
THE THREE LEVELS OF EXPLOIT TESTING  FORD & CARVALHO

169VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

THE THREE LEVELS OF EXPLOIT 
TESTING

Richard Ford & Marco Carvalho 
Florida Institute of Technology, USA

Email {rford, mcarvalho}@fi t.edu

ABSTRACT

Many different client-side security products claim to provide 
protection against exploits from known and unknown 
vulnerabilities. However, to date, scientifi c tests of exploit 
detection solutions have been lacking, and those that have been 
conducted are of limited utility. 

In this paper, we explore three different types of tests that could 
be used to measure the effi cacy of products that claim to provide 
protection, and discuss the properties that these tests would 
actually measure. We argue that each test measures a different 
property of the protection provided, and that none measure the 
functionality most purchasers actually care about. We then 
illustrate how existing tests can provide misleading information 
about the actual effi cacy of measured products. 

At the simplest level, exploit detection can be measured by 
testing machines using known-vulnerable versions of software 
against exploits taken from Metasploit. However, this test fails 
to distinguish between products that detect known exploits 
targeting known vulnerabilities and products that simply detect 
the presence of known exploit code. At the next level, tests 
could be conducted using new exploits for known 
vulnerabilities. These could be created by building new 
exploits for well-documented vulnerabilities; however, this test 
does not discriminate between products that rely on prior 
knowledge of the exploit conditions and those which do not. 
Finally, we propose a new test that we believe raises the bar in 
exploit detection testing: the measurement of new exploits 
targeting new vulnerabilities. We provide a methodology that 
allows testers to leverage new vulnerabilities ethically and 
effi ciently, and consider how an unscrupulous vendor might 
attempt to ‘game’ this new methodology. We demonstrate how 
these tests can be used in a cost-effective manner, and show 
how this test can further be enhanced with minimal effort, by 
adding techniques that allow testers to discriminate between 
post-exploitation behavioural detection and actual detection of 
the exploit. 

INTRODUCTION

As endpoint security solutions become ever more encompassing 
in terms of functionality, testers face signifi cant challenges in 
designing and executing tests that adequately measure product 
effi cacy. This is especially true for products that claim to provide 
‘generic’ solutions to entire classes of attack. For example, it has 
proven diffi cult to measure the utility of generic malware 
detection without actually creating new malware to test against – 
something that is typically not done, for both ethical and 
practical reasons.

This problem will continue to evolve in both its complexity and 
tractability as new technologies are brought to bear against 
attackers. In this paper, we offer a solution to just one of these 
new challenges: how to test exploit detection solutions.

At fi rst glance, testing an exploit detection system seems easy: 
one simply installs the countermeasure on a vulnerable system 
and exploits it. Indeed, as we shall see, such an approach does 
measure the ability of the product to detect known exploits of 
known vulnerabilities, but it may not be able to measure reliably 
how well the product will handle new exploits or, even more 
importantly, how well it will handle new vulnerabilities.

Before moving on, it is worth us defi ning our terms. When we 
describe a system, we distinguish between vulnerability and 
exploit. The vulnerability represents the underlying security 
weakness. An example of a vulnerability might be reading a 
user-provided string into an unchecked buffer. In contrast, an 
exploit is the active exploitation of an existing vulnerability. For 
any particular vulnerability, there may exist many possible 
exploits. For example, for a buffer overrun, there are a wealth of 
different strings that could be used as exploits, all with different 
payloads and structure.

A second defi nitional aspect is what we mean by ‘a measure’ and 
‘a metric’. Typically, Stevens [1] would describe a measure as 
something that we can simply quantify, such as height or weight. 
These simple measures are direct and straightforward. When it 
comes to more complex properties, such as product 
effectiveness, we will generally talk of metrics – indirect 
measures that give us some insight into the more complex 
property we wish to assess. 

For exploit detection, then, we will be searching for a metric that 
gives insight into product effi cacy with respect to exploit 
detection. In general, such detection can be accomplished at 
many different levels. We argue that the real functionality of 
interest is the ability of a service provider to detect the 
exploitation of an unknown vulnerability. Ideally, the technology 
should detect the exploit itself, not the actions that the attacker 
takes post-exploitation. We make this argument based on the 
many different motives of attackers, making post-exploitation 
behaviour highly variable.

As an outline, the paper considers the following issues: we begin 
with a quick overview of the state of the art in exploit detection 
and review some current testing methodologies, highlighting 
their weaknesses. We then describe an approach to exploit 
detection testing that relies upon the creation of artifi cial (but 
fully exploitable) vulnerabilities. This approach allows us to 
quickly and easily test the claims made for the capabilities of 
exploit detection software. Finally, we consider how this work 
might be put into practice, and how tests of this nature help 
shape the capabilities of developing products. 

EXAMPLES OF EXPLOIT TESTS

One of the suggestions often seen for testing IDS/IPS solutions 
is Metasploit. This project provides information about security 
vulnerabilities and is aimed at helping to generate IDS signatures 
and deploy exploits. The thought is that a protected system could 
be exposed to attacks via a representative threat vector. 
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Metasploit is a fairly popular tool and has a large number of 
both commercial and open-source front ends to increase its 
usability. Thus, its pervasiveness, well-understood features and 
functionality, and its (apparent) suitability to the task of testing 
exploit detection software make it a frequently suggested 
solution. However, as we will see below, the use of Metasploit 
for this purpose is not without drawbacks. 

Another possible approach was implemented by MRG Effi tas 
[2]. In this case, testers carried out a test that was something of a 
hybrid between known vulnerability testing and real-world 
testing. In summary, the tests worked as follows:

1. A Windows 7 machine was installed, and the security of 
the OS was weakened by turning off UACX, Microsoft 
Defender and Internet Explorer Smartscreen.

2. Vulnerable web-facing software (Java 1.7.0 etc.) was 
installed.

3. Windows Update was enabled, but only for patches that 
did not affect Internet Explorer.

4. Protection products were installed on snapshots of the 
vulnerable system.

5. Malicious URLs were crawled, while monitoring 
software looked for new processes (malware) to start.

6. After successful exploitation, the machine was reset and 
the image was reset. 

As noted above, this tests against known vulnerabilities, but it is 
unclear whether the exploits are known or not. 

Finally, another option is a ‘clinical trial model’ real-world test, 
as espoused by Somayaji et al. [3], and implemented by 
Levesque et al. [4]. In such an approach, the trajectories of real 
user machines are monitored and the impact of treatments (e.g. 
patching, different anti-malware software) measured. In some 
ways, this represents the ‘perfect’ test as it measures the actual 
effi cacy of the ‘as-deployed’ solution, but there are still 
drawbacks, as we discuss below. 

WEAKNESSES
When we consider the utility of a detection technique it is 
important that there is a very clear understanding of the use case 
that we are attempting to measure. This is perhaps best 
illustrated by a better-known example: the value of testing 
anti-malware static detection in an environment where 
cloud-based services have been turned off.

Typically, tests of static scanning with no cloud services are 
criticized by vendors; they argue that this is not a valid test, as it 
measures a feature that they claim is irrelevant to users. 
However, their objections miss an important question: is there a 
real-world use case that this test measures? The answer, after 
some thought, is yes. There are many example environments 
that are air-gapped from the Internet for either security or 
operational reasons. An embedded system in a highly sensitive 
application (such as the fl ight deck of a military aircraft) may 
need to be scanned for malware at certain points in time. These 
embedded systems that are disallowed from being connected to 
the Internet make such a test meaningful to a subset of the 
population. Conversely, for a typical home user, there is indeed 
little to be learned from examining test results of cloud-disabled 
solutions. The lesson here is that for every test scenario we must 
be clear about the use case that is being tested.

In the case of exploit detection, it is typically not the 
exploitation of known exploits that we are concerned with. The 
use case is not that we wish to detect a known exploit at 
runtime; instead, we would very much like to know that the 
system is protected from 0-day threats (the reasoning being that 
most known threats can be patched fairly quickly). There is a 
limited use case for known exploit detection, but this 
functionality is typically not as important as 0-day protection, 
and would be subsumed by accurate 0-day protection.

Thus, the real issue here is that none of the techniques outlined 
above are actually a measure of the behaviour we care most 
about: none of them tell us whether a product under test can 
detect exploitation generically, or whether it simply detects 
exploits and/or vulnerabilities that are already known about. We 
argue that a good test of exploit detection should differentiate 
between these two cases.

CAN WE DO BETTER?
As touched upon above, there are different levels of protection 
that can be provided by exploit detection systems. In order of 
increasing utility these are:

1. Detection of a known exploit of a known vulnerability.

2. Detection of an unknown exploit of a known 
vulnerability.

3. Detection of an unknown exploit of an unknown 
vulnerability: 

a. Based on post-exploit behaviour.

b. Based on detection of the act of exploitation itself.

Technique Known 
vulnerability

Known 
exploit

Strength Weakness

Metasploit with 
stock exploits

Yes Yes Cost effective Does not show that the product actually detects 
exploitation; can detect simple exploit signature

Metasploit with 
custom exploits

Yes No Test determines product ability to detect 
exploits beyond simple exploit signature

Does not demonstrate ability to detect 0-day 
vulnerabilities

Real world Maybe Maybe Gives real-world effi cacy of protection, 
including impact of user acceptance etc.

Many clients needed

Table 1: Exploitation detection measurement schemes and their strengths and weaknesses.
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As outlined above, it is relatively easy to test the system at 
levels 1 and 2; for example, use of a known-vulnerable system 
and Metasploit will test both of these countermeasures easily. 
However, testing at levels 3a and 3b – the levels we care most 
about – seems very diffi cult. 

One way of testing at these higher levels is to use automated 
tools to fi nd new vulnerabilities in software, develop exploits 
for them, and then use these 0-day attacks to test software. 
However, there are two problems with this approach: fi nding 
exploits is neither easy nor cheap, and providing verifi able and 
repeatable test results will require the dissemination of new 
vulnerabilities for real software. Realistically, fi nding one’s own 
0-day exploits for exploit detection testing is not scalable. While 
it is conceivable that one could ‘freeze’ a security product, 
disconnecting it from the cloud, and use exploits that are new to 
the version stored, this approach is sub-optimal, and would 
unfairly penalize those products that use network connectivity 
to enhance detection. While it is not obvious that exploit 
detection software would make signifi cant use of the cloud, 
tests should not presuppose how protection is provided.

A second issue with fi nding one’s own vulnerabilities is that the 
vulnerability should be disclosed to the developer of the 
vulnerable software following responsible disclosure 
practices… and good testing dictates that tests are transparent. 
There is therefore a rather diffi cult tension between the needs of 
the test and the needs of the vulnerable software developer. 
Ultimately, fi nding one’s own 0-days for the purposes of 
software testing is impractical.

Another approach to testing at level 3 is to deploy systems in a 
real-world setting and see how and when they are broken into. 
There are two fairly signifi cant problems with this particular 
approach. First, the rate of new attacks is low and the variance 
between machines is likely very high. Thus, a ‘clinical trial 
model’ [3] would require an extremely large number of 
machines in order to produce statistically meaningful results. 
Second, and perhaps most importantly, even if a suffi cient 
number of participants could be recruited, it would (by 
defi nition) be impossible to know about exploits that were not 
detected.

To this end we propose that a more fruitful approach is to write 
vulnerabilities deliberately into custom copies of open-source 
software, creating a new package with a new (and known) 
vulnerability. Thus, there is no ethical concern about 
distributing a new vulnerability, as it is not usable elsewhere. In 
addition, there is no question mark regarding undetected 
exploits, as the tester has complete control of the test.

As such, our proposal is simple: deliberately create new 
vulnerabilities in a package such as Apache, and then exploit 
them in a variety of different ways.

INJECTABLE VULNERABILITIES

The real benefi ts of our approach become apparent when we 
consider the large number of different vulnerability types that 
exist. There have been several attempts to document different 
vulnerability root causes and to generate a taxonomy (see [5, 6] 
for an overview and list of references), but any list inevitably 

becomes out of date quickly as new exploit techniques are 
developed frequently. Nevertheless, we can choose the type and 
scope of vulnerability we choose to inject into the source code. 
Vulnerability databases, such as the CVE list and National 
Vulnerability Database (see: http://cve.mitre.org/), can also 
provide solid starting points for determining what kinds of 
vulnerability are common. As such, the relative importance and 
frequency of vulnerability types can be gauged in order to build 
a test set of exploits and vulnerabilities. 

This ability to choose the type of vulnerability affords the tester 
signifi cant control over the way in which a product is tested. For 
example, when we consider a stack-based buffer overrun in a 
network server, there are many different ways in which the 
intrusion could be detected. 

A few of the possible defence approaches are listed below:

• A protocol analysis could be carried out, and the anomaly 
in the network request could reveal the attack. 

• The protection system could note the destruction of the 
return IP address on the stack (for example, using stack 
cookies). 

• The anomalous control fl ow change could be detected.

• The behaviour of the payload (e.g. downloading a trojan 
from a known-bad IP address) could reveal the attack.

As can be seen, the ‘same’ protection can be provided in many 
different ways. Note that, in fact, the word ‘same’ here is 
intentionally in quotation marks because in truth these 
protection schemes are not equivalent. Depending on the use 
case, one may be vastly preferable to another, and by 
controlling the vulnerability (and by having full knowledge of 
the code that surrounds it), the tester can explore this space with 
relative ease. Bespoke vulnerability creation (as opposed to 
exploit creation) allows this space to be explored methodically 
and controllably.

WHAT A TEST WOULD LOOK LIKE (AND 
WHAT IT MIGHT TELL US)
The best illustration of the value of our testing technique is a 
worked example of how an exploit test using our techniques 
might look. To that end, we perform a Gedanken of a fi ctional 
product test that attempts to determine the effi cacy of two 
products that use different protection techniques.

As a fi rst step, the use case to be tested must be determined. In 
this instance, the tester wishes to answer the most general 
detection question: which product provides the most effective 
protection from exploitation of 0-day attacks? With this 
overall question in mind, the tester can set about the task of 
creating a test.

Next, a set of vulnerabilities should be selected from any 
appropriate taxonomy. For example, the tester may choose to 
test buffer overruns, TOCTTOU vulnerabilities and data 
disclosure, justifying this choice by citing issues in the NVD. In 
each case, an open-source software package would be modifi ed 
such that it was vulnerable to one or more of these weaknesses. 
With exact knowledge of the source code and the vulnerability, 
it is almost trivial to construct different exploits for each 
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vulnerability. Furthermore, the nature of exploitation can be 
changed. Whereas one exploit might simply exit the vulnerable 
server cleanly, another may install a reverse shell, whereas 
another may launch a new process or thread. 

The system can then be tested using each of these exploits, and 
the detections tallied. Not only are raw scores available, but the 
types of exploit/vulnerability combinations caught and missed 
can also be quantifi ed. This gives the tester signifi cant insight 
into the effi cacy of the products under test (that is, is the 
exploitation being detected, or the post-exploitation behaviour 
and exploit payload).

Furthermore, if the exploitation of a vulnerability is missed, the 
tester can increase the size and ‘noisiness’ of the payload. Thus, 
products that have a post-infection detection fi lters can have 
their level of protection quantifi ed.

FURTHER WORK AND CONCLUSIONS
The creation of new vulnerabilities in a program to which one 
has source-level access is relatively easy. Vulnerable code is 
easy to recognize, and when one can hand craft the source code 
and compiler options, writing a functional exploit is easy. 

The primary weakness we see with our approach is that a 
program that uses crowd sourcing to determine ‘normal’ 
behaviour may have issues with our patched program, as it is 
different to other versions of the ‘same’ application. However, 
this is at least partially a real-world scenario; companies often 
customize software for their own purposes. While it would be 
ideal if our exploitable binaries were identical to those 
commonly found, we see no way around this limitation. 
Regardless, we do not believe this is a major limitation, as long 
as it is disclosed.

The next step for this approach is to actually build tests that use 
it. We hope to fi nd a testing laboratory to collaborate with in the 
Fall. Our expectation is that results will be fascinating. In 
particular, it will be illustrative to compare results from our 
experiments with those of tests conducted using known exploits 
from an exploit framework such as Metasploit. Products that do 
well when using known exploits but poorly in our tests are likely 
to be detecting known signatures of specifi c exploits. This is not 
insignifi cant protection for the end-user, as hackers do make use 
of tools such as Metasploit, but it is not nearly as useful as one 
might think. For the well-run environment, patches should be 
pushed out as quickly as possible, and we are measuring the 
difference between this gap in protection (post exploit 
disclosure, while waiting to deploy a patch) and protection from 
a 0-day vulnerability itself.

We see this testing approach as a pragmatic and effective way of 
testing exploit detection capabilities. By carefully selecting the 
types of vulnerabilities and the modes of exploitation, a tester 
can conduct a repeatable set of tests without concern over 
impact of disclosure, vendor bias, or even cost of testing. The 
level of expertise required to create an exploit when you have 
hand-crafted the vulnerability yourself is not high, making it 
possible to test a range of defensive techniques.

As a closing thought, we make careful note that product testing 
shapes product design. A poorly designed test can and will 

entice vendors to cut corners with respect to ‘real-world’ 
security. For example, product design often requires trade-offs. 
A vendor may, for example, reduce the numbers of checks 
during certain operations in order to do better in a speed test, 
even if such a condition reduces security and rarely occurs in 
real-world use cases. Thus, good, solid testing needs to 
recognize the evolutionary pressure that testing places on 
product design decisions. The more closely a test conforms to a 
real-world scenario, the less likely it is that the test will 
persuade product developers to account for artifi cial use cases at 
the expense of real-world security.
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