaded and saved to the compromised computer.
The fi le contained details of payments to be faked
(money mules IDs, amounts of money to fake, etc.).

So, it turned out that the Company’s corporate website had
been compromised to host malware, thus allowing many
clients to be infected at once. However, the output of the
malware analysis didn’t make it clear exactly how the
money transfers had been faked, because the Zeus trojan is

Figure 3: The incident analysis, simplifi ed: assumptions, their evaluation and results.

VIRUS BULLETIN www.virusbtn.com

26 MAY 2014

such a universal piece of malware that it would allow many
different attack scenarios to be implemented.

The most interesting fi ndings were the text fi les containing
details of the faked transactions. Given that the operators
had already been screened by the Company’s own security
service, this fi nding suggested only two possibilities: either
the text fi les were parsed automatically by malware installed
on the compromised computer to perform automated
e-banking system transactions, or there was another person
logged into the same compromised computer, who was
extracting the payment information from the text fi les to
create fake transfers by hand.

Luckily, a very tiny detail hidden in one of the network logs
allowed us to determine which of the two scenarios had
occurred: we noticed that a favicon.ico fi le was requested
from the malicious web server immediately before the
malicious text fi le request. This tiny fi le is downloaded
automatically by the browser upon visiting a website,
which suggested that there was actually someone sitting
at the browser, rather than the text fi le being downloaded
by malware via a direct HTTP request. We concluded that,
at least in a number of cases, the transactions were made
manually, by means of a remote desktop connection to
compromised clients.

Still a number of questions remained:

• How did the attackers manage to compromise the
corporate website, to plant an exploit on it? Did
they break into the server, or did they fi nd a hole in
web scripts, or maybe steal the administrator’s FTP
password?

Stealing the web server administrator’s password with
the help of a phishing exploit is an easy task, so we had
to check this high-probability scenario by means of
auditing the administrator’s computer. The administrator’s
computer showed no traces of malware, either active or
deleted. So we performed an audit of the web scripts, after
considering them the most probable target for a server
compromise. We located a vulnerable script in the website,
subject to custom fi le upload, along with the uploaded
malicious scripts which allowed malware to be injected
into web pages.

• Which scenarios of creating fake transactions would
the e-banking application support? (Since we didn’t
have enough evidence to assume the RDP connection
was the only technology behind the fake e-banking
operation, we had to assume other scenarios to provide
an effective advisory.)

An audit of the e-banking application revealed a
vulnerability which allowed an authorized session to be
hijacked remotely, by stealing the session token. So, in

some cases the attacker might perform fake transactions
from his own computer, channelling the connection via
a malicious proxy installed on a legitimate Company’s
workstation to bypass the server’s IP address verifi cation. In
addition to that vulnerability, we found that the e-banking
application allowed easy stealing of the user’s key fi les
– again, the attacker might use them to impersonate a
legitimate operator remotely.

Note the dual link between the probability evaluation and
the expertise: every step of the investigation provides new
information, which allows us to refi ne the vision, and plan
further investigation.

OBSERVATIONS TO PONDER

The investigation process left us with a few observations to
consider:

• An attacker’s way of thinking. An attacker builds his
way to his goal step by step, at each step locating and
exploiting the easiest targets throughout the Company’s
infrastructure.

• The doubtful value of security solutions. We’ve seen
a number of top-rated anti-virus products installed on
compromised hosts along with the powerful – and still
very common – malicious tools. We’ve also seen IPS
solutions guarding the network, while the attacker gets
straight inside via a client-side vulnerability in a local
offi ce computer.

• The trend towards easy-to-perform attacks.
Attackers are building highly professional attacks
using common malware (Zeus), which is easy to get
hold of (purchase) on the black market. Rarely do they
bother with studying the internals of the e-banking
applications, or even with stealing credentials, rather
they set up a remote desktop connection to impersonate
the authorized operator, and to perform the job via the
same comfortable visual interface that the operator
uses. Cybercrime looks easy.

• Web security. Website security is even more
important than one might think for a regular corporate
site. Compromising a corporate site might lead to
compromising the organization’s partners or clients,
all at once, which can be leveraged to compromise the
organization in a variety of ways.

• The thoroughness of investigation. It is important
to audit every system that could possibly have been
involved in the attack. In this case, if we missed even
a single malicious script on the web server, then the
attackers could easily have replicated the attack after
some time.

VIRUS BULLETIN www.virusbtn.com

27MAY 2014

GREETZ FROM ACADEME: FILM
AT ELEVEN
John Aycock
University of Calgary, Canada

It seems I may have accidentally set the bar too high in
last month’s Greetz from Academe by mentioning both
Robert Louis Stevenson and Alan Turing in the same piece.
Juxtaposing literary and intellectual greats? Anything
that follows will surely pale in comparison. As the astute
reader will have surmised, I will not be presenting the
long-awaited Mark Twain/Einstein grudge match; sorry to
disappoint. Instead, I will begin with the media.

While some academics embrace the media, I also have
a number of colleagues who are either wary of it or
outright scornful, because media stories often gloss over
subtle scientifi c points. Of course, it is also true that some
academic research areas tend not to make a lot of headlines.
Somehow I doubt that my colleague researching category
theory gets too many calls from Fox News.

For my part, I always enjoy reading media press releases
about computer security. They tend to have a tantalizing
combination of being ill-informed along with a level of
breathlessness so great that I wonder if the writer will
expire mid-sentence. Earlier last week I was skimming
ACM TechNews, a digest of various media stories and press
releases related to computer science. It usually contains
at least one security-related story, and that day was no
exception: ‘Student Devises Novel Way to Detect Hackers’,
blared the headline [1].

The original press release was from Binghamton University
in New York [2], and after a lengthy blurb about the Ph.D.
researcher’s upbringing, mixed with a healthy sprinkling of
cyber-fearmongering, we arrived at the obligatory technical
part: ‘Instead of reviewing all programs run by a network
to fi nd the signature of one of millions of known malware
programs [...] they have developed a technology to assess
behavior of individual computers.’ So far, so good. ‘This is
done by monitoring system calls,’ the press release goes on
to say, and the other shoe drops. I’ll spare you the remainder,
but essentially, to anyone in security the press release reads as
though they reinvented system call monitoring and anomaly
detection. I’m sure there’s more to the researchers’ work than
that, but it’s a great example of subtleties being lost.

Of course, the idea of monitoring system calls to detect
anomalies has been around for many years, with key
academic research by Stephanie Forrest et al. published
in 1996 [3]; even their ACSAC talk on the topic, labelled
in the ACSAC conference program as a ‘Classic Paper’, is
itself approaching its sixth birthday [4]. All of this means
that whenever a new paper appears fl ying the system-call-

monitoring banner, there should be some new spin on it. No
novelty equals no publication in academia, after all.

This brings me to ‘PREC: Practical root exploit
containment for Android devices’ [5], a freshly published
paper involving system call monitoring. Malware detection
on mobile devices has been an open problem for some time:
how do you detect malware while leaving suffi cient CPU,
memory, and battery life to play Angry Birds? The PREC
work combines the two, as the majority of the malicious
test cases involve Angry Birds being repackaged by the
researchers with different root exploits. I’m not kidding.

The main idea behind PREC is perhaps best summed up as
follows: ‘PREC focuses on third-party native code which
is very diffi cult, if not totally impossible, to decompile’ [5,
p. 192]. This may come as a surprise to anyone who does
reverse engineering on a daily basis, but it does capture
both PREC’s premise and its mechanism. One of many
assumptions PREC makes is that most Android root exploit
shenanigans stem from third-party native code. This means
that the scope of system call monitoring – and hence the
overhead PREC imposes – can be restricted to that alone.
Execution of third-party native code is shunted to a pool of
threads whose system calls are monitored and compared,
on-device, to a system call profi le precomputed off-device
(e.g. in the cloud). Threads that deviate too far from the
known profi le are contained by outright termination or else
slowed down to the point of uselessness.

In my opinion, PREC makes a few too many assumptions,
since each assumption in a security system serves mostly
to yield a blueprint for bypassing it. However, it does offer
a low-impact re-spin of system call monitoring that fi ts in
nicely with efforts to shift work into the cloud, making PREC
interesting as a starting point if not a panacea. No need to stop
the presses, but it might be worth watching the fi lm at eleven.

REFERENCES
[1] http://technews.acm.org/archives.cfm?fo=2014-04-

apr/apr-14-2014.html.

[2] http://discovere.binghamton.edu/student-spotlights/
moat-5687.html.

[3] Forrest, S.; Hofmeyr, S. A.; Somayaji, A.;
Longstaff, T. A sense of self for Unix processes.
1996 IEEE Symposium on Security and Privacy.

[4] Forrest, S.; Hofmeyr, S.; Somayaji, A. The
evolution of system call monitoring. 2008 Annual
Computer Security Applications Conference.

[5] Ho, T.-H.; Dean, D.; Gu, X.; Enck, W. PREC:
Practical root exploit containment for Android
devices. 4th ACM Conference on Data and
Application Security and Privacy, 2014.

SPOTLIGHT

http://technews.acm.org/archives.cfm?fo=2014-04-apr/apr-14-2014.html
http://discovere.binghamton.edu/student-spotlights/moat-5687.html

MAY 2014

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

28

ADVISORY BOARD
Pavel Baudis, AVAST Software, Czech Republic

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Independent researcher, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Roger Thompson, ICSA Labs, USA

Joseph Wells, Independent researcher, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2014 Virus Bulletin Ltd, The Pentagon,
Abingdon Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2014/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

AusCERT2014 takes place 12–16 May 2014 in Gold Coast,
Australia. For details see http://conference.auscert.org.au/.

The 15th annual National Information Security Conference
(NISC) will take place 14–16 May 2014 in Glasgow, Scotland. For
information see http://www.sapphire.net/nisc-2014/.

CARO 2014 will take place 15–16 May 2014 in Melbourne, FL,
USA. For more information see http://2014.caro.org/.

SOURCE Dublin will be held 22–23 May 2014 in Dublin, Ireland.
For more details see http://www.sourceconference.com/dublin/.

Oil and Gas Cybersecurity takes place 3–4 June 2014 in Oslo,
Norway. For details see http://www.smi-online.co.uk/energy/europe/
conference/Oil-and-Gas-Cyber-Security-Nordics.

The M3AAWG 31st General Meeting will be held 9–12 June 2014
in Brussels, Belgium. For details see http://www.maawg.org/events/
upcoming_meetings.

The Copenhagen Cybercrime Conference 2014 takes place 12 June
2014 in Copenhagen, Denmark. For details see http://cccc-2014.com/.

The 26th Annual FIRST Conference on Computer Security
Incident Handling will be held 22–27 June 2014 in Boston, MA,
USA. For details see http://www.first.org/conference/2014.

Hack in Paris takes place 23–27 June 2014 in Paris, France. For
information see http://www.hackinparis.com/.

Black Hat USA takes place 2–7 August 2014 in Las Vegas, NV,
USA. For details see http://www.blackhat.com/.

DEF CON 22 takes place 7–10 August 2014 in Las Vegas, NV, USA.
For details see https://www.defcon.org/.

44 CON will be held 10–12 September 2014 in London, UK. For
more information see http://44con.com/.

VB2014 will take place 24–26 September 2014 in Seattle, WA,
USA. For more information see http://www.virusbtn.com/conference/
vb2014/. For details of sponsorship opportunities and any other queries
please contact conference@virusbtn.com.

The Fourth Annual (ISC)2 Security Congress 2014 takes place
29 September to 2 October 2014 in Atlanta, GA, USA. For details
see https://congress.isc2.org/.

The Information Security Solutions Europe Conference
(ISSE 2014) will take place 14–15 October 2014 in Brussels,
Belgium. For details see http://www.isse.eu.com/.

The M3AAWG 32nd General Meeting will be held 20–23 October
2014 in Boston, MA, USA. For details see http://www.maawg.org/
events/upcoming_meetings.

AVAR 2014 will be held 12–14 November 2014 in Sydney, Australia.
For details see http://www.avar2014.com/.

Botconf ’14 takes place 3–5 December 2014 in Nantes, France. For
full details of the second edition of the botnet fi ghting conference see
https://www.botconf.eu/.

VB2015 will be held in Prague, Czech Republic 30 September to
2 October 2015. Further details will be announced at
http://www.virusbtn.com/conference/vb2015/ in due course – in the
meantime, please contact conference@virusbtn.com for information on
sponsorship of the event or any other form of participation.

mailto:conference@virusbtn.com
http://www.avar2014.com/
http://www.isse.eu.com/
https://congress.isc2.org/
http://www.blackhat.com/
http://www.smi-online.co.uk/energy/europe/conference/Oil-and-Gas-Cyber-Security-Nordics
http://www.sourceconference.com/dublin/
http://2014.caro.org/
mailto:editorial@virusbtn.com
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.virusbtn.com/
http://www.virusbtn.com/conference/vb2015/
http://www.virusbtn.com/conference/vb2014/
http://conference.auscert.org.au/
http://www.sapphire.net/nisc-2014/
http://www.maawg.org/events/upcoming_meetings
http://www.maawg.org/events/upcoming_meetings
http://cccc-2014.com/
http://www.first.org/conference/2014
http://www.hackinparis.com/
https://www.defcon.org/
http://44con.com/
https://www.botconf.eu/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

