THE EVOLUTION OF WEBINJECTS

Jean-lan Boutin
ESET, Montreal, H3T 2B1, Canada

Email boutin@eset.sk

ABSTRACT

Webinject files are now ubiquitous in the banking trojan world as
a means to aid financial fraud. What started as private and
malware-family-dependent code has blossomed into a full
ecosystem where independent coders are selling their services to
botnet herders. This specialization phenomenon can be observed
in underground forums, where we see a growing number of
offers of comprehensive webinject packages providing all the
functionalities required to bypass the latest security measures
implemented by financial institutions.

Our research covers the current webinject scene and its
commoditization. We will take a look back and show how it has
evolved over time, having started with simple phishing-like
functionalities and now offering automatic transfer systems
(ATS) and two-factor authentication bypass, along with mobile
components and fully fledged web control panels to manage
money exfiltration through fraudulent transfers.

Nowadays, a piece of malware that can inject arbitrary HTML
content into a browser is all that a resourceful botmaster needs,
as he can outsource virtually every other step in the process of
performing a successful fraudulent financial transfer.

This has been confirmed by our recent observation of several
malware families using the same webinject kits. Our research
attempts to answer the question: will we see a consolidation
phase, leading to the emergence of a few omnipresent webinject
kits, similar to what we have seen in the web exploit kit scene?

INTRODUCTION

Webinjects are one of the most advanced tools used by banking
trojans to help defraud people’s bank accounts. As banking
security measures have become more complex, there has been an
increase in offerings for these products in underground markets.
Webinjects have been around for several years already, but many
of their features are still evolving.

This paper describes the evolution of the techniques used by
webinject coders, as well as how the offerings of such criminal
tools have evolved over the years. As the webinject
configuration files become more and more advanced, it is
becoming easier for researchers to identify the source of each
webinject. As will be seen later on, it is now possible to track
the webinject kits used in several distinct banking trojans,
making it possible to see which offering is the most popular
amongst the botmasters.

WEBINJECT EVOLUTION

As users are relying increasingly on Internet banking to carry out
their banking operations, cybercriminals are developing new

THE EVOLUTION OF WEBINJECTS

ways to attack and compromise the very tools that are used in
Internet banking: computers and mobiles. In the beginning,
banking trojans targeted a handful of financial institutions and
mainly used keyloggers and form-grabbing modules in an
attempt to steal the users’ Internet banking credentials. While a
keylogger is able to grab the user login and password as the user
types them, it also creates huge amounts of useless data. All of
the recorded data then needs to be parsed and searched by the
botmaster in order to sort the useful information from the
useless. Form grabbing was a clear evolution of this technique,
as it grabs data that is entered into a web form, enabling the
banking trojan to collect a user’s credentials as he is sending
them to the server.

Form grabbing

Form grabbing in this context is a rudimentary method of
grabbing all GET/POST requests as they are sent to an external
server. Well known banking trojans like Zeus [1] and SpyEye [2]
first implemented [3] form grabbing by hooking web browser
APIs. Some malware also implements form grabbing through the
monitoring of network flows (pcap) [4]. API hooking is the
preferred method, as it can intercept data before it is encrypted
and sent to the server by the client’s browser. The functions
hooked are browser-specific, and browser updates can disrupt the
malware’s ability to intercept the data.

Nowadays, while some malware families still use this technique,
most of the more advanced banking trojans are using webinjects
to give them finer control over what is stolen from the user’s
browser session. Moreover, webinjects can be used to modify the
content of the web page the user is seeing, enabling a whole new
range of nefarious activities on the compromised computer. Most
webinjects include JavaScript, which allows cybercriminals to
add code to the page to perform any type of action. As we will
see later on, there are now several types of webinject ‘kits’
available for sale on underground forums, many of them using
off-the-shelf JavaScript libraries such as jQuery.

Webinjects

Popularized by well-known banking trojans like Zeus and
SpyEye, webinjects are used by cybercriminals to target specific
websites and alter their content. The web page content
manipulation is possible through browser API hooking, just like
the form-grabbing capability discussed before. The banking
trojan can inspect the content received from the server and
modify it on the fly before displaying it in the browser. This is a
very powerful technique that can be used to deceive the user, as
he will believe that the content he is seeing has been received
directly through his bank’s website. This technique is widely
known as a man-in-the-browser (MITB) attack. Figure 1 shows a
webinject in action, where the fraudsters have simply removed a
warning from the original login page.

The target and content to be added to a given web page is
contained within a file called a webinject configuration file,
which is typically downloaded by the infected computer from the
command and control (C&C) server. This is another great
advantage for the cybercriminals: the target, as well as the
content to be injected into the web page, can easily be changed

26

THE EVOLUTION OF WEBINJECTS

- - HILFE INFO

LOGIN MIT VERFUGERNUMMER (7]
TF+43 5 99 05995 (Taste 5) || Demeo 4

Geben Sie bitts Ihre persenlichen Zugangsdaten Mo-Fr7.30 - 21 Uhr Anmeldung zum eBanking »

(Verfagemummer und PIN) ein, oder steigen Sie mit Ihrer Sa8-13 Uhr

digitalen Signatur sin Info zur Signaturkate »
PIN vergessen »

Vgt Erstanmeldung mit »
L Zugang gespert » | Signaturkarte

PIN |)
5 bis 16-stellig
A Achtung vor Phishing-Betrugsversuch beim eBanking!
LOGIN | » Unsere Bank fordert Kunden NUR im Zuge von eBanking-Transaktionen
2ur TAN-Eingabe auf.
A - Sollte jedoch in einem Textfeld verlangt werden, TAN's einzugeben 2 6.
Login mit Signaturkarte L 7] “um Inre Digitale Signatur zu verifizieren’, dann ist Inr PG von ginem
Virus(Trojaner befallen!
In so einem Fall bitte KEINESFALLS eine TAN eingeben und
Login fiir registrierte - LOGIN | » umgehend die Hotline unter 05 99 06-995 verstindigen!
Kartenbenutzer 7 e
= = INFO
LOGIN MIT VERFUGERNUMMER [7] S
Demo »
Geben Sie hitte Inre personlichen Zugangsdaten Anmeldung zum eBanking
(Verfigernummer und PIN) ein. ader steigen Sie mit Ihrer
digitalen Signatur ein Info zur Signaturkarte »
Ve || Erstanmeldung mit .
L Signaturkarte
P |]
5bis 16-stellig
LOGIN | »
Login mit Signaturkarte w
Login fir registrierte Eal | OGIN >
Kartenbenttzer -

Figure 1: Content removal using a webinject. Top: login page
as seen on a clean system. Bottom: login page as seen on a
compromised system (warnings removed).

as long as the bot can download a new configuration file from
the C&C. There exist several webinject configuration file
formats, but the one popularized by older banking trojans such
as SpyEye is now the de facto standard. Figure 2 shows an
example of such a webinject configuration file.

set_url https:// =.html*command=displayAccountSummary* GP

data_before

isibility:hidden"

data_after
>
data_end

data_before

data_inject

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.nin. js"></script>
<script>

var chBalansUsd

var chBalanscCad

Figure 2: Standard webinject configuration file format.

As can be seen above, the target URL is specified first. There
are then some letters next to the URL, which tell the banking
trojan what action to perform when this URL is browsed to.
Table 1 lists the meaning of each letter that can be found after
the target URL, and Table 2 shows the different tags that are
contained in the webinject configuration file.

Some of the webinjects are very basic and have phishing-like
features where, for example, boxes are added to a target
website, asking the user for additional personal information.

set_url Meaning

common flags

G All GET requests should be inspected for
possible injection.

P All POST requests should be inspected for

possible injection.

L Used for logging purposes. Capture all
content specified within data_before, data_
inject and data_after.

H Used for logging purposes. Capture the
content that was left over by the ‘L’ flag.

Table 1: set_url common flags.

Common tags Meaning

set_url Specify target URL for webinjects.
Regular expressions are supported
and widely used.

data_before/data_end | Specify that the injected content
should be placed just after this
content.

data_inject/data_end | The content to be injected into the
target webpage.

data_after/data_end Specify that the injected content
should be placed just before this
content.

Table 2: Webinject configuration file common tags.

This additional information can later be used by the fraudster
for various purposes such as accessing the user’s bank account,
stealing his credit card number or selling his personal
information (see Figure 3).

Automatic Transfer System (ATS)

As time goes on, webinjects are becoming more and more
specialized. In fact, some of them have advanced features that
can automate transfers from the user’s bank account [5]. These
scripts are customized as per the banking website and will try to
circumvent any security measure put in place by the bank. As
the banks are trying to add checks in their backend to detect
these kinds of automatic tricks, the cybercriminals are coming
up with different techniques to hinder detection. In Figure 4,
you can see a webinject where the attackers insert random
timeouts between steps to mimic human behaviour.

Once the fraudulent transfer from the compromised account to
an attacker-controlled account has been made, these webinjects
often have mechanisms to hide the transaction and amend the
current account balance so that the user will not be aware of the
transfer if he accesses his bank account through the
compromised computer.

These ATS attacks were very popular in the past [6], but their
popularity has diminished as the success-rate-to-complexity
ratio has decreased. We still see some ATS attacks in the wild,

THE EVOLUTION OF WEBINJECTS

Gountry United States M
For verification purposes you must update
First name John your card details
Last name Doe
Addrass line 1 The White House

Address line 2 (aptional) (4500 Pensylvania

City Wyashington
State oc hs
ZIP code 20500
Fhone number 202-456-1111
Card number 4512123213213213
B
Expiration date (mman) [12 12
CsC 123

Verified by Visa Password is incorrect
Card number

Mame embossed on card [jghn Doe
[Exactly as on card)

Diate of birtth (o1 m 0001
mmddddyyyy)

Mother's maiden name Doehdrs

Social security number 123 12 1323

Drriver license number ASG456455
Credit / Debit card PIN 1234
Yerified by Wisa password [q

Cantinue

Figure 3: Example of malicious content injection harvesting personal information.

checkrule) multi-factor authentication to important transactions such as
33‘1{“” £he page ‘Eiittﬂ“cﬁii, accepting regexp url login or performing a transfer. Some are more rudimentary and
gsi%g:ﬁ:nt ::%:U?;lﬁ::atl{:gctr:h:eiztggw;:nszzgzssage loaded in iframe usec a Simple printed liSt Of Transaction Authorization Numbers
ASSETARES | €D (T, S G G (TANS or iTANs), while others are far more sophisticated and
D vy DY EOEITNE, TSRS involve the user’s mobile (mTANS) or an electronic device used
(onlyParent === true) in combination with the user’s bank card (chip-TANS). If
(this.isIfrane() === multi-factor authentication is implemented, the bank will ask for

false; . s .
a specific TAN when the user makes a sensitive transaction on

the bank’s website. The user then has to provide it either by
FimArray (ari)) looking on the list that was given to him (TAN), by checking an
(var 1 = 85 1 < url.length; 1s+) SMS that was just sent to his phone (mTAN), or by inserting his
bank card into his chip-TAN.

._checkRule(url[i], callback, withoutTimeout);

To circumvent mTANS, the cybercriminal can coerce the user
into installing a piece of malware on his phone that is able to
._checkRule(url, callback, withoutTimeout); intercept SMS messages. This is usually done through social
engineering. Once the user logs into his bank account, he will
be shown a screen similar to the one shown in Figure 5, asking
for his phone number, brand and OS.

Figure 4: Webinject function allowing the introduction of

random timeouts between operations. Once this has been done, the user will receive an SMS on his

phone with a link to a malicious application. He can also scan a
QR code or browse directly to a link on his mobile in order for
the malware to be downloaded on his phone. The user will then
have to install the application manually. As the overall
procedure involves several steps, fraudsters frequently inject a
‘manual’ into the web page the user is seeing, guiding him
step-by-step through the installation process. Once the malware
As online fraud grew, banks increased their security measures. has been installed on the phone, it will be able to redirect any
One of the most popular security techniques is to add SMS messages received on the user’s phone to the attacker,

but several cybercriminals now prefer using ‘manual’ attacks,
where they simply take control of a host or route their traffic
through it and perform the fraudulent actions manually.

Transaction Authorization Number (TAN) bypass

27

28

THE EVOLUTION OF WEBINJECTS

Verification
Welcome hack

Due to arising number of attempts in order to gain unlawfil access to the personal information of cur users and to prevent corrupted page data to spread
Facebook administration introduces new extra safety protection system. It's free and it keeps you safe. Our IT specialists developed unique software tool
for safe and secure authorization. With this software you den't need any extra acceount profile or password all you need is to install it and everytime you
log in you will input an access code generated by the software on your personal phone. We care for our users, protection of their private information is

Mobile Phone Number: |Plaase select
You'lll get SMS with download
link to this phone number

Select the operating system

of your mobile phone:

Continue |

Facebook © 2013 « Enghsh

one of the priorities. Meanwhile application might be not available for some operating systems

MobileFind FriendsBadges People Pages Places Apps GamesMusic
About Create Ad Create PageDevelopersCareersPrivacyCookissTerms Help

Figure 5: Injected screen asking for mobile information.

providing a means for the attacker to bypass mTANs. Perkele
and iBanking are two well-known mobile malware families that
have this capability.

As many banks incorporate some form of multi-factor
authentication before allowing transfers to be conducted,
webinjects must try to circumvent them. They have social
engineering mechanisms built in to lure the user into providing
enough information to enable the transfer to go through. Our
monitoring of different botnets has enabled us to see a myriad
of different schemes that are used to fool the user into providing
a transaction authorization number. Whether it is an index-TAN
(iTAN), mobile TAN (mTAN or mToken) or chip-TAN that is
used, the schemes are somewhat similar. The user will be shown
a pop-up window telling a false story as he is logging into his
bank account. One such lie involves telling the customer that a
transfer has been made in error, and that he must correct it by
sending the money back. This particular scheme is made
possible by a balance changer inside the webinject that will
show the user an inflated balance, supporting the idea that the
transfer really happened. Another scheme we have seen is to tell
the user that his device must be calibrated through a test
transfer. These are only a couple of the examples we have
witnessed, but they show the extent of the fraudsters’ creativity.

Figure 6 shows a screenshot asking a user for a TAN from his
iTAN list. These lists of TANs are handed out by banks on a
sheet of paper, each one having a particular index. When an
authorization is necessary, the bank will ask for a specific TAN
using its index on the list. In this example, the fraudsters are
attempting a fraudulent transfer and have been asked for a
particular TAN by the bank. To obtain this TAN, they have
injected the image shown in Figure 6 into the web page and are
trying to trick the user into providing the TAN, purportedly for a
special digital signature.

Popular websites targeted

Although most of the webinjects target financial institutions,
there are some that target popular Internet services such as

Confirm your unique digital signature with the help of TAN

The process of data collection for the preparation of unique digital signatures, has been completed. For the
installation and use of the UDS, you must specify the TAN. The following notification to the on-line banking
will be done with UDS.

Please pay attention entering your TAN : your account will be biocked after 3 failed attempts.

Find the number of the TAN code in your TAN-list. Please enter the corresponding TAN code on your
screen.

Sequence
Number _IETL

Tan code * [i] * Required field

Figure 6: Social engineering at work: webinject asking the user
for a TAN pretending to be for a unique digital signature.

Facebook, Twitter, Google and Yahoo. These webinjects will
generally ask for personal information, such as credit card
information, once the user logs into one of these services from a
compromised computer. No web service is immune from this
type of attack. Figure 7 shows a webinject targeting Twitter
asking the user for his credit card number.

Webinject configuration file encryption

As the webinject configuration file contains key information for
security researchers and CERT organizations worldwide, its
creators attempt to make its content as hard to obtain as possible.
Initially, banking trojans downloaded webinject configuration
files in unencrypted form or using weak encryption mechanisms.
As a growing number of analysts began tracking these
configuration files, cybercriminals started to make the process of
decrypting them harder and harder. Banking trojans such as Zeus
and its variants now use several layers of encryption and store
the configuration files in parts, meaning that the full webinject
configuration file is never fully decrypted in memory.

o e e e X |

Suspicious activity is detected. Your account is locked

iy

YADY Apra |

Figure 7: Webinjects adding addtional input boxes in Twitter
page.

Webinject obfuscation/compressor

Although several tools exist to obfuscate JavaScript code, and
several cybercriminals are using them heavily (exploit kit
authors for example), it is surprising to see that most of the
webinject configuration files are not obfuscated, or only use
compressors that are easily reversible. This might be due to the
fact that they are usually delivered to the client in encrypted
form, but it is surprising nonetheless.

/packer/ compressor

This well-known technique [7] for compressing JavaScript is
found in many webinject configuration files and is very easy to
reverse. The reversing can be done using a simple replacement
of the ‘eval’ function, and then JS beautifier [8] can make the
script analysis easier. This compressor is handy to reduce the
script size and accelerate the web page download, but does little
in terms of making the code harder to analyse. Figure 8 shows
an example of a script that has been compressed using /packer/.

Obfuscation

Some types of obfuscation can slow down the webinject analysis
considerably, as deobfuscation of these kinds of scripts is not
trivial. The example in Figure 9 shows a webinject using
variable assignment and conditional statement obfuscation: what
should be very simple variable assignments and conditional
statements are replaced with several mathematical operations
that complicate the analysis. Although not insurmountable, this
type of obfuscation certainly hinders analysis.

Although obfuscation like that depicted above is currently
infrequent, we will most likely see more of it in the future. As
the complexity of webinjects increases, so does the likelihood
that their authors will try to protect their intellectual property
more efficiently.

THE EVOLUTION OF WEBINJECTS

eval(function(p,a,c,k,e,r){e=function(c){return
(c<a?'':e(parseInt(cfa)))+((c=c%a)=352String.fr
omCharCode(c+29):c.toString(36))};1if(!''.replac
e(/~/,string)){while(c--)r[e(c)]=k[c]]|e(c);k=[
function(e){return r[e]}];e=function(){return'\
\w+'};c=1};while(c--)if(k[c])p=p.replace(new Re
gExp('\\b'+e(c)+'\\b',"g"),k[c]);return p}('4 1
3(0){7 a={N:m,0:m,D:m,P:m},Q;Q=2.v;n{2.v=""}r(e)
{}a.R=1D 2.v=="14"210:1E("/* 1@*f/11");n{2.v=
yr(e){}3(a.R){a.P=(/"(7:.*7[*a-1G-Z])?7(?:1H|1I
ASFANLODNs*(\\d+\\ . 2\\d*) /1) .5(15.16] |"")?17 (1
8.51,10):m;7 e,E,x,T=2.U("13"),V=["{1K-19-1a-1b|
-1c}","{1L-19-1a-1b-1c}"," {1IM-1N-10-1P-1Q}"];n{
T.1d.1R="1S(#1T#1U)"}r(e){}1e(x=0;x<V.t;x++){n{
a.D=T.1V(V[x],"1W").1X(/,/g,".")}r(e){}3(a.D)1Y

Figure 8: p,a,c,k,e,r compressor example.

=",

= "return ",

= (Ox1DA < (12.65E2, 0x23D) ? (31, false) : (0x1A5, 116.30E1));
j.length > ((114., 1.424E3) >= B1.80E1 ? (5.05E2, 12) : (120, 4.6

: (130, ox2

? (12.58E2, 13) : (11, 54.
(69, 0x15B));) D6j += (j6
(60., 137) >= 1.16
((ex214, ox
(31.0E1,

: (1.0210E3, 5.810E2) >= 133.
; p6j > ((66, 103.10E1) >= (79., Ox72) ? (136, 1) :
j = (i6j 7z ((ex211, 2.97E2) >= (44., 97) ? (48.1E1, false) :

BE3 ? (2.6E1, 'J") : 35. »>= (85., 1.900E2) ? ox1C : (131., 6x10)) :
101) <= 48 ? (20.40E1, 600 x109 < (102., Ox1BE) ? (Ox152, true) :
OxCE)))) ? b6j.charAt(p6j) eitg)(tDwn".charAt(p6j--);

Figure 9: Webinject obfuscation example.

The multiplication of banking trojan platforms and the increase
in complexity and security around bank websites have led to an
increase in the demand for quality webinjects. This demand is
now matched by several offerings in underground forums.

WEBINJECT COMMODITIZATION

Just like many other goods [9], webinject configuration files are
openly sold by several different actors, many of whom have ties
with traditional organized crime groups [10]. With this
phenomenon comes a standardization of the webinject
configuration file format. As most webinject coders are now
relying on this format to write their webinjects, most of the
newer banking trojans are also using the format depicted in
Figure 2. In fact, some banking trojans are also bundling
converters in order to be compatible with as many webinject
formats as possible. This was the case with banking trojan
Gataka which bundled a tool to convert SpyEye webinject
configuration files to its own format.

As the demand for webinjects rises, the offerings also naturally
increase. People writing these webinjects need tools to ease the
process of writing and testing webinjects. Config Builder, which
was part of the Carberp source code leaked in 2013, is an
example of such a tool. It bundles an editor and a version of
Internet Explorer for webinject development and testing.

Broadly speaking, there are two types of webinjects for sale:
those that have advanced capabilities such as automatic transfer
or an account balance grabber, and those that are simpler and
feature only a phishing-like pop-up that asks the user for
personal data as he is logging in. In fact, some webinject coders
sell features a la carte [11], depending on the customer’s needs.
It is not uncommon to see the work of several different
webinject coders used as part of the same campaign within a
particular banking trojan. Some operators have compromised

30

THE EVOLUTION OF WEBINJECTS

Dy IHMCATE Ha TPMEATEME TEMH, B R

Figure 10: Underground forum ad from a webinject coder selling cheap webinjects.

Fpynna: Cneguanucr
CoobuLeHui Y
Pervcrpauwna:
MonezoeaTent|

e ATENEHOCTE

)

yummba [} 23.09.2013- OTnpaEneHo #35
230972013 - CyMcTeMa gna eHegpeHya Android GoTa (nepexeaT CMC anA postbank.de (Bngeo

urep bttt ffrmybro . cofvideos/postbankupdl .rar)

=

HCANOEA]| BB ERX:

Figure 11: Webinject coder bundling Perkele, a mobile component able to intercept SMS messages, as part of a webinject offering.

hosts in several countries and are therefore trying to target as
many financial institutions as possible. Others target specific
regions of the world and thus require webinjects targeting
institutions in these regions.

Offerings

We have encountered several different offerings in underground
forums, some of which are very cheap, while others are much
more expensive. Some sellers, such as the one shown in Figure
10, are selling cheap webinjects that target a wide array of
financial institutions.

This actor is selling webinjects targeting financial institutions in
several countries. The webinjects can be bought for around one
hundred dollars each. They all have the same functionalities:
they are designed to steal personal information from the user by
injecting fake forms into legitimate bank websites.

Of course, there are much more comprehensive offerings which
implement ATS, multi-factor authentication bypass, and even
the bundling of a mobile component to compromise the user’s
mobile in order to intercept mTANSs.

In the advert shown in Figure 11, the seller is saying that
Perkele [12] is bundled with the webinject. This mobile
malware is used to bypass mTANs as a multi-factor

authentication measure. Most of the advanced webinjects now
come with an administration panel that can be used to track the
state of the compromised host, and control them.

Public/private webinject and partnerships

Webinject coders offer their products either as public or private
webinjects, but some also offer partnerships. Public webinjects
are products that are offered to everyone. Private webinjects, on
the other hand, are given exclusively to the buyer, meaning that
he can resell them and that the coder will not sell this work to
any other botmaster. The private webinjects are, of course, more
expensive than their public counterparts. In fact, one coder
explains in his terms of service that private injects carry a 50%
markup when compared to public ones. Some coders also offer
a support period where the webinject will be corrected if it does
not work as advertised.

Some coders are also interested in partnerships, where they ask
for a share of the banking trojan’s profit. In a particular advert
we saw, a coder was looking for people with botnets in the UK
or Sweden and that were willing to share revenue.

This kind of offering is particularly interesting, as it means that
webinject coding is now seen as an essential part of the overall
fraud scheme. The fact that some botmasters are now willing to

part with some of their earnings in exchange for webinjects
leads us to believe that, since these components are now very
complex and require constant updates from the coder, sharing
profit with their creator makes sense.

As the complexity of the webinject configuration files grows, it is
possible to see common patterns amongst them. These patterns
allow us to track the different webinject coders, assess their
popularity, and find out which banking trojans are using them.

EMERGENCE OF POPULAR KITS

In this section, we will review some of the most prolific
webinject coders and where we have seen their creation.

Advanced administration panel

As the complexity of webinjects has grown, so has the need to
control them better and monitor the bots that are under their
control. Advanced administration panels are bundled along with
webinjects to allow botmasters to control the infected bots, collect
and search personal information gathered through the webinject,
and configure parameters related to the fraudulent operation.

The state of each bot, as well as the user’s bank account
information, is shown in the administration panel. The
botmaster can then, for example, order an automatic transfer
from the user’s account to one of his money mules’ accounts.
For these kind of functionalities to exist, the JavaScript code
present in the webinject must communicate with the
administration panel. When analysing such webinjects, security
researchers must interact with the administration panel in order
to retrieve information from it. Sometimes, through
administration panel interaction, it is possible to retrieve
money mule account information, download a mobile
component, retrieve images, etc. The administration panel
keeps track of the state of each bot and might not allow certain
items to be downloaded, such as mobile components, if the

THE EVOLUTION OF WEBINJECTS

state of the bot has not reach a certain point. Thus, during
analysis, it is necessary to fully understand the flow of the
webinject in order to recreate the different state changes so that
all interesting content can be retrieved. Some basic checks are
also sometimes performed by the panel before delivering
content. For example, when a component is supposed to be
downloaded by a mobile, the panel checks that the request has
been made by a mobile user-agent before it serves the correct
content.

Yummba

Yummbea is a moniker used in underground forums to advertise
several different webinject offerings, varying in complexity. It is
not clear at this point who is behind these offerings, so we will
describe them as a group. This group is selling both simple
webinjects that have phish-like features and complex webinjects
that encompass mobile components to bypass multi-factor
authentication measures. The webinjects come with a panel,
which is shown in Figures 12 and 13.

Sipostale@ATSEngine

Password: | |[sianin

Figure 12: ATS engine administration panel login page.

This group is offering both public and private webinjects. Their
public offering is vast and targets numerous financial institutions
in Europe, North America and Australia, and includes the
necessary schemes to bypass the targeted institutions’ security
measures. ATS webinjects are also available for several different
banks. There is also a module which can inject content to steal
personal information from an array of different banks, called
Full Information Grabber (FIGrabber). Figure 14 shows some of
the banks that are currently targeted by this framework.

S pﬂshlﬂﬂ'ﬁTSEnﬂinﬁ Wed, 10 Apr 20013 HEOS04 (UTCY Coons | Sign ot
AGCOEnES Drops Huprtx Iransfrs
Pt F Cipliti Asttaift Diskst 20 Absinifitd 1 it DIRGT Bhf
3 96,53 BLA |
T ——— R T AT
b = Lok T M sremIAAL L0 EUR —
SR B0 10 LE-A8: 2 Y Dl B s e o AR &0 B =] Fruiked 1 -] 1]
- ,. coh S04 AT EUR
L1081 . T 1,775, I8 Lesggng L }
13018 1 Lk o1 L " 0
CRL -
DO Teilel 10 1 Y5200 38 -:-I- £ F Pl 1 n L)
v
Nt 1B 2
Grabshed Data Transfars Eaporis
Warframst Eipbaten 20 Rty
7 =
fyded it abde dropes i admen parel
il o this account. TegUEIENg drog Tor SAEAD
iz - - BTN with halancs TR AD velpctnd o mawmal checheng @ rpagher s
» - = e e Balbhcn: S88.40
-z fpapred peccret GO - 3 = with areselpble Balance | 120,53
Lyndd. Adrerditered b brasalers page 13 4e8 Balihded
nd wtelngd papr Baded, resdeng ¥ anatia J
o wtelfnd atady pubimeing
B leatid. ofriubete? dvent slithisd :J

Figure 13: ATS engine administration panel.

31

THE EVOLUTION OF WEBINJECTS

LELLEETd 1Y
/htt
/http.
Jhtt
/htt
/htt
/htt
/htt
/htt
/htt
/htt
/htt
/htt
/htt
/htt
Jhtt

Figure 14: Sample of banks targeted by Yummba’s FIGrabber:

The FIGrabber represents an advancement in webinjects
implementing phish-like functionalities. In the past, we have
seen webinjects that could be reused and slightly changed to
target a different financial institution, but this platform, which
targets tens of different banks across different countries, can
easily be extended to add other websites. Moreover, there is a
unique administration panel that allows the botmaster to manage
all of his bots across different regions. This type of webinject
appeals to botmasters who have bots scattered in different
regions of the world.

As stated earlier, Yummba also bundles mobile components with
webinjects targeting banks that implement mTAN as a
two-factor authentication measure. Interestingly, the first mobile
component that was used was Perkele, as advertised in Figure
11, but lately we have seen this group starting to bundle
iBanking as opposed to Perkele in certain webinjects [13]. As
iBanking offers several features that are not included in Perkele,
this is not a surprising development.

We have seen several different banking trojans use the Yummba
offering: Qadars, ZeusVM and Neverquest, among others, are
using this kit as part of their criminal operations.

Injeria
Another popular kit is the Injeria webinject backend [14] which
comprises webinjects as well as an administrative panel. This

kit is easily recognizable as it uses the same distinctive URL
parameters to download external scripts.

The last portion of the URL is base64 encoded and, once
decoded, gives away the target and the mechanism used by the
webinject to attack the targeted institution. Table 3 shows the
different tags that were seen while we were monitoring this
webinject, and their meaning.

As can be seen above, this kit also bundles mobile components
and social engineering schemes in an attempt to bypass security
measures put in place by banks. The fact that the script is
retrieved from an external server, as is the case with most of the
more advanced webinject kits we studied, means that the coder
or the botmaster can quickly update the webinject to adapt to
any changing environment or apply a new obfuscation layer

to 1t.

Tag Webinject action

log-<project_name> | Phish-like inject that asks for
additional personal information when
the user logs into the targeted

website.

mob-<project_name> | Webinject contains a mobile
component that will be used in an
attempt to bypass two-factor
authentication sent to the user’s
mobile.

req-<project_name> | Webinjects using this tag encompass
some form of social engineering to
bypass non-mobile two-factor
authentication systems such as chip-

TAN.

app-<project_name> | Webinject contains a mobile
component that will be used in an
attempt to bypass two-factor
authentication sent to the user’s
mobile. This one might be the

evolution of the ‘mob-’ tag.

Table 3: Different tags that were seen and their meaning.

This kit is used by several banking trojans, such as Qadars,
Tilon, Torpig and Citadel. The fact that ever more functionalities
are included in the webinject offering, and that a growing
number of leading banking trojans are using this kit, leads us to
believe that this group is currently a dominant player in the
webinject coder realm.

Other popular platforms

There exist several other webinject offerings that are somewhat
similar in terms of their functionalities to the others mentioned
above. One example is sold by someone using the moniker
‘rgklink’. As with other offerings, this guy is selling a wide
array of webinjects targeting different institutions and using
varying degrees of sophistication. A free administration panel,
called Scarlett, is offered with the purchase of his ATS
webinjects. A screenshot is shown in Figure 16.

100 9000 50 Ben Affleck ITdB4EBABOBAERMEE ES445545

Trast

Rippars

Figure 16: Scarlett — rgklink Universal Admin Panel for ATS.

Figure 15: Injeria Webinject example.

Table 4 summarizes some of rgklink’s offerings with prices as
seen in an advert posted in underground forums in 2013.

Bank country Functionalities Asking
price

(USD)

Italy (UniCredit.it) | Login/password and token 450

grabber, Jabber alerts

Canada (RBC) Login/password grabber, 450
additional personal

information asked

Germany (Deutsche | Full ATS 2,000
Bank)

Germany (34 IP, date, browser, login, 2,600
targeted password, holder name,

institutions) balance, account type, account

status, email accounts, bank
accounts, credit card,
expiration date, CVYV, date of
birth, card address, address
list, questions, answers,
phone, city, postal code
grabber

Table 4: Offerings and their prices.

As seen above, the price varies according to the webinject
functionalities.

WEBINJECT DELIVERY

Most of the time, webinjects are downloaded by the bot from its
C&C server. However, we are now seeing the addition of
another layer of indirection: the content downloaded from the
C&C is in fact a link to the source of the webinject. Figure 15 is
a good example of this.

Downloading the webinjects directly from an external server
serves several purposes. First, they can be updated very easily
and can also apply different rules depending on which bot is
downloading them. Second, some webinjects sold on
underground forums are heavily obfuscated, making it very
difficult for the botmaster who bought them to change them
[15]. Thus, sometimes, the webinject coder will prefer to keep a
version on an external server so that he can update it manually
when necessary. Finally, it can halt the forensic analysis of
compromised systems as the external server might no longer be
reachable when the investigation is performed.

There are some webinject frameworks which rely extensively on
external server interactions in order to know which content
should be injected into a targeted web page. One such
framework is constantly communicating with the external
server, the admin panel in this case, and constantly receives new
JavaScript code that is then inserted into the page. It uses a
distinctive function name obfuscation method, includes jQuery,
and uses cookies to persist data across web pages. Figure 17
shows an example of the type of communications that occur
between the client and the server.

THE EVOLUTION OF WEBINJECTS

Client side

wget --user-agent="Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 6.0)"
"http: /)
ad=00__o_o_o_(%22call_07642152347844221%22)"""

{ba?au=ad2&act=start&id=0&jab=1&func: 00__o_o__o

___((["balance":

, "NLde_summ" :
tus_text ,"succes
er_id": VH

Figure 17: Webinject client and server communications.

One URL parameter (‘func=") contains a function name that
will then be sent back by the server, appended to the web page
and automatically executed. Figure 18 shows the function
responsible for requesting new JavaScript from the server and
appending it to the current web page.

o__(a, b)

"call_" + Math.random().toString().replace(/\./g, ""),
.getElementsByTagName("head")[0],
.createElement("script”);

.id

.type "text/javascript”;

=a+ unc=" + b + '"&onload=00__o_o_o_(
.Src = aj

.appendChild(c)

Figure 18: Function responsible for executing instructions sent
from the server.

In this case, the JavaScript functions downloaded from the
C&C server are typically only setting different variables or
changing the current state of the compromised system. In one
of the scripts we studied, the possible states were: wait, block,
tan and az. ‘Az’ is short for avtozalivov, the Russian term for
ATS. Interestingly, the account information for the money
transfer (Dropld) is also sent using the same method as
described above. Figure 19 shows an example of the variables
necessary to tell the webinject kit where to perform the
automatic transfer.

2014
unt of t

name": "}
um_limit":2480,

03-25T17:08:07+01:00"})

Figure 19: Dropld as sent by server.

This technique is certainly not unique to this kit. In fact, the
mule’s account information is rarely seen directly in the
webinject — it almost always requires some form of interaction
between the bot and the C&C and occurs at the very end of the
transfer process. This is understandable, as the cybercriminals
wish to keep this information private to prevent it from falling
into the hands of security researchers or law enforcement.

s"created_at":"2014-03-25T14:47:01+01:00","drop|
s"hide_trans": SMid": ,"log":"","stat "wai|
":"true","updated_at":"2014-03-25T14:47:01+01:

33

34

THE EVOLUTION OF WEBINJECTS

CONCLUSION

Webinjects have evolved dramatically in the past few years.
They are now commoditized goods in underground forums.
Resourceful botmasters can subcontract webinject coding or
buy existing webinjects to target virtually any bank in the world.
With several banking trojans now using the same webinject Kkits,
will we see the emergence of ‘the’ webinject kit, just like
BlackHole, which was so dominant in the exploit kit scene for
so many years? We believe that the answer to this question is
yes, and that it has, in fact, already started.

REFERENCES
[1] Wyke, J. What is Zeus? SophosLabs technical paper,
2011.

2] Microsoft Malware Protection Center, Threat Report:
EyeStye, 2012.

[3] Sood, A. K. et al. Dissecting SpyEye — Understanding
the design of third generation botnets. Comput. Netw.,
2012.

[4] Sood, A. K.; Enbody, R. J.; Bansal, R. The art of
stealing banking information — form grabbing on fire.
Virus Bulletin, November 2011. https://www.virusbtn.
com/virusbulletin/archive/2011/11/vb201111-form-
grabbing/.

[5] Kharouni, L. Automating Online Banking Fraud,
Automatic Transfer System: The Latest Cybercrime
Toolkit Feature. Trend Micro Research Paper, 2012.

[6] Fox-IT InTELL, Demystifying Pobelka.

[7] Edwards, D. /packer/. http://dean.edwards.name/
packer/.

[8] Lielmanis, E. JS Beautifier. https://github.com/einars/
js-beautify.

[9] Goncharov, M. Russian Underground Revisited. Trend
Micro Research Paper, 2014.

[10] GrouplB, State and Trends of the Russian Digital
Crime Market, 2011.

[11] Klein, A. A La Carte: Criminals Charging Per Feature
for Custom Webinjects. http://www.trusteer.com/blog/
la-carte-criminals-charging-feature-custom-webinjects.

[12] Krebs, B. A Closer Look: Perkele Android Malware
Kit. KrebsOnSecurity. http://krebsonsecurity.
com/2013/08/a-closer-look-perkele-android-malware-
kit/.

[13] Boutin, J.-I. Facebook Webinject Leads to iBanking
Mobile Bot. welivesecurity. http://www.welivesecurity.
com/2014/04/16/facebook-webinject-leads-to-ibanking-
mobile-bot/.

[14] Fox-IT InTELL, Tilon, son of Silon, or... SpyEye2
evolution of SpyEye?

[15] Klein, A. Webinjects for Sale on the Underground
Market. http://www.trusteer.com/blog/webinjects-sale-
underground-market.

