
APPLE WITHOUT A SHELL – IOS UNDER TARGETED ATTACK WEI ET AL.

282 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

APPLE WITHOUT A SHELL – IOS
UNDER TARGETED ATTACK
Tao Wei, Min Zheng, Hui Xue & Dawn Song

FireEye, Inc., USA

Email {tao.wei, min.zheng, hui.xue, dawn.song}@
fi reeye.com

ABSTRACT
Apple has a strict review process for apps published in its App
Store. The review guidelines not only disallow use of the
powerful private APIs but also forbid dangerous or deceptive
behaviours. The review process, though imperfect, provides
good protection for iOS users and makes it diffi cult for malware
to exist in the App Store. However, apps may also be distributed
using enterprise provisioning profi les without having to go
through such a review process. Apps distributed in this way have
become a new attack vector. Attackers can launch targeted
attacks by delivering malicious apps leveraging private APIs to
the victim’s device. In this paper, we explain the risk of an
attacker distributing apps using enterprise provisioning profi les
to conduct targeted attacks, including remote installation through
spear phishing, autostart after reboot, background monitoring
and bypassing certifi cate revocation. We show that serious,
targeted attacks on iOS are both feasible and realistic. We also
discuss the implications this has on the iOS security architecture
and the challenges of addressing them.

1. INTRODUCTION
By the end of 2013, the number of iOS users had reached 800
million [1] and there were over one million apps in the iOS App
Store [2]. Despite the platform’s popularity, little iOS malware
has been discovered [3]. It has also been reported [4] that iOS is
more secure than Android due to its controlled distribution
channel and rigorous app review process. However, there are
still potential risks for iOS systems.

There are limited attack surfaces for traditional targeted attacks
against iOS devices. While distributing malware through the App
Store is diffi cult, spear phishing and drive-by downloads are not
easy either. Attacks against Safari and PDF readers call for
advanced skills, and Apple can fi x these vulnerabilities by
pushing out updates quickly.

In contrast, this paper describes a new type of security risk for
iOS devices, where attackers may potentially utilize a bigger
attack surface, which becomes harder to fi x. This new type of
risk leverages Apple’s enterprise program that can distribute
apps to an unlimited number of devices without going through
Apple’s app review process. By bypassing the review process, a
malicious app can employ powerful private APIs hidden in iOS’s
frameworks to steal sensitive information and attack various
vulnerabilities on the system.

In contrast to traditional attacks that have limited attack surface,
a malicious app installed through enterprise provisioning profi les
can conduct malicious behaviours by abusing private APIs,

deceiving users with fake UIs, or exploiting all kinds of known
or even zero-day vulnerabilities. It’s hard for Apple to cope with
apps outside of the App Store, which don’t comply with its
review guidelines, and hard for it to stop them from attacking
existing vulnerabilities.

The malicious apps may also use tricks to ensure that they are
launched automatically after the system reboots and that they
keep running in the background continuously. Given that these
apps can use private APIs, they may, for example, monitor the
user continuously by silently logging the user’s inputs in the
background, even without bypassing the sandbox.

In this paper, we study the security risk posed by this new attack
method and examine every step involved in a potential
campaign. In section 2, we describe Apple’s review process for
apps in the App Store and what kind of protections it enforces.
Section 3 explains the power of private APIs, and Section 4
explains how enterprise distribution works. Section 5 studies the
new attack vector made possible by using private APIs in apps
distributed using enterprise provisioning. Section 6 discusses
related issues, including the implications of iOS security
architecture and the challenges in addressing them. Section 7
gives a conclusion.

2. APPLE REVIEW PROCESS
Apple’s review process enforces a set of review guidelines [5],
which includes over 100 rules. The rule categories cover various
aspects, such as user interface, location, push notifi cations,
trademarks, violence, religion, gambling, charities, privacy and
advertising. Here are some examples of the rules extracted from
[5]:

• Apps that crash will be rejected.

• Apps that include undocumented or hidden features
inconsistent with the description of the app will be rejected.

• Apps that use non-public APIs will be rejected.

• Apps that read or write data outside their designated
container areas will be rejected.

• Apps that download code in any way or form will be
rejected.

• Apps that install or launch other executable code will be
rejected.

• Apps that duplicate apps already in the App Store may be
rejected, particularly if there are many of them, such as fart,
burp, fl ashlight, and Kama Sutra apps.

• Apps that are intended to provide trick or fake functionality
that are not clearly marked as such will be rejected.

• Multitasking apps may only use background services for
their intended purposes: VoIP, audio playback, location,
task completion, local notifi cations, etc.

• Apps that browse the web must use the iOS WebKit
framework and WebKit JavaScript.

• If you attempt to cheat the system (for example, by trying to
trick the review process, steal data from users, copy another
developer’s work, or manipulate the ratings) your apps will

APPLE WITHOUT A SHELL – IOS UNDER TARGETED ATTACK WEI ET AL.

283VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

be removed from the store and you will be expelled from
the developer program.

• Apps that create alternate desktop/home screen
environments or simulate multi-app widget experiences
will be rejected.

• Apps cannot transmit data about a user without obtaining
the user’s prior permission and providing the user with
access to information about how and where the data will be
used.

• Location data can only be used when directly relevant to
the features and services provided by the app to the user or
to support approved advertising uses.

Apple uses the review process to prevent apps from conducting
undesirable behaviours. However, if attackers can bypass the
review process, they can break all these rules and carry out
malicious behaviours that have severe security consequences on
a victim’s device. For example, attackers can use iOS private
APIs for powerful attacks.

3. PRIVATE APIs
iOS apps interact with the underlying system using Application
Programming Interfaces (APIs). However, not all APIs are
equally open to app developers. Apple forbids some of the APIs,
known as ‘private APIs’, from being used in the apps on App
Store. Apple stipulates that these private APIs should only be
used by the framework classes internally or by the iOS system
apps [5], and these private APIs remain undocumented.

Private APIs are considerably more powerful than their public
API counterparts. For example, on iOS 6.0, one app can call
some public Twitter APIs to post a Tweet on the user’s Twitter
page (Figure 1) and the user must consent by clicking the ‘post’
button. On the contrary, by using private APIs, the app can post
the Tweet without notifying the user [8] at all.

Though Apple forbids the use of private APIs, and provides no
documentation about them, an attacker can still obtain a list of
private APIs. To do so, one can begin by using otool [12] or
classdump [13] to obtain a complete list of APIs, both public
and private, from the iOS framework binaries shipped within the
SDK. One can then obtain private APIs by subtracting the

documented public APIs [14]. Table 1 lists several examples of
private APIs.

Review process vs. private APIs
Apple forbids apps in the App Store from using private APIs,
and bans app developers/vendors who do so. In February 2012,
Apple banned all apps from Qihoo [6], a prominent Chinese
anti-virus, web browser and search engine vendor. This major
incident happened because Qihoo used iOS private APIs and
encrypted the function calls in its iOS apps – Apple has a policy
that forbids any non-Apple apps in its App Store from using
private APIs.

4. DISTRIBUTING IOS APPs THROUGH
ENTERPRISE PROVISIONING
Besides the iOS App Store, iOS apps can also be distributed
under enterprise provisioning profi les to an unlimited number of
users. The iOS Developer Enterprise Program [15] enables a
company to sign in-house apps with its enterprise distribution
certifi cate and distribute the apps to employees using enterprise
provisioning profi les.

In practice, many app developers use this venue to distribute
apps to the public [10]. As mentioned before, apps distributed in
this manner don’t have to go through Apple’s review process [5]
and don’t have to conform to the rules in Apple’s guidelines on

Method Framework Usage iOS 6.x
availability

iOS 7.x
availability

CTSIMSupportCopyMobileSubscriberIdentity() Core telephony Get Device IMSI Yes No

[[UIDevice currentDevice] UniqueIdentifi er] UIKit Get Device UDID Yes No

SBSCopyApplicationDisplayIdentifi ers() SpringBoardServices Get the array of current running
app bundle IDs

Yes No

[[CTMessageCenter sharedMessageCenter]
incomingMessageWithId: result]

Core telephony Get the text of the incoming SMS
message

Yes Yes

MobileInstallationLookup() Mobile installation Get the bundle ID list of installed
iOS apps

Yes Yes

Table 1: Private API examples.

Figure 1: Public Twitter APIs are called to post a Tweet on the
user’s Twitter page – the user must click the ‘post’ button.

APPLE WITHOUT A SHELL – IOS UNDER TARGETED ATTACK WEI ET AL.

284 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

library usage, privacy, user interface, etc. Thus, not only can
these apps freely use private APIs, they can also do other tricks
such as mimicking apps originally bundled with the device,
such as App Store or iTunes Store, or creating alternative home
screen environments.

Distributing apps using enterprise provisioning profi les
combined with unregulated usage of private APIs creates a new
attack vector that enables attackers to distribute malware
leveraging private APIs. Benign apps distributed under
enterprise provisioning profi les also become valuable targets for
attackers since many of them use private APIs.

4.1 Revocation of enterprise certifi cates
Apple may revoke an enterprise distribution certifi cate, if it
suspects abuse. Revoking a distribution certifi cate invalidates
all of the apps that have been signed with it. Apple allows the
enterprise apps to be used by employees of the developer
company only, rather than by everyone in the public. For this
reason, Apple revoked the enterprise distribution certifi cate of
Qihoo, which released its ‘enterprise’ apps to the public [7].

Apple uses the Online Certifi cate Status Protocol (OCSP) to
validate enterprise certifi cates. According to the iOS
Deployment Technical Reference [15], the fi rst time a user
opens an app distributed using the enterprise provisioning
profi le, iOS contacts Apple’s OCSP server to validate its
distribution certifi cate. A revoked distribution certifi cate will
prevent the app from launching. The OCSP response will be
cached on the device for three to seven days [15]. However,
‘inability to contact or get a response from the OCSP server
isn’t interpreted as a revocation’ [15]. That means iOS won’t
prevent the app from launching if it can’t reach the OCSP
server.

4.2 Real-world apps distributed through
enterprise provisioning

We collected 1,408 apps from the Internet which were
distributed through enterprise provisioning. We parsed each
app’s Info.plist fi le to determine its development region. As
shown in Table 2, most apps were from the United States,
China, England and France.

Country Number of apps

United States 660

China 361

England 223

France 62

Others 102

All 1408

Table 2: App numbers by development region.

Since these apps don’t go through Apple’s review process, they
can abuse the powerful private APIs. We found that, within
these 1,408 apps, 844 (60%) used private APIs.

5. TARGETED ATTACKS THROUGH
ENTERPRISE PROVISIONING
Figure 2 shows the steps in a targeted attack using enterprise
certifi cates. Conceptually, the attacker fi rst sends out a spear
phishing email or SMS to the victim, who may be lured to click
on a link and install the app. Once the victim launches the app,
it can leverage private APIs and some exploits to keep
monitoring the user, steal sensitive information in the
background, and avoid being invalidated by Apple.

Figure 2: Targeted attacks against iOS through enterprise
provisioning.

Figure 3: Installing an enterprise app.

APPLE WITHOUT A SHELL – IOS UNDER TARGETED ATTACK WEI ET AL.

285VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

5.1 Spear phishing through enterprise
provisioning

An attacker may lure a victim to install an app through a
spear-phishing email or SMS that contains a web link. Once the
user clicks on the link, there will be a pop-up letting the user
install the app, as shown in Figure 3. If the user chooses to
install and launch the app, it can, with the help of private APIs,
keep monitoring the user and steal sensitive information in the
background.

5.2. Persistent monitoring

After installation, the malicious app can monitor the victim’s
activity continuously, including on occasions when it is
switched to the background or the system reboots.

While malware can use standard ‘background app refresh’ to
monitor the system continuously, iOS7 provides a setting for
‘background app refresh’ that will disable unnecessary
background refreshing, and may prevent malware from working.
However, this can be bypassed. For example, an app can play
music in the background without turning on its ‘background app
refresh’ switch. Thus a malicious app can disguise itself as a
music app to conduct background monitoring.

On iOS, ordinary apps can’t start automatically after rebooting.
However, VoIP apps are allowed to start automatically after the
system reboot. Apple forbids non-VoIP apps in the App Store
from using this feature. However, without being regulated by
Apple’s review process, the attacker can disguise a malicious
app as a VoIP app, which enables the app to start automatically
after the device reboots, and thus monitor the victim
continuously. Specifi cally, the malicious app can include the
‘voip’ value in the UIBackgroundModes key so that the system
allows it to run in the background and launches it in the
background again after system reboot.

5.3 Disabling OCSP

Apple will validate the status of enterprise certifi cates roughly
every three to seven days, at which point it has the chance of
fi nding some abnormal behaviour and disabling the
corresponding apps. To prevent this, attackers can disable OCSP.

Attackers may leverage existing exploits to modify the device’s
OCSP cache to maintain a valid state for its certifi cate.

Based on the fi ndings from Wang et al. [16], under certain
conditions, syslogd will do ‘chmod 777’ and ‘chown mobile’ to
‘/var/mobile/Library/Logs/CrashReporter’. Thus, the malicious
app can evade the sandbox and replace /var/mobile/Library/
Logs/CrashReporter with a symbolic link to some other part of
the system. This will be changed to writeable by syslogd, which
doesn’t carry out proper checks on symbolic links. The
malicious app can then modify the OCSP cache to keep its
OCSP response valid all the time.

5.4 Attacks by abusing private APIs

Private APIs are powerful. However, since private APIs are not
intended to be available to app developers, their design may not
have suffi cient security considerations.

In February 2014, we found a vulnerability in iOS private APIs
[11] which meant that a malicious app making use of certain
private APIs can monitor a user’s input. In this attack, a
malicious app can use a private API
IOHIDEventSystemClientRegisterEventCallback() method
within IOKit.framework to register a callback to receive
system-wide user input. This vulnerability can enable malware
to record all of the user’s touch/press events in the background,
including touches on the screen, home button press, volume
button press, and TouchID presses, as shown in Figure 4.
Attackers can use such information to reconstruct every
character the victim inputs. Upon our notifi cation, Apple issued
CVE-2014-1276 for this issue and pushed out a fi x shortly
afterwards.

Figure 4: Background monitoring.

We have since found (and notifi ed Apple about) another fl aw on
iOS 7 devices that enables telephone and SMS activity to be
monitored from the background. Malware can register a
callback by using the ‘CTTelephonyCenterAddObserver’
function in the CoreTelephony.framework and then it can record
all of the telephone and SMS events in the background,
including incoming phone number, the SMS sender’s number
and SMS content, and then it can send all user events to any
remote server. In this way, malware can eavesdrop on sensitive
communication and bypass two-factor authentication based on
SMS.

5.5 Attacks by deceptive behaviours

The App Store review guidelines [5] list many app behaviours as
forbidden. However, these behaviours become possible for an
app distributed with enterprise provisioning. We list two cases
where the attacker can break the guidelines for malicious
activities. Attackers can do more based on their social
engineering techniques:

APPLE WITHOUT A SHELL – IOS UNDER TARGETED ATTACK WEI ET AL.

286 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

• A malicious app may create alternative home screen
environments or mimic the apps bundled on iPhone, such
as App Store and iTunes Store. By doing so, the attacker
can trick the user into using a fake iTunes Store app, and
prompt the user to enter their password. For a user who
lacks security knowledge, this phishing prompt may be
enough for the attacker to steal the user’s Apple ID
password successfully.

• A malicious app may also disguise itself as another popular
app and lure the user to use it. The attacker can embed
malicious code inside such fake apps to carry out further
attacks.

5.6 Attacks by using root exploits

It’s known that Apple can’t fi x all known vulnerabilities, or may
fi x them incorrectly [16]. Malware installed through enterprise
provisioning has more freedom to exploit known or zero-day
vulnerabilities. Attackers can even use dynamic code
downloading to prevent the exploit from being captured by
security vendors.

6. DISCUSSION

6.1 UDID and ad-hoc provisioning
Besides enterprise certifi cates, apps can also be distributed
using ad-hoc provisioning. Compared with enterprise
certifi cates, ad-hoc distribution has the limitation that each
development account can only distribute to 100 devices per
membership year. Each of the devices receiving apps will have
its unique device ID (UDID) registered in the ad-hoc
provisioning profi le to use the app.

However, stealing the UDID from a target device on which the
attacker wants to install a malicious app is not a hard job.
Previously stealing the UDID may be treated just as private
information leakage. However, stealing the UDID is a crucial
link towards targeted attacks: attackers can use the UDID to
deliver ad-hoc distributed apps to the victim’s phone.

6.2 Abusing private APIs through bypassing
review
Since private APIs are loaded as framework code into the app’s
address space, together with the app developer’s own code,
there are no obstacles to calling private APIs from a technical
perspective. Apple does prohibit doing so. However, works like
Jekyll [8] have shown the possibility of bypassing Apple’s
review process.

Fooling Apple still has the risk of being banned once caught [6].
However, since distributing apps using enterprise certifi cates
avoids the App Store, there’s no regulation on usage of private
APIs. Currently, Apple doesn’t have an ideal way to supervise
and manage these enterprise certifi cates.

6.3 Challenges of iOS security architecture
against targeted attacks
While Apple does a good job of protecting ordinary App Store

users from being infected by malware, there is still a big gap for
enterprise security. Targeted attacks through enterprise
provisioning pose a severe threat for enterprise users. Once
attackers compromise victims’ devices, they can access useful
information such as intellectual property, steal numerous
accounts of cloud services, and take photos or record audio/
video through iOS devices.

Currently, security on iOS runs into a dilemma: Apple doesn’t
allow security vendors to implement system-level protections,
whereas malware can freely call powerful private APIs and
exploit vulnerabilities through enterprise provisioning.
Furthermore, since most iPhones can access the Internet directly
through their carriers (e.g. AT&T and Verizon) when they are
not connected to a company-managed wireless network, classic
network security devices in company networks can’t protect
these devices all the time.

In the long run, Apple needs more investment in improving
enterprise-level security against advanced targeted attacks.
Apple should consider bringing dedicated security vendors
into its platform to help with enterprise-level security
solutions.

7. CONCLUSION
Though Apple enforces a rigorous review process forbidding
apps on App Store from conducting many dangerous/deceptive
behaviours, enterprise provisioning becomes a valid venue for
apps to circumvent Apple’s regulations. Apps distributed using
enterprise provisioning profi les can abuse powerful private
APIs, deceive users and exploit vulnerabilities, thus becoming a
severe threat to enterprise users. Using these apps, an attacker
can use a bigger attack surface to launch persistent and targeted
attacks against the victim’s device. Apple may improve its
architecture to co-operate with security vendors in order to
provide a better enterprise-level security solution.

REFERENCES

[1] Tim Cook to shareholders: iPhone 5s/c outpace
predecessors, Apple bought 23 companies in 16
months. http://appleinsider.com/articles/14/02/28/tim-
cook-at-shareholder-meeting-iphone-5s-5c- outpace-
predecessors-apple-bought-23- companies-in-16-
months.

[2] How Many Apps Are in the iPhone App Store.
http://ipod.about.com/od/iphonesoftwareterms/qt/apps-
in-app-store.htm.

[3] Felt, A. P.; Finifter, M.; Chin, E. Hanna, S.; Wagner,
D. A survey of mobile malware in the wild. In
Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, pp.3–14.
ACM, 2011.

[4] When Malware Goes Mobile. http://www.sophos.com/
en-us/security-news- trends/security-trends/malware-
goes- mobile/why-ios-is-safer-than-android.aspx.

[5] App store review guidelines. https://developer.apple.
com/appstore/resources/approval/guidelines.html.

APPLE WITHOUT A SHELL – IOS UNDER TARGETED ATTACK WEI ET AL.

287VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

[6] Apple Bans Qihoo Apps From iTunes App Store.
February 2012. http://www.techinasia.com/apple-bans-
qihoo-apps/.

[7] Qihoo Double Blow as iOS Apps Banned by Apple,
China Warns of Anti-Competitive Practices. January
2013. http://www.techinasia.com/qihoo-apps-banned-
apple-app-store/.

[8] Wang, T.; Lu, K.; Lu, L.; Chung, S.; Lee, W. Jekyll on
iOS: when benign apps become evil. Presented as part
of the 22nd USENIX Security Symposium,
pp.559–572, 2013.

[9] CVE-2014-1276. http://support.apple.com/kb/HT6162.

[10] How Apple’s Enterprise Distribution Program was
abused to enable the installation of a GameBoy
emulator. 2014. http://www.imore.com/how-gameboy-
emulator- fi nding-its-way-non-jailbroken-devices.

[11] Background Monitoring on Non-Jailbroken iOS 7
Devices – and a Mitigation. http://www.fi reeye.com/
blog/technical/2014/02/background-monitoring-on-
non-jailbroken-ios-7-devices-and-a-mitigation.html.

[12] otool. https://www.opensource.apple.com/source/
cctools/cctools-499/otool/.

[13] classdump. http://stevenygard.com/projects/class-
dump/.

[14] iOS Developer Library Reference.
https://developer.apple.com/library/ios/navigation/
#section=Resource%20Types&topic=Reference.

[15] iOS Deployment Technical Reference.
http://images.apple.com/iphone/business/docs/iOS_
Deployment_Technical_Reference_EN_May14.pdf.

[16] Exploiting unpatched iOS vulnerabilities for fun and
profi t. https://www.blackhat.com/us-14/briefi ngs.
html#exploiting-unpatched-ios-vulnerabilities-for-fun-
and-profi t.

