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ABSTRACT
Recently, SophosLabs has noticed an increase in the use of 
Android packers on APK fi les. Android packers are able to 
encrypt an original classes.dex fi le, use an ELF binary to decrypt 
the dex fi le to memory at runtime, and then execute via 
DexclassLoader. In other words, Android packers have the ability 
to change the overall structure and fl ow of an Android APK fi le – 
which is more complicated than obfuscation techniques such as 
the use of ProGuard, DexGuard and junk byte injection.

Android packers were originally created to prevent the 
intellectual property of applications being copied or altered by 
others for profi t. ApkProtect.com and Bangcle.com are the fi rst 
two legitimate providers of online packing services. Bangcle.com 
even employs virus-scanning engines in an attempt to prevent 
malicious applications being packed. However, the developers’ 
centralized measuring systems and scanning engines have not 
been able to prevent malware authors from using their services. 
A growing percentage of malware, including Zeus, SMSSend, 
and re-packaged applications, are packed by their services. 
SophosLabs has also found malware packed with a customized 
packer.

As a result, security researchers are facing a great challenge in 
overcoming these packers’ complex anti-decompiler and 
anti-debugging strategies. Existing reverse engineering (RE) 
tools are not able to unpack and inspect hidden payloads within 
packed applications. Android sandboxes have trouble offering 
dynamic analysis information, as packed applications on Android 
Emulator keep crashing. Therefore, distinguishing Android 
malware from a group of packed applications is much harder 
than it is from a number of obfuscated applications.

This paper attempts to address the anti-decompiler and 
anti-debugging techniques of the above packers, reveal the latest 
statistics on Android packed malware, use static RE utilities to 
analyse their logic fl ow and data structures, and demonstrate 
runtime behaviours via dynamic tools. Furthermore, we are 
building solutions to investigate hidden payloads via restoration 
of the original Android dex fi les from memory dump. Finally, the 
paper will present a generic method to detect packed Android 
malware.

1. INTRODUCTION

A packer is a program that is used to compress and/or encrypt an 
executable fi le without affecting its execution semantics [1]. 
Packers were originally created to reduce the overall fi le size for 
distribution, and/or to protect fi les’ intellectual property against 

reverse engineering (RE). Later on, malware authors took 
advantage of these benefi ts and began to utilize packers as a 
means to avoid detection by anti-virus (AV) scanners.

While on the one hand, Android packers have anti-tamper, 
anti-decompiler, anti-runtime injection and anti-debug 
capabilities for the protection of legitimate applications against 
loss of intellectual property, on the other hand, they present 
enormous challenges for existing RE tools and dynamic analysis 
systems when diagnosing potential mobile threats.

A rise in the use of packers in Android malicious applications 
has recently been seen by SophosLabs. These include Zeus, 
SMSSend and re-packaged adware, all of which are packed 
either by legitimate online packing services such as ApkProtect.
com and Bangcle.com, or using customized packers. The key 
step in verifying a packed application – malicious or otherwise – 
is acquiring the original dex fi le. 

This paper will:

1. Present an overview of the online Android packing 
services of ApkProtect.com, Bangcle.com and Ijiami.cn.

2. Address the anti-decompiler and anti-debug techniques of 
Android packers, and look at why Android packers are 
more complicated than obfuscation tools.

3. Report on Android malware families using various 
packers, and their challenges for existing threat 
researching tools and systems.

4. Describe the Volatility project and a plug-in for analysing 
packed malware and restoring the original dex fi le via 
memory dump.

5. Present a solution for detecting packed malware. 

The rest of this paper is structured as follows: in section 2, we 
provide a deep insight into the working process of Android 
packers and their techniques; section 3 discusses the challenges 
for existing RE tools and dynamic systems; section 4 presents 
the Volatility project, describes a new Volatility plug-in, and 
demonstrates its results for a packed application. Finally, section 
5 draws a conclusion.

2. OPENING THE BLACK BOX OF ANDROID 
PACKERS
There is a well-known saying: ‘Know the enemy and know 
yourself, and you can fi ght a hundred battles with no danger of 
defeat.’ It is necessary to understand the operating principles of 
Android packers in order to know what kinds of challenges 
confront us and how to build solutions. This section will 
illustrate our subjects – the top three Android packing service 
providers – ApkProtect.com, Bangcle.com and Ijiami.cn. 

All Android packing services are based on online black box 
systems. Developers upload their applications then obtain packed 
applications without any knowledge of the internal workings of 
the packer. However, for a malware researcher, it is vitally 
important to understand the inner workings of the packed fi les so 
as to be able to analyse the payloads of malicious applications 
and offer suitable detection. 

To make reverse engineering simpler, a test application was 
created and uploaded to all three online packing services. The 
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application contained the main Android components: Activity, 
Service, Content Provider, BroadcastReceiver and Intent, 
together with JNI and native library. Subsequently, the packed 
applications were examined to determine the differences 
between them and the original fi le in terms of static and 
dynamic analysis in order to gain a comprehensive 
understanding of the packing services.

2.1 Inspect changes in APK fi le structure

Figure 1 shows the differences in the fi le structure of the 
test application before and after packing by the three 
providers. 

Table 1 lists the fi les added in the packed APKs, while Table 2 
lists the fi les modifi ed in the corresponding APKs.

Figure 1: The APK fi le structure (top left: original APK, top right: fi le packed with ApkProtect, bottom left: fi le packed with Ijiami, 
bottom right: fi le packed with Bangcle).

Pack provider Added fi le Comments

ApkProtect lib/armeabi/libapkprotect2.so ARM shared native library binary

Bangcle

assets/meta-data/manifest.mf
assets/meta-data/rsa.pub
assets/meta-data/rsa.sig
assets/bangcle_classes.jar
assets/bangcleplugin/collector.dex
assets/bangcleplugin/container.dex
assets/bangcleplugin/dgc
assets/com.sophos.andrpacker
assets/com.sophos.andrpacker.x86
assets/libsecexe.x86.so
assets/libsecmain.x86.so
lib/armeabi/libsecexe.so
lib/armeabi/libsecmain.so

APK manifest fi le
Signature fi le
The real signature fi le with certifi cate
Encrypted original classes.dex fi le 
Bangcle information collector plug-in
Bangcle implementation plug-in
Bangcle plug-in log fi le
ARM executable fi le 
x86 executable fi le
x86 shared native library binary
x86 native main binary
ARM shared native library binary
ARM native main binary

Ijiami

META-INF/signed.bin
META-INF/af.bin
META-INF/sdata.bin
assets/ijiami.dat
lib/armeabi/libexecmain.so
lib/armeabi/libexec.so

Ijiami signed binary fi le
Ijiami binary fi le
Ijiami RSA signature fi le
Encrypted original APK fi le
ARM JNI load/unload native binary 
ARM shared native library binary

Table 1: The fi les added in the packed APKs.
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2.2 Decompiling classes.dex to observe the 
difference in code tree
Figure 2 displays the code tree of the decompiled classes.dex 
fi le for the original APK, and for the fi le packed with 
ApkProtect, Ijiami and Bangcle (from left to right, respectively). 

After investigating the code tree of the decompiled classes.dex, 
we can conclude that ApkProtect is not an Android packing 
service, but an obfuscating and junk code injecting tool. It is 
able to encrypt most sensitive strings by using the AES cipher 
algorithm in the apkprotect2 class, but will not touch the 
original logic fl ow and code structures. Therefore, it is relatively 
simple to analyse and detect applications guarded by 
ApkProtect. 

On the other hand, both Bangcle and Ijiami provide complete 
packing services. Bangcle supplies a group of standard classes, 
but still shows encapsulated BroadcastReceiver and Content 
Provider components from the original classes.dex. Ijiami goes 
a step further, by replacing the original dex fi le with its own 
standard NativeApplication and SuperApplication classes. 

2.3 Supplemental investigation of Ijiami
Sections 2.1 and 2.2 covered the APK fi le structure and the code 
tree of the packed application. However, several key technical 
issues need to be addressed in order to understand the 
unpacking process of Ijiami:

Technical issue (1): How to make sure the unpacked code is 
executed initially.

The key to this technical issue is the Android Application class. 
The Android reference page [2] describes the Application class 

Pack provider Modifi ed/replaced fi le Comments

ApkProtect classes.dex Modifi ed original classes.dex fi le

Bangcle
AndroidManifest.xml
classes.dex

Confi gure to implement Bangcle class 
Classes.dex replaced by Bangcle

Ijiami
AndroidManifest.xml
classes.dex

Confi gure to implement Ijiami class
Classes.dex replaced by Ijiami

Table 2: The fi les modifi ed/replaced in the packed APKs.

Figure 2: Code tree of decompiled classes.dex. From left to right: original, ApkProtect, Ijiami and Bangcle.

as the ‘Base class for those who need to maintain global 
application state. You can provide your own implementation by 
specifying its name in your AndroidManifest.xml’s 
<application> tag, which will cause that class to be instantiated 
for you when the process for your application/package is 
created.’ As the context of the entire application, the Application 
class will be the starting point when executing the program.

When expanding the code tree and taking a detailed view of two 
standard classes in Ijiami, we found that the SuperApplication 
class extends Application class accounts to load and run the 
NativeApplication class, while the NativeApplication class is 
responsible for loading the native library binary for unpacking 
(shown in Listing 1). 

Technical issue (2): Where and how to unpack the original dex 
fi le, then how to dynamically load the unpacked code.

Lib/armeabi/libexec.so supplies comprehensive code to 
implement the above functionalities. First, it recognizes and 
interprets fi les in the META-INF directory to verify the 
signature and integrity of encrypted data by using the RSA and 
AES crypto algorithms, then it decrypts assets/ijiami.dat to the 
original classes.dex in memory. The library binary then uses the 
DexClassLoader class to realize the dynamic loading of the 
unpacked code. 

Technical issue (3): Stop runtime anti-debug by modifying the 
dex header.

When analysing the Ijiami packing service, we discovered that 
it has the ability to change the original dex header. The 
modifi cation starts at the beginning of the dex fi le and runs to 
0x28 bytes, fi lling it with random values. As a result, it can stop 
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runtime debugging to trace the original dex fi le in memory by 
searching for DEX_FILE_MAGIC ‘dex\n035\0’. However, this 
also causes problems for the Volatility project (described in 
section 4) in locating the original dex fi le in memory. 

2.4 Additional studies on Bangcle
This subsection explains the anti-tamper, anti-decompiler, 
anti-runtime injection and anti-debug capabilities of Bangcle, 

package com.shell;

import android.app.Application;

public class NativeApplication
{
  static
  {
    System.loadLibrary(“exec”);
    System.loadLibrary(“execmain”);
  }
  
  public static native boolean load(Application paramApplication, String paramString);  
  public static native boolean run(Application paramApplication, String paramString);  
  public static native boolean runAll(Application paramApplication, String paramString);
}

package com.shell;

import android.app.Application;
import android.content.Context;

public class SuperApplication
  extends Application
{
  protected void attachBaseContext(Context paramContext)
  {
    super.attachBaseContext(paramContext);
    NativeApplication.load(this, “com.sophos.andrpacker”);
  }
  
  public void onCreate()
  {
    NativeApplication.run(this, “android.app.Application”);
    super.onCreate();
  }
}

Listing 1: NativeApplication and SuperApplication classes of Ijiami.

  public void onCreate()
  {
    super.onCreate();
    if (Util.getCustomClassLoader() == null) {
      Util.runAll(this);
    }
    String str = FirstApplication;
    try
    {
      this.cl = ((DexClassLoader)Util.getCustomClassLoader());
      realApplication = (Application)getClassLoader().loadClass(str).newInstance();
      if (realApplication != null)
      {
        localACall = ACall.getACall();
        localACall.at1(realApplication, getBaseContext());
        localACall.set2(this, realApplication, this.cl, getBaseContext());
      }
}...

Listing 2: Entrypoint of Bangcle source code – ApplicationWrapper class.

based on detailed reverse engineering analysis. Let us begin 
with the entrypoint of the source code – the ApplicationWrapper 
class, as shown in Listing 2.

The Util class in the entrypoint of the source code implements 
the main functionalities in the Applications layer of the Android 
architecture. The functionalities include verifying the integrity of 
classes.dex, checking if the architecture is x86 or ARM, copying 
the required native library binaries, encrypted classes.jar, and 
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JNI binary to specifi c locations, creating child processes, then 
using the MyClassLoader class to load the decrypted classes.jar 
at runtime. Listing 3 displays the core method in the Util class.

Meanwhile, Bangcle’s ACall class deals with binaries such as 
libsecexe.so in the Android Libraries layer. However, it is 
impossible to establish a relationship between the Java source 
code and the libsecexe.so binary since almost all function names 
in the binary are encrypted (shown in Figure 3). The standard 
format of the method name should follow the following 
template: Java_package_class_method, namely the Java 
package name, class name, then function method name [3].

When it is running, the Bangcle-packed application creates three 
processes (shown in Figure 4) instead of only one process in the 
original application. Moreover, the three processes in Bangcle 
are performing ptrace (process trace) so that debugging tools 
like gdb have trouble connecting them. This is because ptrace in 
Android limits only one process to observe and examine the 
trace’s memory and registers. Figure 4 also demonstrates the 
evidence of mutual tracing in three Bangcle processes [4, 5].

Finally, we summarize Bangcle’s capabilities:

• Anti-temper – the Util class provides hash checking to 
check the integrity of classes.dex.

  public static void runAll(Context paramContext)
  {
    x86Ctx = paramContext;
    doCheck(paramContext); // checking integrity of classes.dex
    checkUpdate(paramContext);
    try
    {
      File localFile = new File(“/data/data/” + paramContext.getPackageName() + “/.cache/”);
      if (!localFile.exists()) {
        localFile.mkdir();
      }
      checkX86(paramContext); // If it is x86 platform, copy related library binary
      CopyBinaryFile(paramContext); // copy encrypted classes.jar and JNI binary 
      createChildProcess(paramContext); // create child processes
      tryDo(paramContext);
      runPkg(paramContext, paramContext.getPackageName()); // call MyClassLoader
      return;
}...

Listing 3: Runall method of Bangcle’s Util class.

Figure 3: The function names in the ACall class and libsecexe.so.

• Anti-decompiler – the Util class also decrypts classes.jar in 
memory and employs MyClassLoader to load the decrypted 
.jar fi le at runtime.

• Anti-runtime injection – it is impossible to establish a 

Figure 4: Three processes from a single Bangcle application as 
well as the anti-ptrace log.
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relationship between the ACall class and libsecexe.so due 
to the encryption. 

• Anti-debug – Bangcle employs an anti-ptrace technique to 
prevent analysis by debugging tools.

3. FACING THE CHALLENGES 
Section 2 demonstrated the packing and unpacking processes of 
ApkProtect, Bangcle and Ijiami on the basis of comparing the 
fi le structures, analysing decompiled resource code, and runtime 
debugging. This section will introduce and describe the 
challenges for security researchers posed by the above packing 
services.

3.1 Explosive growth of packed malware

Figure 5 shows a trend line of Android malicious applications 
based on three packers. Since September 2013, there has been a 
dramatic increase in the number of malicious applications packed 
using Bangcle – Bangcle’s scanning engines have not been able 
to achieve the developers’ aim of avoiding packing malware 
applications. Meanwhile, the use of ApkProtect and Ijiami has 
seen a continuous and steady growth over the last fi ve months. 

Figure 5: The trend lines of Android malicious applications 
based on three packers.

3.2 Ineffective reverse engineering (RE) tools
Existing RE tools are not able to disassemble the payloads of 
packed samples due to the anti-decompiler characteristics of 
packers. The payloads of packed samples are encrypted by 
advanced cryptographies such as AES and DES. The packing 
process and the crypto key generation are classifi ed as 
confi dential. Moreover, the algorithms are embedded in the 
native binaries to make RE much more diffi cult. 

3.3 Failure of dynamic analysis systems
Dynamic analysis systems such as DroidBox, Apk-Analyzer.net 
and Ijinshan.com [6] are unable to offer successful dynamic 
results for packed Android applications. The systems either 
provide very basic static information or simply crash when 
attempting to start applications. Figure 6 shows screenshots of 
the running behaviours of the test application in DroidBox and 
Ijinshan.com.

3.4 Runtime anti-debug

So far, Android packers present two runtime anti-debug 
challenges: Ijiami is capable of modifying the dex header to 
prevent memory searching, while Bangcle prevents 
anti-debugging by creating three interactive processes. Both 
cause serious consequences for existing debugging tools – even 
the Volatility project (see section 4).

3.5 Diffi cult to detect by security solutions

By taking advantage of Android packers, cybercriminals are 
able to change an application’s dex fi le as a means of 
thwarting signature-based scanners. Even if an anti-virus 
scanner has a database that includes the signature of the original 
APK sample, it will be unable to detect the newly packed 

 

Figure 6: Neither DroidBox nor Ijinshan.com is able to offer 
dynamic analysis.
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version of the malware. Figure 7 displays a recent SMSSend 
example, showing the original malware as well as the version 
packed with ApkProtect. 

Figure 7: An original SMSSend sample plus its packed version 
(packed with ApkProtect).

4. BUILDING SOLUTIONS

This part is split into three sections: section 4.1 will outline the 
required environment and steps for memory acquisition. Section 
4.2 will concentrate on the Volatility framework and describe a 
new plug-in for analysing acquired memory and locating the 
offset of the unpacked dex fi le in the memory map. Finally, 
section 4.3, will demonstrate the usage of the Volatility plug-in 
to locate the offset of the unpacked dex fi le, write selected 
memory mapping to disk and patch back the dex header if 
required. 

4.1 Memory acquisition from Android emulator

In order to perform memory analysis, a copy of the RAM from 
a target Android device or emulator is required. As Android is 
based on Linux, a newly developed Loadable Kernel Module 
(LKM), named LiME (Linux Memory Extractor) [7] is used for 
acquisition of volatile memory. It is necessary to cross compile 
LiME for use on an Android device/emulator. Additional steps 
are required for the prerequisites and environment setting. These 
steps, which can be found in several online wiki documents 
[8–11], consist of:

1. Initialize an Android build environment including path 
and required package on either a Linux or OSX system.

2. Download the Android SDK and NDK.

3. Download the Android kernel source code.

4. Cross compile the kernel.

5. Create AVD then emulate the custom kernel with the 
AVD.

6. Download and cross compile LiME.

7. Load LiME on the Android device/emulator.

8. Acquire memory.

4.2 Performing memory forensics with Volatility 
plug-ins

Volatility [12] is a single and cohesive framework for memory 
analysis of Windows, Linux, Mac and Android systems. It is 
open source, Python based, extensible and has scriptable APIs. 
Volatility also pre-ships with a list of very useful plug-ins for 
Android including Linux_pslist (which gathers active tasks by 
walking the task_struct), Linux_proc_maps (which gathers 
process maps for Linux), and Linux_dump_map (which writes 
selected process memory mappings to disk). However, a 
working Android Volatility profi le with specifi c module.dwarf 
and the System.map is required to use these plug-ins. The 
confi guration can be found in [12]. 

The following is the core part of this paper: a Volatility plug-in 
is designed to locate the offset of the original dex fi le in the 
memory map via a specifi c process ID (PID). The relevant code 
of the plug-in is shown in Listing 4. 

In Volatility, each plug-in is able to call another one. 
Additionally, the results from one plug-in can be provided for 
further processing in other plug-ins [13]. A plug-in usually 
consists of a class name and three standard functions [14]: 
__init__(), calculate() and render_text(). In Listing 4, the class 
name is apk_packer_fi nd_dex. The fi rst function of the 
__init__() plug-in is the constructor of the class object with the 
capability of calling the super class constructor and/or defi ning 
additional command line options. The apk_packer_fi nd_dex 
plug-in specifi es a parameter name (--PID), a short option (-p) 
and help description.

The calculate() function loads an address space, accesses and 
parses the data, then prepares the output. Line 21 in the 
calculate() function in Listing 4 gets a process mapping list 
from a specifi c PID (the same as /proc/$PID/maps). The list 
contains the mapped memory regions and the access 
permissions of the heap, stack, and dynamically linked libraries. 
Lines 23–33 are a loop to read data from anonymous mappings 
because the original dex fi le should be unpacked in one of them. 
Lines 36-37 utilize a YARA rule to locate the offset of the 
map_list in the dex fi le. The YARA rule is declared in variable 
signatures based on the map_list structure shown in Table 3.

As discussed in section 2.3, the dex header is modifi ed by the 
Ijiami packer, the map_list structure is thus a credible alternative 
for fi nding the original dex fi le. We know that the map_items in 
a map_list should start from TYPE_HEADER_ITEM, then 
TYPE_STRING_ID_ITEM followed by TYPE_TYPE_ID_
ITEM. We also know that the size (count of the number of 
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items) of HEADER_ITEM must be one, while HEADER_
ITEM_OFFSET should begin from 0x0000, and header_size is 
always 0x70. All of these fi ndings help to assign a specifi c 
search string for $hex in the YARA rule. 

Once the offset of the map_list has been discovered, lines 41–47 
in the calculate() function keep scanning map_list to fi nd 
TYPE_MAP_LIST and the corresponding map_list_offset. Line 
48 uses yield to generate a list of outputs including virtual 

1
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4
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6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
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24
25
26
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30
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38
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40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

signatures = {
 ’map_header’ : ’rule map_header { \
    strings: \
    $hex = {00 00 ?? ?? 01 00 00 00 00 00 00 00 01 00 ?? ?? ?? ?? ?? ?? 70 00 00 00 02 00} \
    condition: $hex }’
}

class apk_packer_fi nd_dex(linux_common.AbstractLinuxCommand):
 ”””Gather information about the dex Dump in Memory running in the system”””

 def __init__(self, confi g, *args, **kwargs):
  linux_common.AbstractLinuxCommand.__init__(self, confi g, *args, **kwargs)  
  self._confi g.add_option(’PID’, short_option=’p’, default=None,
   help=’Operate on a specifi c Android application Process ID’,
   action=’store’, type=’str’)

 def calculate(self):
  ””” Required: Runs YARA search to fi nd hits ””” 
  rules = yara.compile(sources = signatures)

  proc_maps = linux_proc_maps.linux_proc_maps(self._confi g).calculate()

  for task, vma in proc_maps:
   if not vma.vm_fi le:
    if vma.vm_start <= task.mm.start_brk and vma.vm_end >= task.mm.brk:
     continue
    elif vma.vm_start <= task.mm.start_stack and vma.vm_end >= task.mm.start_stack:
     continue
    elif vma.vm_end - vma.vm_start > 0x1000:
     proc_as = task.get_process_address_space()
     maxlen = vma.vm_end - vma.vm_start
   
     data = proc_as.zread(vma.vm_start, maxlen - 1)

     if data:
      for match in rules.match(data = data):
       for moffset, _name, _value in match.strings:
        (usize,) = struct.unpack(‘I’, data[moffset - 4 : moffset])

        i = 0
        offset = moffset
        while  i < usize:

         (maptype,) = struct.unpack(’H’, data[offset: offset+2])
         (mapoffset,) = struct.unpack(’I’, data[offset+8: offset+12])

         if maptype == 0x1000:
          yield task, vma, moffset - 4 - mapoffset, moffset
          break
         i += 1
         offset += 12 

 def render_text(self, outfd, data):
  self.table_header(outfd, [(”Task”, ”10”), 
          (”VM Start”, ”[addrpad]”), 
          (”VM End”, ”[addrpad]”), 
          (”Dex Offset”, ”[addr]”),          
          (”Map Offset”, ”[addr]”)]) 
  for (task, vma, offset, moffset) in data:
    self.table_row(outfd, task.pid, vma.vm_start, vma.vm_end, offset, moffset - 4)

Listing 4: Apk_packer_fi nd_dex plug-in.

memory start and end offsets as well as the dex and map_list 
offset in the memory. Finally, the render_text() function accepts 
the outputs and prints the data on screen in a standard fashion.

4.3 From memory dump to ‘original’ dex fi le 
We use quotation marks around the word ‘original’ because we 
can’t acquire the raw dex fi le: Bangcle inserts its monitoring 
code into the original dex fi le before packing, and it is diffi cult 
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to restore the fi rst 0x28 bytes in the header section for an Ijiami 
dex fi le. However, the closest to the original dex fi le can be 
acquired using the following four steps:

1. Get the process ID of the target application by using 
Linux_pslist.

2. Locate the header and map_list offset of the unpacked 

Table 3: The header_item and map_list structure in a dex fi le, and their relationship.

$ python vol.py --profi le=LinuxGolfi sh-2_6_29ARM -f lime.dump apk_packer_fi nd_dex -p 876

Volatility Foundation Volatility Framework 2.3.1
Task       VM Start   VM End     dex Offset Map Offset
---------- ---------- ---------- ---------- ----------
       876 0x4c10d000 0x4c1a4000       0x28    0x8ffc8

Listing 5: Example output of the apk_packer_fi nd_dex plug-in.

 

Figure 8: Patch DEX_FILE_MAGIC back into an unpacked Ijiami dex fi le.

dex fi le by looking at the apk_packer_fi nd_dex plug-in 
output (shown in Listing 5).

3. Dump a memory range specifi ed by the Linux_dump_
map plug-in to disk.

4. Patch DEX_FILE_MAGIC back if required, for 
instance, into an unpacked dex fi le from Ijiami packer.
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5. CONCLUSIONS 
This paper provides an overview of the most popular Android 
packers: Bangcle, ApkProtect and Ijiami. It demonstrates the 
working principles of each in terms of static and dynamic 
analysis. Moreover, the paper describes some particular 
characteristics including dex header modifi cation by Ijiami as 
well as the anti-ptrace technique employed by Bangcle. 

A series of challenges have been discussed in section 3. These 
challenges include the explosive increase of Android malicious 
applications packed by three different packers, the ineffi ciency 
of existing reversing engineering tools, the failure of dynamic 
analysing systems, the anti-debug features, and the obstruction 
of generic detection.

Section 4 delivered an outline of the Volatility project. The 
Volatility project provides an open and complete framework for 
memory extraction and investigation. Volatility supports 
memory dump from Windows, OSX, Linux and Android, and 
supplies plenty of plug-ins for memory analysis. However, a 
customized plug-in named apk_packer_fi nd_dex has been 
created to explore the process map list and locate the offset of 
the unpacked dex fi le in memory. We also demonstrated the 
acquisition of the original dex fi le with DEX_FILE_MAGIC 
patching.

In conclusion, the paper provides a practical solution for 
acquiring the original dex payload for a packed Android 
application. However, developing an effi cient and effective 
detection solution for packed malware is a complicated task as it 
is impossible to unpack a piece of packed malware and detect 
the payload in the real world. On account of the background and 
information given in section 2, a detection solution can be based 
on a combination of AndroidManifest.xml, the size of the 
encrypted payload, resource fi les, and resources.arsc. 
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