
DUPING THE MACHINE – MALWARE STRATEGIES, POST SANDBOX DETECTION WYKE

91VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

DUPING THE MACHINE –
MALWARE STRATEGIES, POST

SANDBOX DETECTION
James Wyke
Sophos, UK

Email james.wyke@sophos.com

ABSTRACT

Sandboxes and automated analysis environments are key tools
for combating the exponential growth of malware. There are a
huge range of different solutions available, and they are used in a
wide variety of situations throughout security companies and
large IT departments across the globe. In many cases, sandboxes
are used as part of an automated system where data is extracted,
fed into other systems, and decisions are made on the nature of
the sample under examination. Inevitably, sandboxes can be
detected, and malware that does so is left with a choice. The
majority of malicious samples that detect that they are executing
in an artifi cial environment will exit immediately, but there is a
growing subset of malware families that choose to do something
more cunning.

In this paper, we explore the different strategies malicious
samples employ once a sandbox has been detected. We present
examples of decoy behaviour that ranges from dummy fi les
being dropped to the use of fi xed path names, bogus DNS and
HTTP requests, and misleading confi guration fi les being
delivered. We examine samples of malware families including
Andromeda, Shylock, Simda and Vundo.

We classify the techniques involved and assess the motivation for
each approach by determining the benefi t to the malware author
in each case.

We conclude by analysing the consequences of failing to realize
we are observing bogus behaviour from the sample, such as false
positives, prolonging of the life span of the threat, and
embarrassing publications where the authors fail to realize they
are describing dummy behaviour. Finally, we explore ways in
which we might prevent ourselves from falling victim to the
same techniques again.

BACKGROUND

With the number of new malware samples seen every day now
exceeding 200,000 [1], it is impossible for any organization to
process all the samples they encounter manually. This problem
was recognized many years ago and led to the emergence of
automated analysis systems that attempt to replicate the work of
a human in a fraction of the time. A scalable solution can process
many hundreds of thousands of samples each day, and can
extract most if not all of the pertinent information that would
otherwise take a skilled analyst many hours.

The explosion in malware volume has heightened the need for
effective automated malware analysis, with many commercial,

open-source and custom in-house solutions in wide use. The
majority of these solutions execute the sample in a virtualized
environment, as this tends to be a more fl exible and scalable
strategy than using physical machines, and are usually referred
to as ‘sandboxes’.

However, since we are executing the sample in an artifi cial
environment, there exists the possibility that the nature of the
analysis may be detected by the sample being examined.
Indeed, many malware families, and particularly malware
‘cryptors’ and packers used to obfuscate Windows PE fi les,
include some level of virtual machine (VM) or sandbox
detection.

The techniques used to detect a VM or automated analysis
environment are many and varied: there are simple checks for
process names used by components of the VM software, checks
for registry keys and values that give away the particular VM
manager, techniques such as Red Pill [2] that rely on side-effects
of the processor virtualizing certain x86 instructions, checks for
user interaction such as mouse movement [3], and techniques
that attempt to establish whether the system ‘looks real’ by
checking that certain commonly installed software such as
Microsoft Offi ce are installed and that tools that are typically
used for analysis (such as Wireshark) are not installed. Although
the analysis environment can be hardened against many of these
techniques, new methods are being discovered and it can be
argued that no sandbox, or VM in particular, is completely
undetectable.

From the perspective of a malware author, the purpose of
detecting that execution is taking place in an artifi cial analysis
situation rather than on a genuine victim’s machine, is to alter its
behaviour to hide aspects of its functionality from those that
wish to analyse the sample. The most obvious and common
manifestation of this intention is to terminate execution
immediately after the VM has been detected. To the automated
analysis environment it appears that the sample in question failed
to execute correctly, as there will typically be no useful output.
This meets the goals of the malware author by concealing the
functionality of the sample. This may prevent the sample from
being classifi ed as malicious, or perhaps more importantly, may
conceal critical information such as command and control
(C&C) addresses.

The concept of concealing information such as C&C addresses is
an important one, as it highlights the fact that sandboxes
increasingly comprise only one part of a larger automated system
that processes the output of the analysis and may perform further
activities such as extracting actionable items – C&C addresses
are a good example – and publishing them to other systems such
as a URL blacklist. We can now see that if, instead of simply
terminating execution when a VM is detected, the sample
contacts a different URL to that which would have been
contacted if the a VM had not been detected, the malware author
can create problems for those running the sandbox and the
secondary systems processing the results of analysis. Let us
explore some of the possible approaches that malware can take
once a sandbox has been detected by looking at several malware
families that have chosen not to simply end execution, and the
kinds of activity they exhibit.

DUPING THE MACHINE – MALWARE STRATEGIES, POST SANDBOX DETECTION WYKE

92 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

DIFFERENT STRATEGIES

Andromeda
Andromeda is a bot that can download a variety of modules and
is often used to distribute other malware families such as
Gameover Zeus [4]. Through several iterations, Andromeda has
often employed some element of VM detection followed by
unusual alternative behaviour.

Samples use several methods to detect if analysis is taking place
in a sandbox, including checking the list of running processes
for names such as vboxtray.exe, wireshark.exe, and checking
registry values for giveaway strings such as those found at:

HKLM\SYSTEM\CurrentControlSet\Services\Disk\Enum

Following the analysis environment detection code, there is a
branch where further payload code is decrypted and executed. If
the malware has detected that it is not executing on a live
machine, then bogus payload code is loaded. If the checks all
come up negative, and it is thus assumed that the system is a
genuine victim machine, then the true payload will be loaded
(Figure 1).

Figure 1: Andromeda payload decision.

The dummy payload itself has varied slightly over time but has
mainly consisted of copying the original sample to a fi xed
pathname, creating a runkey entry in the registry that points to
the copy, and opening up a listening socket on TCP port 8000
which then waits for incoming connections (Figure 2).

Figure 2: Bogus payload fi le path and run key.

This is in stark contrast to the genuine payload (Figure 3), where
the .exe fi le is copied to a different location with a randomly
generated fi lename, a different autostart point is created in the
registry, and an outbound HTTP request is sent to receive
instructions from the C&C server (Figure 4).

Figure 3: Genuine fi le path and registry autostart point.

Figure 4: Outbound HTTP request.

One of the key points to note about Andromeda’s decoy
behaviour is that the behaviour itself is very identifi able. It is
easy to establish that a sample is Andromeda because it will
always perform the same bogus, but distinguishable, behaviour
when executed under a VM that is not hardened against VM
detection techniques. This shows that the authors are not
primarily interested in preventing the sandbox from determining
that the sample is malicious. Behavioural signatures that match
on the fi xed pathname are easy to write. Rather, it seems that the
main goal is to keep the C&C addresses hidden from those
analysing the sample, extending the lifetime of those addresses
and reducing the administration overhead involved in fi nding
new hosting providers when existing servers are taken down or
are blocked by too many network security solutions.

A secondary consequence of this kind of decoy behaviour is that
the fake behaviour is often incorrectly assumed to be the only
behaviour that the sample will ever display. This can lead to
miscategorizing the whole malware family as something
relatively benign and may result in publications that mistake the
decoy behaviour for genuine behaviour [5].

Simda
Simda is primarily a backdoor trojan that is mostly used to steal
credentials for a variety of online banking systems [6]. Simda

DUPING THE MACHINE – MALWARE STRATEGIES, POST SANDBOX DETECTION WYKE

93VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

uses a wide range of techniques to detect the presence of a VM
or analysis environment, including checking the Windows
ProductID in the registry against known values that are found in
public online sandboxes, looking for running processes
commonly found on analysis machines and for registry entries
that indicate that software commonly used by researchers is
installed (Figure 5).

Figure 5: Simda VM detection strings.

Whether the checks come up positive or not, Simda gathers
certain information about the victim system including the
computer name, the ProductID, the Volume Serial Number from
the C:\ drive and, importantly, whether or not the system passed
the anti-analysis environment checks. It sends the data back to a
C&C server encoded in the URL of an HTTP request (Figure 6).

Figure 6: Simda HTTP check-in.

If an artifi cial environment is detected, the sample will enter an
infi nite loop. However, since the HTTP request has already been
sent, the C&C server has already received information about the
analyst’s machine, including the IP address. The owners of the
Simda botnet appear to be using the IP addresses they have
collected in this way to blacklist researcher and security
company machines.

Through experimentation, we discovered that if a sample that
had been executed in a VM and reported back to the C&C server
was subsequently executed from a physical machine that passed
all the analysis environment checks, it would still get stuck in an
infi nite loop. We managed to trace this behaviour to the place in
the code where the data sent back by the C&C server is checked

by the sample. If there is a certain value at a certain offset in the
data received, then the sample will enter the infi nite loop despite
all the client-side checks passing (Figure 7). So it seems that our
earlier execution of the sample under a VM had caused all further
requests from the same IP address to be denied by the server.

Figure 7: Server replies: enter infi nite loop.

The Simda authors do not seem to be overly concerned about
concealing C&C addresses from researchers. Instead, their goal
seems to be to hinder analysis of the threat through both
client-side and server-side mechanisms. Even though
technologies such as NAT will mean that IP address blacklisting
could prevent legitimate infections, the Simda authors are
prepared to suffer this loss as long as a greater understanding of
how the bot works is prevented.

Vundo

Vundo is a malware family that has been through many guises
over the years, most recently being known as Ponmocup [7], but
throughout its lifetime the general payload has been to push
adware onto victims’ systems. Vundo checks for the existence of
a VM through a variety of means including checking the
SystemBiosVersion value of the HKLM\HARDWARE\
DESCRIPTION\System key in the registry.

Vundo’s strategy once a sandbox has been detected is most
easily demonstrated by observing the network activity under a
VM and comparing it to that which takes place on a real
machine. In both cases, an initial DNS request is made, the
response to which is ignored. Since this initial request is ignored
it could be to any domain, but recent samples have been
favouring the domain fasternation.net. An HTTP request is then
made, but both the URL and the host used are different
depending on whether or not a VM is detected.

As can be seen in the example shown in Figures 8 and 9, if a
VM is detected a request is made to 12.6.182.165, whereas if a
VM is not detected, the request is sent to 93.115.88.220. Vundo
is not only attempting to conceal its C&C server addresses but
is also providing a decoy address that has no association with
the botnet.

This is a clear case of the malware sending a bogus HTTP
request when a sandbox is detected. This has the consequence

DUPING THE MACHINE – MALWARE STRATEGIES, POST SANDBOX DETECTION WYKE

94 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

that the identity of the genuine C&C server is harder to
ascertain, and in a similar way to the Andromeda case, it may
survive longer before it is taken down or blocked by network
security products. However, the use of the decoy URL is a more
sinister development, as this means we cannot trust the data
coming out of the automated analysis system. If we are blindly
adding all URLs contacted by the malware to network
blacklists, then we will have false positives when encountering
this kind of malware.

Although in this case the only bogus information is a URL and
server address, it highlights the general concept of deliberately
attempting to cause security companies to false positive or
otherwise publish erroneous data, by changing behaviour once a
sandbox has been detected.

Shylock

Shylock is a banking trojan that is notable in that it is not sold
as a kit but rather is privately developed and operated by one
group [8]. Its confi guration architecture is similar to other
banking families, such as Zeus, in that the malicious binary
holds minimal confi guration information – only a URL – from
which the full confi guration fi le is downloaded. This fi le
contains the other essential information such as the address to
which stolen data is sent and a URL from which to download
the web injects fi le which contains all the extra code that will be
added to web pages when specifi c URLs are browsed to. The
confi guration fi le is very important when trying to gain a better
understanding of what a particular Shylock sample is aiming to
achieve. It contains URLs from which further modules will be
downloaded, and the web injects fi le gives important indications
about which fi nancial organizations are being targeted and what
extra information may have been elicited from the victim.

When Shylock fi rst checks into its C&C server, it sends a large
amount of information about the infected machine (Figure 10).
This includes data about the machine itself, such as the CPU
speed and amount of RAM installed; data about the OS, such as

the Windows version, install date and product key; and data
about the installed programs, such as the anti-virus software, the
browser installed and the programs that are set to run
automatically at system startup in the registry.

Figure 10: Shylock check-in data.

Shylock contains VM detection techniques that include looking
for common registry entries and processes used by VM manager
software. If a VM is detected, extra data gets included in the
initial outbound request: a VirtualMachine=Yes fi eld is added to
the data, as shown in Figure 11.

Figure 11: VirtualMachine fi eld added to data.

The inclusion of this fi eld is the source of Shylock’s unusual
anti-sandbox strategy. When the initial check-in request has
been received from the newly infected machine, the C&C server
examines the included data and will make a decision on which
confi guration fi le to deliver to the victim based on whether or
not the VirtualMachine=Yes fi eld is present. If the VM fi eld is
included, then a very basic confi guration fi le is returned which
does not include the URLs of any further modules to download
and includes a very uniform URL for the web injects: ‘/fi les/
hidden7710777.jpg’ (see Figure 12).

Figure 12: VM detected confi g fi le.

This is noticeably different from the confi guration fi le that is
returned when the VirtualMachine fi eld is not included in the
check-in request. This time, we have a plug-ins section that
includes the URLs for several plug-ins – BackSocks,
DiskSpread, MessengerSpread, PGP, an archiver URL and a
url_update URL. Additionally, we can see that each URL path,
including the httpinject URL path from which the web injects

Figure 8: Vundo decoy HTTP request.

Figure 9: Vundo genuine HTTP request.

DUPING THE MACHINE – MALWARE STRATEGIES, POST SANDBOX DETECTION WYKE

95VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

are downloaded, includes a directory that was not present in the
VM-detected confi guration fi le, in the example shown in
Figure 13, this directory is 010-update-d9hbjz6.

Figure 13: Genuine confi g fi le.

We can see further evidence that the Shylock authors are trying
to deceive researchers in the web injects fi les that are returned
from the URL provided in the fake confi guration fi le and from
the URL in the genuine confi guration fi le. The web injects from
the fake fi le are very generic and change little over time. They
still look genuine, as they are designed to pass casual
inspection. When the web injects from the genuine
confi guration fi le are examined we can see that these are much
more geographically targeted and contain more advanced
JavaScript and HTML code (Figure 14).

Figure 14: Genuine web injects.

When Shylock detects that it is running in a VM or sandbox, it
does not attempt to conceal its C&C addresses or hide the
nature of its functionality from the analysis system. The
functionality that is hidden is done so at a more subtle level.
From the infected machine’s perspective there is very little
difference in behaviour, merely the extra data added to the
HTTP request when a VM is detected. It is only when the data
sent back by the server is analysed in depth that we realize we
are being fooled. The benefi ts to the malware authors in this
case are that researchers will not be aware of new plug-in fi les

that only appear in the genuine confi guration fi le, and that banks
and other fi nancial organizations will not be aware that they are
specifi cally being targeted or aware of what form the web
injects that target their web applications will take.

CATEGORIZATION OF TECHNIQUES AND
GOALS
Having analysed several real-world post sandbox detection
strategies, we can begin to group the techniques used and the
intentions and goals of the perpetrators. Table 1 attempts to
broadly group the techniques used with a more verbose
description, an example, and the goal of the malware author in
each case.

CONSEQUENCES

Although we have touched on what the consequences can be for
failing to realize that an alternative behaviour is being observed,
it is worth going through them in greater detail.

For the more basic techniques, such as being presented with
completely different, more benign behaviour as in the
Andromeda example, there is the obvious consequence of public
embarrassment when material is published detailing the decoy
behaviour of the threat without the realization that this is not the
way the threat behaves in a real system. The researcher has
effectively fallen for the ruse.

Where genuine C&C addresses are hidden, we observe that the
domains in question will often remain live for many weeks after
they were initially introduced. Typically, domains known to be
call-home addresses for malware will have relatively short shelf
lives as they are blocked by security products or the hosting
provider takes action to remove malicious content. The easiest
way to determine the call-home address for a sample is to
execute it in a sandbox. So if the sandbox fails to extract the
C&C address, then fewer people, systems and companies will
be aware that it is malicious, and thus it will live on for longer.

The blacklisting case highlights the need to use a fresh
infrastructure when carrying out analysis, as previous use of IP
addresses or machines may invalidate future analyses. Once a
server outside of our control decides to decline our requests
there is little we can do to remedy the situation, except send
traffi c through a different address.

The case where decoy behaviour is displayed that is designed to
induce a negative consequence on the larger analysis system,
such as the decoy HTTP request displayed by Vundo, is one that
requires careful consideration from companies that process
large volumes of samples and take further action on the artifacts
of analysis. Evidence has been presented elsewhere that shows
this kind of attack is already taking place in other forms, such as
against automated detection from AV vendors [9]. This
technique can also be used to cause a vendor to assign
attribution to an innocent party, such as one cybercrime group
seeking to lay blame for an attack on a rival group, or a nation
state causing an enemy nation to be blamed for its actions.

More subtle attacks, such as the altered confi guration fi le
distributed by Shylock, have consequences further along the

DUPING THE MACHINE – MALWARE STRATEGIES, POST SANDBOX DETECTION WYKE

96 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

chain of events that take place when a victim is infected with a
sample. Banks and other fi nancial organizations keenly study
banking malware and the custom web injects they employ to
better understand how their customers may be defrauded by
such malware. More advanced constructions, such as automatic
transfer systems that can initiate bank transfers entirely through
the injected JavaScript, are particularly valuable to the security
departments of banks. By ensuring that these features are not
evident when the sample is analysed in a sandbox, the malware
authors can keep them hidden from the anti-fraud departments
that would otherwise fi nd ways to detect and block the activity.

PROTECTION

When attempting to ensure that our sandbox system does not
fall prey to these types of attacks, the most simplistic approach
is to make our analysis environment look as much like a real
system as possible, so that any checks that the malware may
make are defeated.

Many of the basic techniques used to detect a VM are easily
thwarted. Simple hardening, such as not installing guest
additions and masking giveaway strings in the registry, will
defeat the majority of VM detection techniques. More advanced
methods, such as detecting assembly instruction differences,
may be defended against by compiling custom versions of the
VM software or by applying custom confi guration options.

The only guaranteed method to defeat all VM detection
techniques is to use a physical machine, but this can be diffi cult
from a management and automation point of view, meaning it
may not be possible to put huge numbers of samples (e.g.
400,000 per day) through such a system. Even then, checks that

attempt to establish the machine is a genuine victim rather than
an analysis machine may still succeed based on the software
installed or other similar checks that try to establish that a real
human has been using the system. If an attack is truly targeted,
then the sample may check for extremely specifi c settings on the
current system, such as username, language settings, machine
name, and atypical software installed. If our sandbox machine
fails any of these checks we reveal ourselves to the attacker.

Another protection strategy is to attempt to identify that a
sample is looking for evidence of a sandbox or automated
analysis system, and only then to send the sample to the
physical machine. This reduces the management overhead as we
would only be sending the proportion of the samples that
require it to a physical machine, and the rest can go through the
virtualized setup which would in theory have much greater
capacity. However, it then becomes extremely important to be
able to identify every single possible sandbox detection
technique in existence and new ones as they are developed, as if
one technique is missed, the sandbox becomes vulnerable.

A third strategy is always to run a sample in both an unhardened
virtual machine and a physical box, comparing any differences.
This would fl ag up instances where the sample is behaving
differently under analysis conditions from in the real world, but
creates considerable resources overhead as each sample has to
be executed twice.

CONCLUSION
Sandbox execution is increasingly touted as a possible solution
for detecting ‘day-zero’ malware. There are a wide range of
commercial and publicly available solutions that can be

Technique Description Example Goal

Alternative, benign behaviour The true nature of the sample
is hidden along with data
such as C&C addresses, to be
replaced with different, more
benign behaviour

Andromeda’s decoy
pathname and listening socket

Conceal C&C addresses,
extend lifetime of network
infrastructure, reduce level of
community knowledge about
threat

Blacklisting Artifacts such as IP address
are identifi ed as potentially
belonging to researchers,
normal execution will not
take place from these
addresses even if other checks
pass

Simda reports detected
sandboxes to C&C server,
subsequent requests from real
machines from the same IP
are instructed to enter infi nite
loop by server

Prevent researchers from
further understanding the
threat, build up list of likely
security company IP
addresses

Decoy addresses Alternative C&C addresses
are substituted for the genuine
value when artifi cial
environment is detected

Vundo sends HTTP request to
decoy address when fi rst
executed

Conceal genuine C&C
address, divert attention to
fake address, potentially
induce false positives

Fake confi guration data Confi guration information
returned by C&C servers is
adjusted based on whether a
sandbox is detected

Shylock serves up dummy
confi g fi le and dummy web
injects if a sandbox is
detected

Conceal extra functionality
not evident from the sample
through server interaction,
hide targeted URLs and
injected code, hide existence
of further modules

Table 1: Categorization of malware techniques and goals after a sandbox is detected.

DUPING THE MACHINE – MALWARE STRATEGIES, POST SANDBOX DETECTION WYKE

97VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

incorporated into an organization’s network defences or used as
standalone research tools, and many security companies have
their own in-house solutions used to process huge quantities of
malware daily. Furthermore, the data that is extracted from
analysis is far greater than a simple decision of ‘good’ or ‘bad’,
as attempts are made to correlate the behaviour of one sample
with that of another and to detect and block the common
features of both, such as C&C addresses.

Virtualization is also a technology that is becoming increasingly
widespread and is commonly seen on both the server and the
desktop. Despite this fact, we continue to see more VM-aware
malware that refuses to execute or will execute in a different
way while virtualized. It seems that malware authors are willing
to sacrifi ce some genuine installs on machines that are
virtualized for the sake of the benefi ts that can be gained from
concealing true functionality from researchers and security
companies, and indeed, from presenting false and misleading
information instead.

The examples shown in this paper indicate that we must be wary
of trusting the output from a sandbox analysis, and show how
important it is to ensure an artifi cial environment looks as much
as possible like a real machine. Detecting that a sample or a
whole malware client/server interaction is behaving differently
can sometimes be easy but we have also shown cases where the
differences are very subtle and diffi cult to identify.

REFERENCES
[1] http://www.sophos.com/en-us/support/

knowledgebase/119112.aspx.

[2] http://invisiblethings.org/papers/redpill.html.

[3] https://media.blackhat.com/us-13/US-13-Singh-Hot-
Knives-Through-Butter-Evading-File-Based-
Sandboxes-Slides.pdf.

[4] Xu, H. https://www.virusbtn.com/virusbulletin/
archive/2013/05/vb201305-Andromeda-botnet.

[5] http://www.0xebfe.net/blog/2013/03/30/fooled-by-
andromeda/.

[6] http://blogs.technet.com/b/mmpc/archive/2013/09/10/
msrt-september-2013-win32-simda.aspx.

[7] http://c-apt-ure.blogspot.co.uk/2013/12/ponmocup-
hunter-is-re-tired.html.

[8] https://www.baesystemsdetica.com/services/cyber-
security/the-shylock-malware/.

[9] https://www.virusbtn.com/conference/vb2013/
abstracts/LM7-JiaBatchelder.xml.

