
ATTACK SURFACE ANALYSIS OF THE TIZEN OS ASRAR

276 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

ATTACK SURFACE ANALYSIS OF
THE TIZEN OS

Irfan Asrar
Intel Security Group, USA

Email irfan_asrar@mcafee.com

ABSTRACT
Tizen is an open-source platform designed for multiple computing
platforms such as smartphones, in-vehicle infotainment (IVI),
smart TV, wearable devices, consumer electronics, etc. Tizen
comes at a time when the threat against mobile computing is
growing in tandem with the popularity of mobile devices.
Compared to Android, iOS and Blackberry, Tizen offers several
different options within the device structure to combat the rise in
malware targeting mobile devices. This paper will examine these
options and their ability to counteract malware and privacy threats.

1. INTRODUCTION
Tizen is a combined effort of Intel and Samsung under the
auspices of the Linux Foundation, LiMo Foundation.

Similar to the architectural framework used in Firefox OS [1] and
Android, Tizen uses a layered environment built upon a
foundation of the Linux kernel. There are three main layers: the
application, the core and the kernel [2].

The Tizen application architecture can further be divided into
two layers. The web framework provides support/runtime to
facilitate the execution of HTML5 and JavaScript. The Native
framework is composed of system services and a set of native
namespaces providing open-source APIs, with which
applications can be developed using C/C++ [3].

The core layer consist of the following services: application
framework, base, connectivity, graphics, location, messaging,

multimedia, PIM (personal information management), security,
system, web and telephony.

• The application framework, or AppCore, contains all the
middleware, hardware-related services, the Linux kernel
providing the framework needed to defi ne hardware calls,
and APIs for building both native applications and web
runtime applications [4]. The following is a list of services
for which the AppCore is responsible:

- Life cycle management for applications

- Application launch service

- System event handlers

- Application confi guration

- Application installation / uninstallation.

• Base contains the basic essential Linux system libraries.

• Connectivity provides network-related functionalities.

• Graphics/UI consists of the system graphic and UI stacks,
also called the Native Framework.

• Location provides location-based services (LBS), including
position information, geocoding, satellite information and
GPS status.

• Messaging supports communication formats such as SMS,
MMS, email and IM.

• Multimedia provides media support for functions such as
video, audio and imaging.

• PIM enables management of user data on the device,
including managing the calendar, contacts, tasks, and
retrieving data about the device context (such as device
position and cable status).

• Security is responsible for security enforcement across the
system. It consists of platform security enablers, such as
access control, certifi cate management, secure application
distribution and secure I/O.

Figure 1: Tizen uses a layered environment built upon a foundation of the Linux kernel [2].

ATTACK SURFACE ANALYSIS OF THE TIZEN OS ASRAR

277VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

• System consists of system and device
management features, including:

- Interfaces for accessing devices, such as
sensors, display, or the vibration device.

- Power management, such as LCD
display backlight dimming/switching off
and application processor sleep.

- Monitoring devices and handling events,
such as USB, MMC, charger and ear
jack events.

- System upgrade.

- Mobile device management.

• Telephony consists of cellular functionalities
communicating with the modem:

- Managing call-related and non-call-
related information and services for
UMTS and CDMA.

- Managing packet service and network
status information for UMTS and
CDMA.

- Managing SMS-related services for
UMTS and CDMA.

- Managing SIM fi les, phone book and
security.

- Managing SIM Application Toolkit
services for UMTS.

Currently, the attack surface of the modules
described above consists of bugs resulting from
the consolidation of the previous platforms into
Tizen, as well as introduction of new features into
Tizen.

2. TIZEN PACKAGE STRUCTURES
A package is a container of executable content or
apps that a system can install or uninstall. Each
package has a unique identifi er, called the
‘PackageId’, and each app within the package has
a unique global ‘AppId’ as well as an ‘AppName’.
All apps in a package share resources as well as
the privileges defi ned at the package level.

The Tizen Framework supports three types of
packages: web application, native apps and hybrid
apps (a mixture of native and web apps). Tizen
also supports the installation of RPM packages.

Web application packaging is based on the W3C
widget packaging specifi cation. A web application
package must conform to the following
conventions:

• File format: ZIP archive fi le format

• File extension: .wgt (for example,
sample.wgt)

• MIME type: application/widget.

Figure 2: Web application packaging [5].

Figure 3: Package content [5].

Figure 4: Web content [5].

ATTACK SURFACE ANALYSIS OF THE TIZEN OS ASRAR

278 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

A hybrid/native application package must conform to the
following conventions:

• File format: ZIP archive fi le format

• File extension: .tpk (for example, sample.tpk)

• MIME type: application/x-tizen.package-archive

The root of the Tizen native package is the path of the ZIP
archive, which contains reserved folders.

3. APPLICATION SECURITY/ACCESS
CONTROL OVERVIEW
At the core of Tizen’s security enforcement is privilege
control and application signing, which includes process
isolation and mandatory access control [6].

The key principles are as follows:

• Applications will run under a non-root user ID.

• Daemons also run as a non-root user.

• An application is only allowed to read and write fi les in its
home directory and shared media directory (/opt/usr/
media).

Tizen operates Simplifi ed Mandatory Access Control Kernel
(Smack)-based access control and process isolation. The key
principles of this are as follows:

• All applications are sandboxed by Smack.

• All Smack features from Linux kernel version 3.5 or later
are respected.

• Applications run with Smack labels that are different from
the predefi ned ones.

Tizen operates a secure execution environment:

• Native applications are launched by the application
framework.

• Web applications are launched by the web runtime.

• There are no set-user-ID binaries in the device.

3.1 App/package signing

Similar to platforms such as Blackberry and Android, Tizen
applications must be signed in order to execute. What is unique
about the Tizen security model is the fact that application
packages must have two signatures: an author signature and a
distributor signature.

Author signature: Authors can digitally sign a package as a
mechanism to ensure authorship and integrity. The author
certifi cate, which is used for signing an author signature, must
be registered with the Tizen Developer Certifi cate Authority.

Distributor signatures: These are generated by an application
distributor, such as the Tizen Store, or a carrier, such as NTT, to
confi rm that the publisher has distributed the application
package. The Tizen distributor signature also determines the
privilege levels granted for a particular application.

RPM packages for Tizen are treated differently. Even though
Tizen will prevent corrupted RPM packages from being

installed, it will allow the installation of RPM packages that are
unsigned – thus exposing users to risk from untrusted and
malicious content [7]. This situation may change with future
updates.

When creating/debugging applications locally, an author
certifi cate is the only certifi cate that is required and needs to be
created prior to an application being deployed on a emulator or
a test device. A distributor signature is optional. Unlike Android,
there is no generic debug certifi cate.

3.2 API-level access control

Tizen provides API-level access control for sensitive operations
to protect user privacy and ensure system stability. Therefore,
applications that use sensitive APIs must declare the required
privileges.

The Tizen web API confi guration document (confi g.xml) uses
the following syntax:

<feature name="http://tizen.org/feature/network.nfc"/>

<tizen:privilege name="http://tizen.org/privilege/
application.launch"/>

The Tizen native API confi guration document (manifest.xml)
uses syntax as shown below:

<Requirements>

 <Feature Name="http://tizen.org/feature/
camera">true</Feature>

</Requirements>

<Privileges>

 <Privilege>http://tizen.org/privilege/
notifi cation</Privilege>

</Privileges>

Once an application invokes a privileged API, Tizen checks
whether the privilege is present in the confi g.xml or
manifest.xml fi le. If the privilege is not present in either fi le, the
system prohibits the execution of the application.

There are three levels of privilege:

• Public privileges are open to all Tizen application
developers as a default.

• Partner privileges can only be invoked by developers that
are registered as partners on the Tizen Store.

A developer must be fully identifi ed and permitted by the
partner policy of the Tizen Store to use both public- and
partner-level privileges.

• Platform privileges are used in system APIs for managing
the Tizen platform. These privileges are open only to a
specifi c set of Tizen application developers.

Table 1 lists the offi cial Tizen privilege names, mapped to the
privilege levels described above.

3.3 Post install privacy control

An additional measure introduced in the Tizen framework
allows users to install apps while denying some of the apps’
attempts to collect the user’s data – a solution to the

ATTACK SURFACE ANALYSIS OF THE TIZEN OS ASRAR

279VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

fundamental problem with the commonly used security model
of installing an app with an all-or-nothing approach.

Very similar to the feature that was dubbed ‘AppOps’ [8] in
Android 4.3, Tizen allows post privacy controls, denying apps
the ability access user data based on user-defi ned rules.

The rules set by the privacy policy apply to all apps in a package
and cannot be defi ned on a per-app basis.

3.4 Smack

Smack is a Linux security module (LSM) that determines how
processes interact and behave; a kernel-based module
implementing mandatory access control [9].

In Tizen, every application has its own Smack label. This is
necessary to achieve application isolation (native/web). The
Smack label, which is unique to the application, can be used to
identify the application as well as to provide access controls.

The key concept behind Smack policy enforcement is that a
subject can only access an object if their labels match or if there
is an explicit permission granting access to the requested
resource. A subject is any active entity. An object is any passive
entity, examples of which include fi les, directories, message
queues, and in the case of signals, other processes.

Figure 5: App ops [8].

Figure 6: Post privacy controls.

http://tizen.org/privilege/appmanager.certifi cate Partner

http://tizen.org/privilege/appmanager.kill Partner

http://tizen.org/privilege/datacontrol.consumer Partner

http://tizen.org/privilege/secureelement Partner

http://tizen.org/privilege/systemmanager Partner

http://tizen.org/privilege/bluetoothmanager Platform

http://tizen.org/privilege/bookmark.read Platform

http://tizen.org/privilege/bookmark.write Platform

http://tizen.org/privilege/lockmanager Platform

http://tizen.org/privilege/packagemanager.install Platform

http://tizen.org/privilege/packagemanager.setting Platform

http://tizen.org/privilege/settingmanager.read Platform

http://tizen.org/privilege/settingmanager.write Platform

http://tizen.org/privilege/alarm Public

http://tizen.org/privilege/application.launch Public

http://tizen.org/privilege/bluetooth.admin Public

http://tizen.org/privilege/bluetooth.gap Public

http://tizen.org/privilege/bluetooth.spp Public

http://tizen.org/privilege/calendar.read Public

http://tizen.org/privilege/calendar.write Public

http://tizen.org/privilege/callhistory.read Public

http://tizen.org/privilege/callhistory.write Public

http://tizen.org/privilege/contact.read Public

http://tizen.org/privilege/contact.write Public

http://tizen.org/privilege/content.read Public

http://tizen.org/privilege/content.write Public

http://tizen.org/privilege/datasync Public

http://tizen.org/privilege/download Public

http://tizen.org/privilege/fi lesystem.read Public

http://tizen.org/privilege/fi lesystem.write Public

http://tizen.org/privilege/messageport Public

http://tizen.org/privilege/messaging.read Public

http://tizen.org/privilege/messaging.write Public

http://tizen.org/privilege/networkbearerselection Public

http://tizen.org/privilege/nfc.admin Public

http://tizen.org/privilege/nfc.common Public

http://tizen.org/privilege/nfc.p2p Public

http://tizen.org/privilege/nfc.tag Public

http://tizen.org/privilege/notifi cation Public

Table 1: Offi cial Tizen privilege names mapped to privilege
levels.

ATTACK SURFACE ANALYSIS OF THE TIZEN OS ASRAR

280 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

The rule format is:

[SubjectLabel] [ObjectLabel] [access(rwxa)]

Even though simplicity is a key strategy in the adoption of
Smack as a security policy, the complication that arises is that
the count of labels and rules tends to become large, increasing
as the number of applications that are installed grows. This large
number of rules can be diffi cult to administrate, not to mention
hard to debug.

The role of Smack in Tizen is to ensure that malicious code is
stopped dead in its tracks without the proper permission levels
and security checks. Tizen 3.0 will introduce a new feature,
known as ‘Cynara’. Cynara uses the application privileges
assigned by the installer and the Smack label of the requesting
application to determine if privilege use is appropriate. These
data are presumed available by either mediators or services.

4. INTER-PROCESS COMMUNICATIONS
A growing concern regarding threats targeting smartphones is
the interactions between separate applications – not just artifacts
of single components – in order to carry out malicious activities
[10].

In Android, IPC is largely a function of Binder. Binder is a
kernel device driver that uses Linux’s shared memory feature to
achieve effi cient, secure communications. Firefox OS tries to
isolate apps completely from direct communication – the only
form of communication between apps is indirect. Tizen, on the
other hand, makes extensive use of several protocols for
interactions despite the fact that D-bus remains the offi cially
recommended protocol of choice. Most of the OSS modules,
such as ConnMan, use D-Bus for IPC, but other middleware –
notably modules inherited from the SLP (Samsung Linux
Project) – use custom forms of IPC, thus there is no defi nitive
IPC protocol in Tizen. It is also worth mentioning that Tizen 3.0
will see the introduction of k-dbus, which will attempt to
consolidate IPC across the platform.

5. WEB RUNTIME (WRT)
Similar to the web framework used in Firefox OS called
‘Gecko’, the Tizen WRT supports the management of web apps
(installation/uninstallation) and the execution of Tizen WebApps
as well as W3C APIs and non-W3C APIs [11].

• The core is based on the WebKit framework

• Each widget is executed in its own separate processes space

• The application sandbox operates via Smack.

6. CONTENT SECURITY FRAMEWORK (CSF)
The CSF is a set of APIs/hooks that can be used to create
security-related services. Developed by McAfee, these hooks
were designed to be utilized by third-party security vendors to
help harden the system. There are two types of scan engines that
represent the ideal use case for the CSF: scan engines for data/
content and site engines for URLs. Scan engines inspect content
and are designed to use malware-matching patterns, as is typical
of PC virus-scanning programs today. Site engines use a

reputation system, in which the vendor categorizes URLs and
creates block list policies by category (e.g. gambling,
pornography, spyware, etc.) [12].

7. TIZEN STORE APP VALIDATION PROCESS

To ensure that any malware entering the Tizen ecosystem is
immediately identifi ed, applications submitted to the Tizen Store
will be reviewed via a combination of static and dynamic
analysis before they are published for public consumption.

The review process will subject the apps to a rigorous code
review process: verifying their authenticity and integrity, using
steps such as ensuring that requested permissions are used for
the purposes stated, verifying that the use of implicit
permissions is appropriate, and validating that any interfaces
between privileged app content and unprivileged external
content have the appropriate mitigations to prevent elevation of
privilege attacks.

Similar to the Bouncer verifi cation system used by Android
[13], the Tizen app validation system uses an array of emulators
to track app behaviour while attempting to simulate app usage
in order to trigger/spot malicious actions.

Even though the review process can be viewed as a mix of the
review processes used by the Android Security Team and the
Apple App Review, the differentiator here is that the Tizen app
validation process promises to deliver an assessment on an app
within three days of the fi rst submission of the app [14].

The three-day investigation period opens up the possibility of
attacks where victims could be targeted post release using
techniques such as ad networks with low or no security
screening processes [15].

CONCLUSIONS

It would not be an exaggeration to say that security is a
dominant factor when it comes to the architecture of Tizen. The
concern for security is not only refl ected in the design of the
platform all through the Tizen ecosystem, as exhibited by the
app validation process. But in the current threat landscape,
where threats against mobile devices have peaked, discoveries
of issues such as the fi rst public vulnerability related
specifi cally to a Tizen device [16] and risks of XSS attacks [17]
targeting support for web apps means that Tizen will constantly
have to keep evolving, not only at the platform level but also at
the ecosystem level, to ensure that the available attack surface
is always kept to a minimum. Even though the security
measures taken in Tizen refl ect best practices and lessons
learned from the threat landscape, there are still improvements
that can be made.

REFERENCES
[1] Vérez, A.; Hugues, G. Security Model of Firefox OS.

2013. http://anthony-verez.fr/docs/ffos_paper.pdf.

[2] Saxena, S. Tizen Architecture Overview. January 2014.
https://www.tizen.org/sites/default/fi les/tizen-
architecture-linuxcollab.pdf.

ATTACK SURFACE ANALYSIS OF THE TIZEN OS ASRAR

281VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

[3] Kim, B. W. Overview of the Tizen Native Application
Framework. 2013. https://cdn.download.tizen.org/misc/
media/conference2013/slides/TDC2013Overview_of_
the_Tizen_Native_Application_Framework.pdf.

[4] Porting Tizen. https://source.tizen.org/sites/default/
fi les/tizen_porting_guide_2.0_alpha.pdf.

[5] Jaygarl, H.J. et al. Professional Tizen Application
Development. John Wiley & Sons, 2014.

[6] Im, B.; Ware, R. Tizen Security Overview. Tizen
Developer Conference Session Slides. http://download.
tizen.org/misc/media/conference2012/tuesday/
ballroom-c/2012-05-08-1600-1640 tizen_security_
framework_overview.pdf.

[7] https://bugs.tizen.org/jira/browse/TC-866.

[8] Eckersley, P. Awesome Privacy Tools in Android 4.3+.
December 2013. https://www.eff.org/deeplinks/2013/
11/awesome-privacy-features-android-43.

[9] Description from the Linux source tree. http://schaufl er-
ca.com/description_from_the_linux_source_tree.

[10] Marforio, C. et al. Analysis of the communication
between colluding applications on modern
smartphones. Proceedings of the 28th Annual
Computer Security Applications Conference. ACM,
2012.K. Elissa

[11] Aciicmez, O.; Blaich, A. Understanding the Permission
and Access Control Model for Tizen Application
Sandboxing. http://download.tizen.org/misc/media/
conference2012/wednesday/seacliff/2012-05-09-0945-
1025-understanding_the_permission_and_access_
control_model_for_tizen_application_sandboxing.pdf.

[12] Pillutla, S. Content Security Framework. May2013.
http://cdn.download.tizen.org/misc/media/
conference2013/slides/TDC2013-Content_Security_
Framework.pdf.

[13] Oberheide, J.; Miller, C. Dissecting the Android
bouncer. SummerCon2012, New York (2012).

[14] Tizen App Validation Guide. https://developer.tizen.org/
sites/default/fi les/documentation/tizen_validation_
guide_ver_1.4_140529.pdf.

[15] Rogers, M. The Bearer of BadNews. Lookout.
https://blog.lookout.com/blog/2013/04/19/the-bearer-
of-badnews-malware-google-play/.

[16] http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-
2012-6459.

[17] Guilherme, Í. A Simple SMS Reader. Iscaros.
http://giscaro.wordpress.com/2012/04/10/a-simple-
sms-reader/.

