
SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

62 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

SWIPE AWAY, WE’RE WATCHING
YOU

Hong Kei Chan & Liang Huang
Fortinet, Canada

Email {hkchan, lianghuang}@fortinet.com

ABSTRACT
Point-of-sale (PoS) malware campaigns have been hitting the
headlines recently. In December 2013, retailer Target confi rmed
a PoS data breach, reporting that an estimated 40 million credit
and debit card accounts had been compromised. More recently, a
new strain of PoS malware named JackPOS has reportedly
compromised over 4,500 credit cards in the United States and
Canada.

PoS memory-parsing malware is not a new phenomenon – AV
vendors have been detecting such malicious programs since 2008
under the family name Trackr or Alina. The earlier variants had
only basic functionality, but over the years have evolved to
include additional features such as keylogging, screen capturing,
and bot and network functionalities. Today, there are a number of
PoS malware families and variants: Dexter, BlackPOS, JackPOS,
Chewbacca, Citadel and Decebal, to name a few.

In this paper, we will describe the backbone of PoS malware: (1)
dumping the memory of running processes, (2) scanning and
extracting credit card information, and (3) exfi ltrating the stolen
information. We will highlight the extraction procedure and
provide a detailed description of the sensitive data targeted by
the malware. To provide a broader scope of PoS malware, we
will be using examples from a range of families: Dexter,
BlackPOS, JackPOS and Chewbacca.

Furthermore, to provide an insight into the programming trends
of PoS malware, we will investigate the evolution of one of the
PoS malware families: Dexter. We will discuss each stage of
development and conclude with the likely future direction of the
Dexter family.

POS MALWARE BACKBONE
Payment Card Industry (PCI) compliance standards require
end-to-end encryption for sensitive payment data; the
transmission, receiving, and storing of all credit card information
is encrypted. However, the data at the endpoints, which is stored
for a short period of time in volatile memory, is unencrypted and
unprotected. This section will describe how PoS malware targets
the vulnerable endpoints by performing the following workfl ow:
(1) dumping process memory, (2) extracting track information,
and (3) exfi ltrating stolen information.

DUMPING PROCESS MEMORY
The fi rst part of the PoS malware workfl ow begins with
accessing the memory pages of running processes and reading
their contents into buffers.

To achieve this, the PoS malware fi rst acquires a list of process

identifi ers (PIDs) of the processes that are currently running on
the system by using either EnumProcesses or a combination of
CreateToolhelp32Snapshot, Process32First and Process32Next.
It then continues by cycling through the list, checking the
process name associated with each PID against a list of target
processes (usually PoS software) or processes to ignore. This list
is usually hard coded. Malware authors take a risk when hard
coding target lists, since a simple change in the PoS process
name would be suffi cient to stop the malware.

Figure 1 is an example of the types of processes blacklisted by
the Dexter PoS malware family.

Figure 1: List of blacklisted processes.

Once a target process is found, the PoS malware calls
OpenProcess to acquire a handle to it, and then uses
VirtualQueryEx to retrieve information on the pages of the
target’s virtual address space. The queried region needs to be
checked fi rst to determine whether it has certain page protection
attributes, such as PAGE_GUARD or PAGE_NOACCESS,
before ReadProcessMemory is called to dump the contents to
virtual memory. Attempting to read the memory without
performing a memory protection check could lead to an access
violation (e.g. STATUS_GUARD_PAGE_VIOLATION) and an
unforeseen crash of the malware.

Once the PoS malware has the memory page of its target process
in memory, it can parse it to look for credit card information.

EXTRACTING TRACK INFORMATION

Before discussing the extraction of track data, we will fi rst
describe the magnetic stripe data targeted by PoS malware.

On the back of each credit/debit card is a magnetic stripe with
three tracks: Tracks 1, 2 and 3. Tracks 1 and 2 are used by
fi nancial institutions to store sensitive information such as the
account number, expiration date, and CVV of the card, whereas
Track 3 is used for reading and writing. When either a cashier or
the card holder swipes the credit/debit card through a reader, the
Electronic Data Capture (EDC) software within the PoS system
will send an authentication request to an acquirer. The magnetic
stripe data is formatted to comply with ISO/IEC standards and is
then received by the acquirer for authentication.

Figure 2 is an example of the formatted Track 1/Track 2 data of a
sample credit card.

This sensitive data is temporarily stored unencrypted in the
process memory of the PoS software. After dumping these
memory pages, PoS malware then scans them for track data. If
this data is found, the malware extracts it to be exfi ltrated later.

SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

63VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

In scanning for track data, PoS malware families use one of two
approaches. Some families use custom pattern matching, while
others use regular expression matching.

Custom pattern matching

Custom pattern matching algorithms allow the malware authors
to have more control over which types of cards to target or to
fi lter out. The algorithms are built according to ISO/IEC
standards and take advantage of the structure of the track data.

Table 1 lists the components of the track data and how they are
typically used by malware in pattern matching.

The markers are used throughout the scanning process. The
malware begins scanning for one of these markers, then
calculates the number of characters to the adjacent marker,
verifying the length and/or validity depending on what data
component it is checking.

Custom matching algorithms vary in specifi city; some families
locate the fi rst fi eld separator, check the number of bytes before
it (primary account number) and after it (card holder’s name/
sensitive data), and extract the entire track data from beginning
sentinel to the end sentinel.

More specifi c algorithms check for additional information, such
as whether the credit card has been issued by certain credit card
companies.

This is the case with JackPOS. Before extracting the credit card
number, this malware family checks the issuer identifi cation
number (IIN), which can be found at the beginning of the
primary account number (PAN). Some IINs that it looks for are
‘1800’ and ‘2131’, which both correspond to the IINs of
Tokyo-based credit card company JCB.

Figure 3 shows a snippet of JackPOS’s custom matching
algorithm. After checking for the Begin Sentinel (‘%’) and
Format Code (‘B’), it checks whether the fi rst digit of the IIN is
within the range of ‘1’ to ‘6’. This fi rst digit is used as a jump to
one of six switch cases. If the IIN begins with a ‘1’, the
subsequent digits are checked for ‘800’. Likewise, an IIN that
begins with ‘2’ is checked to see if it is followed by ‘131’. Out
of all the possible credit cards with IINs beginning with ‘1’ and
‘2’, JackPOS will only extract details of credit cards with IINs
matching ‘1800’ or ‘2131’.

Figure 2: Card example showing Track 1 and Track 2 data.

Figure 3: Codes checking for cards with specifi c IINs.

After extracting the PAN, the malware usually checks if it is
valid by using the Luhn or ‘modulus 10’ algorithm. Once it has
passed the validity test, the data is written to memory or to a fi le
in preparation for being sent to a C&C server.

Track data
component

Description Howit is used in
patterns

Begin sentinel Track 1: ‘%’

Track 2: ‘;’

Marker

Format code One-character
code: typically ‘B’
(Bank/Financial)

Marker

Primary account
number

15–16 digits
(Canadian bank
cards can have 19)

Size and validity1

are checked

Field separators Track 1: ‘^’

Track 2: ‘=’

Marker

Card holder’s
name

2–26 characters
(Track 1 only)

Size is checked

Sensitive data Minimum 16 digits
(expiration date/
discretionary data/
CVV)

Size is checked

End sentinel Track 1 &

Track 2: ‘?’

Marker

Table 1: Components of track data.

1 PoS malware families normally check the validity of bank card
numbers using the Luhn or ‘modulus 10’ algorithm. This is by no means
a true validity check, but is just a simple test to distinguish valid
numbers from a collection of random digits that may just coincidentally
have the expected length of a primary account number.

SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

64 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Regular expression matching

Comparatively, the regular expression method is less fl exible,
but much easier to implement. It is more widely used in families
such as Alina, vSkimmer and Chewbacca.

Figure 4 shows a snippet of the extraction function from the
Chewbacca family. As we can see here, two regular expression
patterns are used to extract the Track 1 and Track 2 data.

Just as in custom pattern patching, once the malware has
extracted the bank card number, it usually checks its validity
using the Luhn or ‘modulus 10’ algorithm. If the number is
valid, it is written to memory or to a fi le that will later be sent to
the C&C server.

EXFILTRATING STOLEN INFORMATION
PoS malware families use a number of communication
protocols to send the extracted credit card information to their
C&C servers. In this section, we will describe how PoS malware
use HTTP and FTP to communicate, and how they use
encryption and Tor to hide this communication. We will be
looking at BlackPOS, Chewbacca, and two versions of Dexter
to demonstrate how this is done.

Communication protocols

HTTP
Communication with the C&C through HTTP is on TCP port 80,
using the standard WinINet APIs: InternetOpen, InternetConnect,
HttpOpenRequest, and HttpSendRequestA. The HTTP request
body is constructed with multiple fi elds as variables to the
server-side PHP script. The number of variables and the content
of the fi eld varies between families and depends on what
additional information the malware author is interested in.

We now look briefl y at how Dexter (version: StarDust) prepares
the HTTP request to be sent to the C&C server.

Table 2 shows the WinINet APIs with the parameters used.

Dexter has a total of nine HTTP fi eld-value pairs, which are
described in Table 3.

FTP

Dexter is a unique PoS malware family as it has evolved not
only to use HTTP as its communication protocol, but FTP as
well. However, the parameters needed to use FTP make the
protocol less appealing in comparison with HTTP. To connect to
the FTP server, the server address, a username, and the
password need to be provided. This makes it easier for AV

Figure 4: Regular expressions for extracting Track 1 and Track 2 data..

WinINet API Parameters

InternetOpen User Agent: Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.1; SV1; .
NET4.0C; .Net4.0E; .NET CLR
2.0.50727)

InternetConnect ServerName: ‘hi.{Removed}.biz’

ServerPort: 80

HttpOpenRequest ObjectName: ‘/fk/gateway.php’

HttpSendRequestA Request: Contains fi elds passed to the
PHP script

Table 2: WinINet APIs and parameters used by Dexter.

Query
String: Field
Name

Query String: Field Body

page= Infected computer identifi er

• UUID generated by Dexter

&ump= Stolen credit/debit card information from the
process memory and tmp.log (only if it exists)

&ks= Stolen credit/debit card information from
strokes.log (only if it exists)

&unm= User logon name

&cnm= Computer name

&query= Operating system type:

• Windows 7/Vista/2000/XP/XP Professional
x64/

• Windows Server/2008/2003 R2/R2/

• Windows Home Server

&spec= CPU architecture:

• 32-bit/64-bit

&opt= System idle time (in seconds):

• (GetTickCount – LASTINPUTINFO.
dwTime)/0x3E8h

&var= Dexter version:

• StarDust

&val= The four-byte encrypting key used to encrypt
the above fi elds

Table 3: HTTP fi eld-value pairs used by Dexter.

SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

65VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

vendors to infi ltrate the malicious FTP server and access the
stored fi les once the malware sample has been discovered.

Figure 5 shows the code fl ow of Dexter’s communication via
FTP (Dexter version: Revelation).

After connecting to the FTP server, Dexter attempts to
compress a fi le containing the stolen credit card information
using RtlGetCompressBuffer. If successful, the fi lename is
appended with ‘.zip’; if unsuccessful, it is appended with ‘.
txt’. This fi lename is then used as the lpszLocalFile parameter
for the call to the FtpPutFile API. The lpszNewRemoteFile
parameter for this API contains a name that is generated with a
combination of the computer name, user logon name, and the
system fi le time. The fi nal step is to upload the fi le using
FtpPutFile.

CONCEALING COMMUNICATION

Encryption

Some PoS malware avoids detection by encrypting the sensitive
data being sent to the C&C servers. The content of the HTTP
request, or even the physical fi le in some cases (when sent
through FTP or through a connection to a shared folder), is
encrypted using custom algorithms or standard cryptographic
ciphers such as RC4.

As an example, Dexter encrypts the contents of the fi elds
mentioned in Table 3 by using a custom algorithm with
additional Base64 encoding. A sample of the traffi c generated
by its POST request is shown in Figure 6.

Dexter’s encryption algorithm is quite simple. A four-byte key
is generated randomly, and each byte of the plaintext is XOR’ed
with each character of the four-byte key.

Figure 7: Dexter’s encryption algorithm.

For the sample shown in Figure 6, the key ‘bkut’ is revealed
after decoding the val variable. An example of encrypting the
letter ‘B’ is shown in Figure 8.

Figure 8: Example of Dexter’s encryption.

A second example is the modifi ed Base64 encoding
implemented by the BlackPOS variant responsible for the Target
breach. Instead of the standard set of Base64 index characters,
BlackPOS uses the characters in the following order:

‘JN8hdEe3P0cUMTs5kQoIDWC9BV26GjRIZnXf0F+K4rY
tmqg7b/y1xwvqHiLAzSau’

The pseudocode for BlackPOS’s modifi ed Base64 encoding for
a sample credit card is described in Figure 9.

Figure 5: Code fl ow of Dexter’s FTP communication.

Figure 6: Dexter’s POST traffi c.

SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

66 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Figure 9: Pseudocode for the modifi ed Base64 encoding algorithm used by BlackPOS.

Tor
The Onion Router, better known as Tor, is software that
conceals the traffi c between a user and a Tor-enabled website.
Traffi c to the websites, denoted by ‘.onion’ at the end of the
URL, is encrypted and re-encrypted as it passes through a
network of thousands of Tor relays.

To conceal the IP addresses of the C&C server, Chewbacca uses
Tor to communicate with its C&C server. Chewbacca is not the
fi rst malware family to incorporate Tor in its communication
procedure, but it is a rare feature nonetheless.

The Tor proxy client version 0.2.3.25 is embedded in
Chewbacca’s resource section. Chewbacca drops it into the
user’s Temporary folder then launches Tor, creating an HTTP
proxy server that listens to the TCP default port 9050. All of the
stolen credit card information is then routed through the Tor
network to the onion domain: http://5ji235{Removed}.onion.

EVOLUTION
Early variants of PoS malware only have basic functionality,
which consists of the three common functions described in the
previous sections. Over the years, however, their functionality
has evolved to include additional features such as keylogging
and bot and network activities.

To provide insight into the programming trends of PoS malware,
we will investigate the evolution of Dexter. In this section, we
will begin by discussing the time frame of Dexter’s evolution,
followed by an in-depth analysis of each version.

Compilation time
The TimeDateStamp fi eld of the _IMAGE_FILE_HEADER
structure in the PE header stores the time and date when the fi le
was compiled. In many cases, malware authors will modify the
timestamp, which makes this fi eld useless when tracking the
malware’s development, but we have found no indication of this
in Dexter.

To date, we know of at least four major versions and a number
of minor versions of Dexter.

• spread (version 1)

• vXXX10

• Millenium

• StarDust (version 2)

• Revelation (version 3)

• Misto (version 4)

The names of the fi rst three major versions and two minor
versions are selected based on one of the parameters sent in the
HTTP request. The latest major version has been given the
temporary name ‘Misto’, the reason for which will be discussed
in the following section.

Figure 10 provides a timeline of when each version fi rst
appeared.

Figure 10: Timeline of Dexter versions.

Overview

The earliest version of Dexter performs a number of malicious
functions including, but not limited to: dropping a copy of itself,
creating an autorun registry entry, and communicating with its
C&C server. The following list is a brief overview of the
noteworthy functions:

1. Creation of fi ve threads

• Autorun Registry Monitor

- Utilizes the RegNotifyChangeKeyValue API to
monitor any changes to the autorun registry.

- Reverts any modifi cations to the registry.

• Internet Explorer Injector

- Utilizes a combination of the OpenProcess,
WriteProcessMemory and CreateRemoteThread
APIs to inject code into iexplore.exe.

- Ensures that malicious code is re-injected into
iexplore.exe in the event that the malware process is
terminated.

SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

67VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

• Anti-Termination Monitor

- Registers and creates a window with the
DetectShutdownClass class.

- Messages that have either the message identifi er
WM_QUERYENDSESSION or the parameter
ENDSESSION_LOGOFF are fi ltered and ignored
by the window procedure.

• Event Monitor

- Monitors two event objects: (1) when the host
receives commands from the C&C server, and (2)
when the Anti-Termination Monitor intercepts a
terminating message.

• Memory Parser

- Performs the three common functions of all PoS
malware: (1) dumping the memory of running
processes, (2) scanning and extracting credit card
information, and (3) exfi ltrating the stolen
information.

2. C&C communication

• ‘update-’

- Updates the malware binary.

• ‘checkin:’

- Controls the delay between each successive attempt
to connect to the C&C server and deliver stolen
information. The default delay is 10 minutes.

• ‘scanin:’

- Controls the delay between each successive
memory parsing scan. The default delay is one
minute.

• ‘download-’

- Downloads and runs additional malware.

• ‘uninstall’

- Removes the PoS malware and its traces from the
system, including registry entries.

Version 1: spread, vXXX10, Millenium

Version 1 of Dexter has the compilation date 3/25/2011, with the
version name ‘spread’. Spread creates the fi ve threads that were
mentioned above, but only has Track 2 data-searching
functionality. It can also receive C&C commands.

vXXX10

vXXX10, with a timestamp of 10/16/2012, is the fi rst minor
version. This version builds upon the existing memory parsing
function to add both Track 1 and Track 2 data parsing. The
Dexter author(s) appear(s) to be testing out different parsing
schemes: two separate scanning functions are incorporated in
this version.

The fi rst function is more specifi c, checking for both the
beginning sentinel and the format code ‘B’ before moving onto
the rest of the data. The second function starts by locating the

fi eld separators, and is the scheme adopted in future versions of
Dexter. We can observe this behaviour in Figure 11.

Figure 11: Two memory-scanning functions in Dexter vXXX10.

Millenium

Millenium, with a timestamp of 1/11/2013, is the second minor
version. It functions very much in the same way as its
predecessor, but here we begin to notice the fi rst signs of a
keylogger. The code for hooking various window messages,
which is needed for this future feature, is present within the
body of the malware, but is never executed. The necessary
dynamic library, which would contain the hook procedures, is
not yet included.

Version 2: StarDust

StarDust, with a timestamp of 2/26/2013, is the fi rst version to
have a functioning keylogger. SecureDll.dll, the dynamic library
containing the hook procedures, is embedded in the resource
section and is dropped and loaded by Dexter.

The two types of hook procedures, WH_KEYBOARD and
WH_GETMESSAGE, are installed to monitor keyboard input
and write the data to two log fi les – stroke.log and tmp.log. The
following registry keys are created and used as shared data for
all instances where keystroke information is intercepted:

• HKCU\Software\Helper Solution val1 = C:\
[CurrentFolder]\strokes.log

• HKCU\Software\Helper Solution val2 = C:\
[CurrentFolder]\tmp.log

The two hook procedures are very similar in that they both
utilize the GetKeyboardState and ToAscii APIs to log printable
keystroke characters. The differentiation is that the hook for
WH_KEYBOARD, using the GetKeyboardLayout,
MapVirtualKeyExA and GetKeyNameTextA APIs, can log
additional information to the strokes.log fi le. The information
written to strokes.log also includes the text that appears in the
title bar of the foreground window, as well as strings
corresponding to the special non-printable characters, which are
enumerated in Table 4.

Special character Corresponding string

Shift ‘[s]’

Ctrl ‘[c]’

Esc/Backspace ‘[n]’

Alt ‘[e]’

Table 4: Special characters stored in strokes.log.

SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

68 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

By method of DLL injection, the processes monitoring
keyboard input will be forced to load SecureDll.dll. When
loaded, its DLLMain function simply queries the two registry
entries above to acquire the paths to the fi les strokes.log and
tmp.log. The fi le paths are then used in the hook procedures as
the location to which keylogged data is written. The keylogged
data is encrypted using the algorithm shown in Figure 7, with
the four-byte key written at the beginning of the log fi les.

The credit card information in strokes.log and tmp.log is sent to
the C&C server as values of the HTTP request variables &ump
and &ks (see Table 3). To do this, Dexter fi rst reads the contents
of the log fi le, decrypts the data using the algorithm described in
Figure 7, scans the data for credit card information, then adds
the information to a buffer. This buffer is then used in
constructing Dexter’s HTTP request body, as seen in Table 3.

Figure 12 shows how this is done, using the contents of tmp.log
as an example.

Version 3: Revelation

Revelation, with a timestamp of 10/9/2013, is the next version
of Dexter with signifi cant development. In this version, the
Dexter author(s) made modifi cations to the keylogger and the
exfi ltration function. The keylogger for StarDust, the previous
version, followed the original Windows input model, using the
SetWindowsHook API to install global hooks for WH_
KEYBOARD and WH_MESSAGE. For Revelation, the WH_
MESSAGE hook procedure is still present, but a second
keylogger that uses the raw input model has been implemented.

The differentiating feature of the raw input model compared
with the original Windows input model is in how an application
receives input in the form of messages that are received by its
windows. The raw input model uses WM_INPUT messaging. In
the original Windows input model, applications do not receive or
have access to the WM_INPUT message by default.
Applications interested in receiving WM_INPUT messages
must fi rst register their device using the
RegisterRawInputDevices API.

Figure 12: Decrypting the contents of tmp.log and copying to a buffer.

Revelation registers its device with the RIDEV_INPUTSINK
fl ag set, which means that it will be able to receive all keyboard
input even if its window is not in focus.

Figure 13: Calling RegisterRawInputDevices with the RIDEV_
INPUTSINK fl ag set.

Functionally, the new keylogger is very similar to the old one in
that it is able to log all standard printable characters along with
non-printable characters. The difference is that Revelation can
now log both the depression and the release of the Shift and Ctrl
keys.

Table 5 compares the two versions’ strings corresponding to
each non-printable character.

Special
character

StarDust
string

Revelation string

Shift ‘[s]’ ‘[Shift Up]’ and ‘[Shift Down]’

Ctrl ‘[c]’ ‘[Ctrl Up]’ and ‘[Ctrl Down]’

Esc/Backspace ‘[n]’ ‘[BackSpace]’

Alt ‘[e]’ N/A

Tab N/A ‘[TAB]’

Enter N/A ‘[ENTER]\r\n’

Table 5: Comparison of special characters logged by StarDust
and Revelation.

As described earlier in the paper, Dexter evolved to include two
communication protocols: HTTP and FTP. To build the HTTP
request and the fi le to upload via FTP, Revelation combines the
data acquired from eight separate fi les. This is a signifi cant

SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

69VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

change in execution in comparison with StarDust, which needed
to read data from only two keystroke log fi les.

Table 6 lists the fi lenames and the corresponding contents of
each fi le.

File set 1 – HTTP File set 2 – FTP Content

debug.logasdf debug.logyrgh Stolen credit/debit
card information from
the process memory

tmp.logtmp.log tmp.logtmp.log Keylogged data from
the original Windows
input keylogger

strokes.logasdf strokes.logyrgh Keylogged data from
the raw input
keylogger: General

fi le.logasdf fi le.logyrgh Keylogged data from
the raw input
keylogger: LogMeIn

Table 6: Log fi les used by Revelation.

It should be noted that, for each fi lename, the ‘.log’ extension is
appended with ‘asdf’ for HTTP and ‘yrgh’ for FTP, but the
contents of the two sets are identical. Additionally, Dexter’s
author(s) separated the general keystrokes of infected machines
from keystrokes coming from windows that have the title
‘LogMeIn’. We believe this implementation targets PoS system
software that offers virtual support services using remote access
software. As Dexter continues to evolve, it is quite possible that
it may target more remote access software such as GoToMyPC
and TeamViewer in its future versions.

Figure 14: Contents of one of the fi nal fi les before and after decryption.

Revelation has a custom subroutine to combine the data from
each fi le. For its HTTP communication, it fi rst writes the data
from each of the four fi les in fi le set 1 (see Table 6) to a fi nal
fi le with a randomly generated name. This fi nal fi le then
becomes part of its HTTP request. Likewise, it also
combines the four fi les in fi le set 2 into another fi nal fi le (also
with a randomly generated name), which then gets uploaded
via FTP.

Figure 14 is an example of the contents found within one of
these fi nal fi les. The fi le, with name ‘tkbcoomofvjkfxlkpotx’, is
encrypted with the four-byte key ‘ypej’.

Decrypting the bytes reveals the format where data from each of
the four fi les are separated with the following identifi ers:

• "\r\nSCRAPPER:[\r\n" + <data> + "\r\n]\r\n"

• "\r\nHOOKER:[\r\n" + <data> + "\r\n]\r\n"

• "\r\nKEYLOGGER:[\r\n" + <data> +"\r\n]\r\n"

• "\r\nLOGMEIN:[\r\n" + <data> + "\r\n]\r\n"

Upon further investigation of this version, we observe evidence
of a third exfi ltration subroutine, which follows the same
format as Revelation’s HTTP and FTP subroutines. However,
this subroutine appears to still be in development as it has no
direct reference and is also missing the actual exfi ltration
function.

Figure 15 shows the unreferenced subroutine with the missing
exfi ltration function; the names of the fi les have the string
‘mtoz’ appended to ‘.log’.

Based on this, we can expect that future versions will include up
to three communication protocols in transporting their stolen
information.

SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

70 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Version 4: Misto
Misto, fi rst compiled on 1/23/2014, is the most recent version of
Dexter. Even though this version has the most recent
compilation date, Misto most resembles vXXX10 – which did
not have a keylogger or two parsing schemes. This leads us to
believe that the Dexter author(s) has/have reverted to an older
version or branched off from an earlier revision.

Similar to all other versions of Dexter, Misto creates fi ve threads
to monitor changes in the system while the malware continues
to parse the memory for credit/debit card information. All stolen
track data is written to the fi le c:\windows\system32\ursd.ini.

In many of the subroutines that use strings, Misto fi rst writes
each character of the string onto the stack. Figure 16 is a code
snippet that shows how Misto does this.

Figure 16: How Misto forms strings.

In each of the previous versions, Dexter would search the
memory of all processes while ignoring a selected number of
blacklisted processes. On the contrary, Misto has a list of
targeted processes that it wants to parse. The targeted processes,
which are associated with PoS system applications, are listed in
Table 7.

Processes PoS applications

Helios11.exe Helios salon PoS software

Helios12.exe Helios salon PoS software

SunLync.exe SunLync tanning salon management software

ComCash.exe ComCash retail PoS software

Table 7: PoS processes targeted by Misto.

For two major reasons, we believe that this version of Dexter is
currently still in development. The fi rst reason is that we have
seen Dexter create a total of three autorun registry entries with
their values all equal to ‘%System%\javas.exe’, which is a string
that is hard coded into the malware sample.

This is interesting because the fi le javas.exe is not dropped by
the original sample. The existence of these autorun registry
entries suggest that a fi le with that name will be dropped or
downloaded from the web in future versions.

The second reason is the removal of all command and control
functionality in this version. Misto, as an individual piece of
malware, has no means of transporting the stolen credit card
information to a C&C server. We speculate that the author(s)
have decided to modularize Dexter based on Misto’s attempts to
create two processes using the following command lines:

• ipsm.exe [MACHINE_NAME]_NOU-START c:\windows\
system32\ursd.ini

• ipsm.exe [MACHINE_NAME]_NOU c:\windows\
system32\ursd.ini

Figure 18 shows one of these command lines.

We are unable to analyse ipsm.exe since Misto does not drop
this fi le, nor does it have any evidence of this fi le’s existence
within its body. The two parameters in the command line,
passed to CreateProcessA, suggest that the missing C&C
communication is contained in ipsm.exe.

As we have mentioned previously, the names of the fi rst three
major versions and two minor versions of Dexter are based on
one of the parameters sent in the HTTP request. Since this
version does not send out an HTTP request, we have given it the
temporary name of ‘Misto’, which is derived from a mutex that
it creates (WindowMistoServiceMutex).

Figure 17: Autorun registry entry created by Misto.

Figure 15: Third exfi ltration subroutine with missing exfi ltration
function.

SWIPE AWAY, WE’RE WATCHING YOU CHAN & HUANG

71VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

The most recent version of Misto, with a timestamp of
3/21/2014, has shed some light on one of the two concerns
mentioned above. Our previous speculation that the fi le
javas.exe, which appeared in the three autorun registry values,
would be dropped or downloaded from the web by a future
version has turned out to be true.

In this updated version, we found a set of instructions that will
fi rst disable fi rewall notifi cations then write and execute a set of
FTP commands. A connection to a malicious FTP server will be
made using the proper credentials and the fi le javas.exe will
then be downloaded.

Figure 19 shows the set of instructions that are passed as a
command line to a call to the CreateProcessA API.

Even though we were unable to connect to the FTP server and
acquire the sample at the time of analysis, we can deduce what
this fi le might contain. Since the call to execute ipsm.exe (see
Figure 8) occurs after this downloading activity, and we know
that Misto does not drop ipsm.exe, we can assume that javas.exe
most likely contains the malicious codes of ipsm.exe.

CONCLUSION
This paper has described the backbone of PoS malware: (1)
dumping the memory of running processes, (2) scanning and
extracting sensitive credit card information, and (3) exfi ltrating
the stolen information to a C&C server. We have provided a
detailed description of the Track 1 and Track 2 data targeted by
the PoS malware, and highlighted the different search
algorithms to fi nd this data as implemented by families such as
JackPOS and Chewbacca.

In addition, we have investigated the evolution of Dexter and
discussed each stage. By tracking its three years of
development, we have discovered four major versions and
multiple minor versions. The analysis of each of the versions
has not only provided insight into the programming trends of
Dexter, but also into the future development of other PoS
malware families.

REFERENCES
[1] http://www.gae.ucm.es/~padilla/extrawork/tracks.html.

[2] http://www.codeproject.com/Articles/297312/Minimal-
Key-Logger-using-RAWINPUT.

Figure 18: Command line that executes a fi le named ‘ipsm.exe’.

Figure 19: Command line passed to the CreateProcessA API.

[3] http://www.arbornetworks.com/asert/2014/03/dexter-
and-project-hook-point-of-sale-malware-activity-
update/.

