
THE THREE LEVELS OF EXPLOIT TESTING FORD & CARVALHO

169VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

THE THREE LEVELS OF EXPLOIT
TESTING

Richard Ford & Marco Carvalho
Florida Institute of Technology, USA

Email {rford, mcarvalho}@fi t.edu

ABSTRACT

Many different client-side security products claim to provide
protection against exploits from known and unknown
vulnerabilities. However, to date, scientifi c tests of exploit
detection solutions have been lacking, and those that have been
conducted are of limited utility.

In this paper, we explore three different types of tests that could
be used to measure the effi cacy of products that claim to provide
protection, and discuss the properties that these tests would
actually measure. We argue that each test measures a different
property of the protection provided, and that none measure the
functionality most purchasers actually care about. We then
illustrate how existing tests can provide misleading information
about the actual effi cacy of measured products.

At the simplest level, exploit detection can be measured by
testing machines using known-vulnerable versions of software
against exploits taken from Metasploit. However, this test fails
to distinguish between products that detect known exploits
targeting known vulnerabilities and products that simply detect
the presence of known exploit code. At the next level, tests
could be conducted using new exploits for known
vulnerabilities. These could be created by building new
exploits for well-documented vulnerabilities; however, this test
does not discriminate between products that rely on prior
knowledge of the exploit conditions and those which do not.
Finally, we propose a new test that we believe raises the bar in
exploit detection testing: the measurement of new exploits
targeting new vulnerabilities. We provide a methodology that
allows testers to leverage new vulnerabilities ethically and
effi ciently, and consider how an unscrupulous vendor might
attempt to ‘game’ this new methodology. We demonstrate how
these tests can be used in a cost-effective manner, and show
how this test can further be enhanced with minimal effort, by
adding techniques that allow testers to discriminate between
post-exploitation behavioural detection and actual detection of
the exploit.

INTRODUCTION

As endpoint security solutions become ever more encompassing
in terms of functionality, testers face signifi cant challenges in
designing and executing tests that adequately measure product
effi cacy. This is especially true for products that claim to provide
‘generic’ solutions to entire classes of attack. For example, it has
proven diffi cult to measure the utility of generic malware
detection without actually creating new malware to test against –
something that is typically not done, for both ethical and
practical reasons.

This problem will continue to evolve in both its complexity and
tractability as new technologies are brought to bear against
attackers. In this paper, we offer a solution to just one of these
new challenges: how to test exploit detection solutions.

At fi rst glance, testing an exploit detection system seems easy:
one simply installs the countermeasure on a vulnerable system
and exploits it. Indeed, as we shall see, such an approach does
measure the ability of the product to detect known exploits of
known vulnerabilities, but it may not be able to measure reliably
how well the product will handle new exploits or, even more
importantly, how well it will handle new vulnerabilities.

Before moving on, it is worth us defi ning our terms. When we
describe a system, we distinguish between vulnerability and
exploit. The vulnerability represents the underlying security
weakness. An example of a vulnerability might be reading a
user-provided string into an unchecked buffer. In contrast, an
exploit is the active exploitation of an existing vulnerability. For
any particular vulnerability, there may exist many possible
exploits. For example, for a buffer overrun, there are a wealth of
different strings that could be used as exploits, all with different
payloads and structure.

A second defi nitional aspect is what we mean by ‘a measure’ and
‘a metric’. Typically, Stevens [1] would describe a measure as
something that we can simply quantify, such as height or weight.
These simple measures are direct and straightforward. When it
comes to more complex properties, such as product
effectiveness, we will generally talk of metrics – indirect
measures that give us some insight into the more complex
property we wish to assess.

For exploit detection, then, we will be searching for a metric that
gives insight into product effi cacy with respect to exploit
detection. In general, such detection can be accomplished at
many different levels. We argue that the real functionality of
interest is the ability of a service provider to detect the
exploitation of an unknown vulnerability. Ideally, the technology
should detect the exploit itself, not the actions that the attacker
takes post-exploitation. We make this argument based on the
many different motives of attackers, making post-exploitation
behaviour highly variable.

As an outline, the paper considers the following issues: we begin
with a quick overview of the state of the art in exploit detection
and review some current testing methodologies, highlighting
their weaknesses. We then describe an approach to exploit
detection testing that relies upon the creation of artifi cial (but
fully exploitable) vulnerabilities. This approach allows us to
quickly and easily test the claims made for the capabilities of
exploit detection software. Finally, we consider how this work
might be put into practice, and how tests of this nature help
shape the capabilities of developing products.

EXAMPLES OF EXPLOIT TESTS

One of the suggestions often seen for testing IDS/IPS solutions
is Metasploit. This project provides information about security
vulnerabilities and is aimed at helping to generate IDS signatures
and deploy exploits. The thought is that a protected system could
be exposed to attacks via a representative threat vector.

THE THREE LEVELS OF EXPLOIT TESTING FORD & CARVALHO

170 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Metasploit is a fairly popular tool and has a large number of
both commercial and open-source front ends to increase its
usability. Thus, its pervasiveness, well-understood features and
functionality, and its (apparent) suitability to the task of testing
exploit detection software make it a frequently suggested
solution. However, as we will see below, the use of Metasploit
for this purpose is not without drawbacks.

Another possible approach was implemented by MRG Effi tas
[2]. In this case, testers carried out a test that was something of a
hybrid between known vulnerability testing and real-world
testing. In summary, the tests worked as follows:

1. A Windows 7 machine was installed, and the security of
the OS was weakened by turning off UACX, Microsoft
Defender and Internet Explorer Smartscreen.

2. Vulnerable web-facing software (Java 1.7.0 etc.) was
installed.

3. Windows Update was enabled, but only for patches that
did not affect Internet Explorer.

4. Protection products were installed on snapshots of the
vulnerable system.

5. Malicious URLs were crawled, while monitoring
software looked for new processes (malware) to start.

6. After successful exploitation, the machine was reset and
the image was reset.

As noted above, this tests against known vulnerabilities, but it is
unclear whether the exploits are known or not.

Finally, another option is a ‘clinical trial model’ real-world test,
as espoused by Somayaji et al. [3], and implemented by
Levesque et al. [4]. In such an approach, the trajectories of real
user machines are monitored and the impact of treatments (e.g.
patching, different anti-malware software) measured. In some
ways, this represents the ‘perfect’ test as it measures the actual
effi cacy of the ‘as-deployed’ solution, but there are still
drawbacks, as we discuss below.

WEAKNESSES
When we consider the utility of a detection technique it is
important that there is a very clear understanding of the use case
that we are attempting to measure. This is perhaps best
illustrated by a better-known example: the value of testing
anti-malware static detection in an environment where
cloud-based services have been turned off.

Typically, tests of static scanning with no cloud services are
criticized by vendors; they argue that this is not a valid test, as it
measures a feature that they claim is irrelevant to users.
However, their objections miss an important question: is there a
real-world use case that this test measures? The answer, after
some thought, is yes. There are many example environments
that are air-gapped from the Internet for either security or
operational reasons. An embedded system in a highly sensitive
application (such as the fl ight deck of a military aircraft) may
need to be scanned for malware at certain points in time. These
embedded systems that are disallowed from being connected to
the Internet make such a test meaningful to a subset of the
population. Conversely, for a typical home user, there is indeed
little to be learned from examining test results of cloud-disabled
solutions. The lesson here is that for every test scenario we must
be clear about the use case that is being tested.

In the case of exploit detection, it is typically not the
exploitation of known exploits that we are concerned with. The
use case is not that we wish to detect a known exploit at
runtime; instead, we would very much like to know that the
system is protected from 0-day threats (the reasoning being that
most known threats can be patched fairly quickly). There is a
limited use case for known exploit detection, but this
functionality is typically not as important as 0-day protection,
and would be subsumed by accurate 0-day protection.

Thus, the real issue here is that none of the techniques outlined
above are actually a measure of the behaviour we care most
about: none of them tell us whether a product under test can
detect exploitation generically, or whether it simply detects
exploits and/or vulnerabilities that are already known about. We
argue that a good test of exploit detection should differentiate
between these two cases.

CAN WE DO BETTER?
As touched upon above, there are different levels of protection
that can be provided by exploit detection systems. In order of
increasing utility these are:

1. Detection of a known exploit of a known vulnerability.

2. Detection of an unknown exploit of a known
vulnerability.

3. Detection of an unknown exploit of an unknown
vulnerability:

a. Based on post-exploit behaviour.

b. Based on detection of the act of exploitation itself.

Technique Known
vulnerability

Known
exploit

Strength Weakness

Metasploit with
stock exploits

Yes Yes Cost effective Does not show that the product actually detects
exploitation; can detect simple exploit signature

Metasploit with
custom exploits

Yes No Test determines product ability to detect
exploits beyond simple exploit signature

Does not demonstrate ability to detect 0-day
vulnerabilities

Real world Maybe Maybe Gives real-world effi cacy of protection,
including impact of user acceptance etc.

Many clients needed

Table 1: Exploitation detection measurement schemes and their strengths and weaknesses.

THE THREE LEVELS OF EXPLOIT TESTING FORD & CARVALHO

171VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

As outlined above, it is relatively easy to test the system at
levels 1 and 2; for example, use of a known-vulnerable system
and Metasploit will test both of these countermeasures easily.
However, testing at levels 3a and 3b – the levels we care most
about – seems very diffi cult.

One way of testing at these higher levels is to use automated
tools to fi nd new vulnerabilities in software, develop exploits
for them, and then use these 0-day attacks to test software.
However, there are two problems with this approach: fi nding
exploits is neither easy nor cheap, and providing verifi able and
repeatable test results will require the dissemination of new
vulnerabilities for real software. Realistically, fi nding one’s own
0-day exploits for exploit detection testing is not scalable. While
it is conceivable that one could ‘freeze’ a security product,
disconnecting it from the cloud, and use exploits that are new to
the version stored, this approach is sub-optimal, and would
unfairly penalize those products that use network connectivity
to enhance detection. While it is not obvious that exploit
detection software would make signifi cant use of the cloud,
tests should not presuppose how protection is provided.

A second issue with fi nding one’s own vulnerabilities is that the
vulnerability should be disclosed to the developer of the
vulnerable software following responsible disclosure
practices… and good testing dictates that tests are transparent.
There is therefore a rather diffi cult tension between the needs of
the test and the needs of the vulnerable software developer.
Ultimately, fi nding one’s own 0-days for the purposes of
software testing is impractical.

Another approach to testing at level 3 is to deploy systems in a
real-world setting and see how and when they are broken into.
There are two fairly signifi cant problems with this particular
approach. First, the rate of new attacks is low and the variance
between machines is likely very high. Thus, a ‘clinical trial
model’ [3] would require an extremely large number of
machines in order to produce statistically meaningful results.
Second, and perhaps most importantly, even if a suffi cient
number of participants could be recruited, it would (by
defi nition) be impossible to know about exploits that were not
detected.

To this end we propose that a more fruitful approach is to write
vulnerabilities deliberately into custom copies of open-source
software, creating a new package with a new (and known)
vulnerability. Thus, there is no ethical concern about
distributing a new vulnerability, as it is not usable elsewhere. In
addition, there is no question mark regarding undetected
exploits, as the tester has complete control of the test.

As such, our proposal is simple: deliberately create new
vulnerabilities in a package such as Apache, and then exploit
them in a variety of different ways.

INJECTABLE VULNERABILITIES

The real benefi ts of our approach become apparent when we
consider the large number of different vulnerability types that
exist. There have been several attempts to document different
vulnerability root causes and to generate a taxonomy (see [5, 6]
for an overview and list of references), but any list inevitably

becomes out of date quickly as new exploit techniques are
developed frequently. Nevertheless, we can choose the type and
scope of vulnerability we choose to inject into the source code.
Vulnerability databases, such as the CVE list and National
Vulnerability Database (see: http://cve.mitre.org/), can also
provide solid starting points for determining what kinds of
vulnerability are common. As such, the relative importance and
frequency of vulnerability types can be gauged in order to build
a test set of exploits and vulnerabilities.

This ability to choose the type of vulnerability affords the tester
signifi cant control over the way in which a product is tested. For
example, when we consider a stack-based buffer overrun in a
network server, there are many different ways in which the
intrusion could be detected.

A few of the possible defence approaches are listed below:

• A protocol analysis could be carried out, and the anomaly
in the network request could reveal the attack.

• The protection system could note the destruction of the
return IP address on the stack (for example, using stack
cookies).

• The anomalous control fl ow change could be detected.

• The behaviour of the payload (e.g. downloading a trojan
from a known-bad IP address) could reveal the attack.

As can be seen, the ‘same’ protection can be provided in many
different ways. Note that, in fact, the word ‘same’ here is
intentionally in quotation marks because in truth these
protection schemes are not equivalent. Depending on the use
case, one may be vastly preferable to another, and by
controlling the vulnerability (and by having full knowledge of
the code that surrounds it), the tester can explore this space with
relative ease. Bespoke vulnerability creation (as opposed to
exploit creation) allows this space to be explored methodically
and controllably.

WHAT A TEST WOULD LOOK LIKE (AND
WHAT IT MIGHT TELL US)
The best illustration of the value of our testing technique is a
worked example of how an exploit test using our techniques
might look. To that end, we perform a Gedanken of a fi ctional
product test that attempts to determine the effi cacy of two
products that use different protection techniques.

As a fi rst step, the use case to be tested must be determined. In
this instance, the tester wishes to answer the most general
detection question: which product provides the most effective
protection from exploitation of 0-day attacks? With this
overall question in mind, the tester can set about the task of
creating a test.

Next, a set of vulnerabilities should be selected from any
appropriate taxonomy. For example, the tester may choose to
test buffer overruns, TOCTTOU vulnerabilities and data
disclosure, justifying this choice by citing issues in the NVD. In
each case, an open-source software package would be modifi ed
such that it was vulnerable to one or more of these weaknesses.
With exact knowledge of the source code and the vulnerability,
it is almost trivial to construct different exploits for each

THE THREE LEVELS OF EXPLOIT TESTING FORD & CARVALHO

172 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

vulnerability. Furthermore, the nature of exploitation can be
changed. Whereas one exploit might simply exit the vulnerable
server cleanly, another may install a reverse shell, whereas
another may launch a new process or thread.

The system can then be tested using each of these exploits, and
the detections tallied. Not only are raw scores available, but the
types of exploit/vulnerability combinations caught and missed
can also be quantifi ed. This gives the tester signifi cant insight
into the effi cacy of the products under test (that is, is the
exploitation being detected, or the post-exploitation behaviour
and exploit payload).

Furthermore, if the exploitation of a vulnerability is missed, the
tester can increase the size and ‘noisiness’ of the payload. Thus,
products that have a post-infection detection fi lters can have
their level of protection quantifi ed.

FURTHER WORK AND CONCLUSIONS
The creation of new vulnerabilities in a program to which one
has source-level access is relatively easy. Vulnerable code is
easy to recognize, and when one can hand craft the source code
and compiler options, writing a functional exploit is easy.

The primary weakness we see with our approach is that a
program that uses crowd sourcing to determine ‘normal’
behaviour may have issues with our patched program, as it is
different to other versions of the ‘same’ application. However,
this is at least partially a real-world scenario; companies often
customize software for their own purposes. While it would be
ideal if our exploitable binaries were identical to those
commonly found, we see no way around this limitation.
Regardless, we do not believe this is a major limitation, as long
as it is disclosed.

The next step for this approach is to actually build tests that use
it. We hope to fi nd a testing laboratory to collaborate with in the
Fall. Our expectation is that results will be fascinating. In
particular, it will be illustrative to compare results from our
experiments with those of tests conducted using known exploits
from an exploit framework such as Metasploit. Products that do
well when using known exploits but poorly in our tests are likely
to be detecting known signatures of specifi c exploits. This is not
insignifi cant protection for the end-user, as hackers do make use
of tools such as Metasploit, but it is not nearly as useful as one
might think. For the well-run environment, patches should be
pushed out as quickly as possible, and we are measuring the
difference between this gap in protection (post exploit
disclosure, while waiting to deploy a patch) and protection from
a 0-day vulnerability itself.

We see this testing approach as a pragmatic and effective way of
testing exploit detection capabilities. By carefully selecting the
types of vulnerabilities and the modes of exploitation, a tester
can conduct a repeatable set of tests without concern over
impact of disclosure, vendor bias, or even cost of testing. The
level of expertise required to create an exploit when you have
hand-crafted the vulnerability yourself is not high, making it
possible to test a range of defensive techniques.

As a closing thought, we make careful note that product testing
shapes product design. A poorly designed test can and will

entice vendors to cut corners with respect to ‘real-world’
security. For example, product design often requires trade-offs.
A vendor may, for example, reduce the numbers of checks
during certain operations in order to do better in a speed test,
even if such a condition reduces security and rarely occurs in
real-world use cases. Thus, good, solid testing needs to
recognize the evolutionary pressure that testing places on
product design decisions. The more closely a test conforms to a
real-world scenario, the less likely it is that the test will
persuade product developers to account for artifi cial use cases at
the expense of real-world security.

REFERENCES
[1] Stevens, S. S. On the theory of scales of measurement,

1946.

[2] MRG Effi tas, Real World Enterprise Security Exploit
Prevention Test. Published Feb 2014. Available online
through http://www.mrg-effi tas.com/.

[3] Somayaji, A.; Li, Y.; Inoue, H.; Fernandez, J. M.; Ford,
R. Evaluating Security Products with Clinical Trials.
The 2nd Workshop on Cyber Security Experimentation
and Test (CSET ‘09), 2009.

[4] Levesque, F. L.; Nsiempba, J.; Fernandez, J. M.;
Chiasson, S.; Somayaji, A. A clinical study of risk
factors related to malware infections. Proceedings of
the 2013 ACM SIGSAC conference on Computer &
communications security (CCS ‘13). ACM, New York,
NY, USA, 97–108, 2013.

[5] Fortify Software, Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors.
http://www.hpenterprisesecurity.com/vulncat/en/docs/
Fortify_TaxonomyofSoftwareSecurityErrors.pdf.

[6] Common Weakness Enumeration. http://cwe.mitre.org/
about/sources.html.

