266

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS

ANDROID PACKERS: FACING
THE CHALLENGES, BUILDING

SOLUTIONS

Rowland Yu
Sophos, Australia

Email rowland.yu@sophos.com.au

ABSTRACT

Recently, SophosLabs has noticed an increase in the use of
Android packers on APK files. Android packers are able to
encrypt an original classes.dex file, use an ELF binary to decrypt
the dex file to memory at runtime, and then execute via
DexclassLoader. In other words, Android packers have the ability
to change the overall structure and flow of an Android APK file —
which is more complicated than obfuscation techniques such as
the use of ProGuard, DexGuard and junk byte injection.

Android packers were originally created to prevent the
intellectual property of applications being copied or altered by
others for profit. ApkProtect.com and Bangcle.com are the first
two legitimate providers of online packing services. Bangcle.com
even employs virus-scanning engines in an attempt to prevent
malicious applications being packed. However, the developers’
centralized measuring systems and scanning engines have not
been able to prevent malware authors from using their services.
A growing percentage of malware, including Zeus, SMSSend,
and re-packaged applications, are packed by their services.
SophosLabs has also found malware packed with a customized
packer.

As aresult, security researchers are facing a great challenge in
overcoming these packers’ complex anti-decompiler and
anti-debugging strategies. Existing reverse engineering (RE)
tools are not able to unpack and inspect hidden payloads within
packed applications. Android sandboxes have trouble offering
dynamic analysis information, as packed applications on Android
Emulator keep crashing. Therefore, distinguishing Android
malware from a group of packed applications is much harder
than it is from a number of obfuscated applications.

This paper attempts to address the anti-decompiler and
anti-debugging techniques of the above packers, reveal the latest
statistics on Android packed malware, use static RE utilities to
analyse their logic flow and data structures, and demonstrate
runtime behaviours via dynamic tools. Furthermore, we are
building solutions to investigate hidden payloads via restoration
of the original Android dex files from memory dump. Finally, the
paper will present a generic method to detect packed Android
malware.

1. INTRODUCTION

A packer is a program that is used to compress and/or encrypt an
executable file without affecting its execution semantics [1].
Packers were originally created to reduce the overall file size for
distribution, and/or to protect files’ intellectual property against

reverse engineering (RE). Later on, malware authors took
advantage of these benefits and began to utilize packers as a
means to avoid detection by anti-virus (AV) scanners.

While on the one hand, Android packers have anti-tamper,
anti-decompiler, anti-runtime injection and anti-debug
capabilities for the protection of legitimate applications against
loss of intellectual property, on the other hand, they present
enormous challenges for existing RE tools and dynamic analysis
systems when diagnosing potential mobile threats.

A rise in the use of packers in Android malicious applications
has recently been seen by SophosLabs. These include Zeus,
SMSSend and re-packaged adware, all of which are packed
either by legitimate online packing services such as ApkProtect.
com and Bangcle.com, or using customized packers. The key
step in verifying a packed application — malicious or otherwise —
is acquiring the original dex file.

This paper will:

1. Present an overview of the online Android packing
services of ApkProtect.com, Bangcle.com and [jiami.cn.

2. Address the anti-decompiler and anti-debug techniques of
Android packers, and look at why Android packers are
more complicated than obfuscation tools.

3. Report on Android malware families using various
packers, and their challenges for existing threat
researching tools and systems.

4. Describe the Volatility project and a plug-in for analysing
packed malware and restoring the original dex file via
memory dump.

5. Present a solution for detecting packed malware.

The rest of this paper is structured as follows: in section 2, we
provide a deep insight into the working process of Android
packers and their techniques; section 3 discusses the challenges
for existing RE tools and dynamic systems; section 4 presents
the Volatility project, describes a new Volatility plug-in, and
demonstrates its results for a packed application. Finally, section
5 draws a conclusion.

2. OPENING THE BLACK BOX OF ANDROID
PACKERS

There is a well-known saying: ‘Know the enemy and know
yourself, and you can fight a hundred battles with no danger of
defeat.” It is necessary to understand the operating principles of
Android packers in order to know what kinds of challenges
confront us and how to build solutions. This section will
illustrate our subjects — the top three Android packing service
providers — ApkProtect.com, Bangcle.com and Ijiami.cn.

All Android packing services are based on online black box
systems. Developers upload their applications then obtain packed
applications without any knowledge of the internal workings of
the packer. However, for a malware researcher, it is vitally
important to understand the inner workings of the packed files so
as to be able to analyse the payloads of malicious applications
and offer suitable detection.

To make reverse engineering simpler, a test application was
created and uploaded to all three online packing services. The

ANDROID PACKERS:

FACING THE CHALLENGES, BUILDING SOLUTIONS

Date

118414 H res/layoutsactivity_main.xml

11-/84-14 : res/smenus/main . xml

11,8414 H AndroidManifest . xml

1i-84-14 =4, PESOUFCES . AFSC

ag s14 14: res/dravable—hdpisic_launcher.png
sdrawable-—nmdpi/ic_launcher . png

dravable—xhdpi~ic_launcher.pnyg
able—xxhdpi-ic_launcher.png

11/.4/14 : dex

11 s14 H 1i hl/llhhellu Jn

i1 <14 16: META— lNF/HHNIFEST MF

11-84/14 H META-INF.-CERT

11-84-14 H META-INF-CERT . RSI’I

Date
12/84-14 res/layout sactivity_main.xml
12-84-14 : res/menusmain . xml
12,8414 H AndroidManifest.xml
i12-84-14 FESOUPCES . AFSC
a?-84-,14 res/drawvable—hdpisic_launcher.pny
a9-84/14 Adrawable-mdpisic_launche: iy
a9-84-14 sdrawable—xhdpi-ic_launcher.png
a89./84./14 able-xxhdpisic_launcher.png
158414 dex
12/84-14 H ahl/llh}lellu Jni.so
158414 H 11h/a1 neah1/11hapkp1 otec

Date
13-84-14 ressdrawable—xhdpisic_launcher.png
13,84-14 H res/drawvable—hdpi/ic_launcher_png
13-84-14 3
13-84-14 H
13,8414 H res/dr auahle—xxhdpl/lc launcher.png
13-84-14 H META-INF/signed.bin
13-04-14 : ressmenusnain.xml
13-84-14 H libsarmeabislibexec.so
13-84-14 H AndroidManifest.xml
13-84-14 H ress/drawvable—ndpis/ic_launcher.png
13-84-14 H resslayoutsactivity_main.xnl
13-84-14 H librarmeabislibhello—jni.so
13-84-14 H assets/ijiami.dat
13-84-14 H META-IMF/af .hin
13-84-14 16: META-INF/sdata.hin
13/04-14 : lib/armeahislibexecmain.so

16 files

980968

13-84-14 ets/meta—datas/manifest.mf
13~#84-14 H ets/meta—datasrsa.pub
13-84-14 H ets/meta—datasrsa.sig
139414 H AndroidManifest.xml
13,8414 H et.,/hangcle cla:
13-84-14 :
13-84/14 H et_‘/bangc1ep1ug1n/cunta1ner dex
13-84-14 15: ets bangc leplugin-dgc
ets com.soph andrpacker
drpacker.x86

13,8414
13-94-14
13-94-14 H c dex
13,8414 H lib-armeabislibhello—jni.so
13-84-14 H lih-/arneabi-lihsecexe
13-84/14 H lib/armeabirlibsecmain.

H res/drawable —hdp: c_launcher.png
13 #14 15: ressdrawable-mdpisic_launcher.png
138414 H sdrawable-xhdpi-ic_launcher.png
13~+84-14 H sdrawable-xxhdpisic_launcher.png
138414 H slayoutsactivity_main.xml
13-94-14 : smenuwsmain.xml
13,9414 H

Figure 1: The APK file structure (top left: original APK, top right: file packed with ApkProtect, bottom left: file packed with ljiami,
bottom right: file packed with Bangcle).

application contained the main Android components: Activity,
Service, Content Provider, BroadcastReceiver and Intent,
together with JNI and native library. Subsequently, the packed
applications were examined to determine the differences
between them and the original file in terms of static and
dynamic analysis in order to gain a comprehensive
understanding of the packing services.

2.1 Inspect changes in APK file structure

Figure 1 shows the differences in the file structure of the
test application before and after packing by the three
providers.

Table 1 lists the files added in the packed APKs, while Table 2
lists the files modified in the corresponding APKs.

Pack provider | Added file

Comments

ApkProtect lib/armeabi/libapkprotect2.so

ARM shared native library binary

assets/meta-data/manifest.mf
assets/meta-data/rsa.pub
assets/meta-data/rsa.sig
assets/bangcle_classes.jar
assets/bangcleplugin/collector.dex
assets/bangcleplugin/container.dex
Bangcle assets/bangcleplugin/dgc
assets/com.sophos.andrpacker
assets/com.sophos.andrpacker.x86
assets/libsecexe.x86.s0
assets/libsecmain.x86.s0
lib/armeabi/libsecexe.so
lib/armeabi/libsecmain.so

APK manifest file

Signature file

The real signature file with certificate
Encrypted original classes.dex file
Bangcle information collector plug-in
Bangcle implementation plug-in
Bangcle plug-in log file

ARM executable file

x86 executable file

x86 shared native library binary

x86 native main binary

ARM shared native library binary
ARM native main binary

META-INF/signed.bin
META-INF/af .bin
META-INF/sdata.bin
assets/ijiami.dat
lib/armeabi/libexecmain.so
lib/armeabi/libexec.so

Ijiami

Ijiami signed binary file

Ijiami binary file

Ijiami RSA signature file
Encrypted original APK file

ARM JNI load/unload native binary
ARM shared native library binary

Table 1: The files added in the packed APK:s.

267

268

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS

Pack provider | Modified/replaced file Comments

ApkProtect classes.dex Modified original classes.dex file

Bangcle AndroidManifest.xml Configure to implement Bangcle class
classes.dex Classes.dex replaced by Bangcle

Tjiami AndroidManifest.xml Configure to implement Iﬁam% class
classes.dex Classes.dex replaced by Ijiami

Table 2: The files modified/replaced in the packed APKs.

t- 83 android.support.v4
=183 com.sophos.andrpacker
- [4] Alarmreceiver
-[J] BootBroadcast
- [3] BuildConfig
-[J] DBHelper

m DasmonService
- [d] MainActivity
m Person

-[J] PersonQbserver
--[J] PersonProvider

m R

& 8

E-H com
E|EE sophos. andrpadker
- [J] Alarmreceiver
; [J] BootBroadcast
[J] BuildConfig

[J] DBHelper
m DaemonService
[J] MainActivity

e [J] Person

7 [J] PersonCbserver
7 [J] PersonProvider

0 e

ElEE’ com. shel
|1‘| MativeApplication
|1‘| SuperApplication

=83 com

=-H3 secapk.wrapper
©o@-[] Acal

o] [J] Application\rapper
[7] Firstapplication
[3] MyClassLoader
Cm-[J] Ul

E|EE sophos.andrpacker
f-[J] Alarmreceiver
[J] BootBroadcast
[3] PersonProvider
- [J] SMsReceiver

£l [J] SMSReceiver
Eﬂ---m apkprotect?

- [J] sMsReceiver

H-H} neo.proxy

Figure 2: Code tree of decompiled classes.dex. From left to right: original, ApkProtect, Ijiami and Bangcle.

2.2 Decompiling classes.dex to observe the
difference in code tree

Figure 2 displays the code tree of the decompiled classes.dex
file for the original APK, and for the file packed with
ApkProtect, ljiami and Bangcle (from left to right, respectively).

After investigating the code tree of the decompiled classes.dex,
we can conclude that ApkProtect is not an Android packing
service, but an obfuscating and junk code injecting tool. It is
able to encrypt most sensitive strings by using the AES cipher
algorithm in the apkprotect2 class, but will not touch the
original logic flow and code structures. Therefore, it is relatively
simple to analyse and detect applications guarded by
ApkProtect.

On the other hand, both Bangcle and [jiami provide complete
packing services. Bangcle supplies a group of standard classes,
but still shows encapsulated BroadcastReceiver and Content
Provider components from the original classes.dex. [jiami goes
a step further, by replacing the original dex file with its own
standard NativeApplication and SuperApplication classes.

2.3 Supplemental investigation of ljiami

Sections 2.1 and 2.2 covered the APK file structure and the code
tree of the packed application. However, several key technical
issues need to be addressed in order to understand the
unpacking process of [jiami:

Technical issue (1): How to make sure the unpacked code is
executed initially.

The key to this technical issue is the Android Application class.
The Android reference page [2] describes the Application class

as the ‘Base class for those who need to maintain global
application state. You can provide your own implementation by
specifying its name in your AndroidManifest.xml’s
<application> tag, which will cause that class to be instantiated
for you when the process for your application/package is
created.” As the context of the entire application, the Application
class will be the starting point when executing the program.

When expanding the code tree and taking a detailed view of two
standard classes in Jjiami, we found that the SuperApplication
class extends Application class accounts to load and run the
NativeApplication class, while the NativeApplication class is
responsible for loading the native library binary for unpacking
(shown in Listing 1).

Technical issue (2): Where and how to unpack the original dex
file, then how to dynamically load the unpacked code.

Lib/armeabi/libexec.so supplies comprehensive code to
implement the above functionalities. First, it recognizes and
interprets files in the META-INF directory to verify the
signature and integrity of encrypted data by using the RSA and
AES crypto algorithms, then it decrypts assets/ijiami.dat to the
original classes.dex in memory. The library binary then uses the
DexClassLoader class to realize the dynamic loading of the
unpacked code.

Technical issue (3): Stop runtime anti-debug by moditying the
dex header.

When analysing the ljiami packing service, we discovered that
it has the ability to change the original dex header. The
modification starts at the beginning of the dex file and runs to
0x28 bytes, filling it with random values. As a result, it can stop

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS

package com.shell;
import android.app.Application;

public class NativeApplication
{
static
{
System.loadLibrary (“exec”) ;
System.loadLibrary (“execmain”) ;

public static native boolean load(Application paramApplication, String paramString);
public static native boolean run (Application paramApplication, String paramString);
public static native boolean runAll (Application paramApplication, String paramString);

package com.shell;

import android.app.Application;
import android.content.Context;

public class SuperApplication
extends Application

protected void attachBaseContext (Context paramContext)

{
super.attachBaseContext (paramContext) ;
NativeApplication.load(this, “com.sophos.andrpacker”);

public void onCreate ()

{
NativeApplication.run(this, “android.app.Application”);
super.onCreate () ;

Listing 1: NativeApplication and SuperApplication classes of ljiami.

public void onCreate ()
{
super.onCreate () ;
if (Util.getCustomClassLoader () == null) {
Util.runAll (this);
}
String str = FirstApplication;

try

{
this.cl = ((DexClassLoader)Util.getCustomClassLoader());
realApplication = (Application)getClassLoader () .loadClass (str).newInstance();
if (realApplication != null)

{
localACall = ACall.getACall();
localACall.atl (realApplication, getBaseContext());
localACall.set2(this, realApplication, this.cl, getBaseContext());

Listing 2: Entrypoint of Bangcle source code — ApplicationWrapper class.

runtime debugging to trace the original dex file in memory by based on detailed reverse engineering analysis. Let us begin
searching for DEX_FILE_MAGIC ‘dex\n035\0’. However, this with the entrypoint of the source code — the ApplicationWrapper
also causes problems for the Volatility project (described in class, as shown in Listing 2.

section 4) in locating the original dex file in memory. The Util class in the entrypoint of the source code implements

the main functionalities in the Applications layer of the Android
architecture. The functionalities include verifying the integrity of
This subsection explains the anti-tamper, anti-decompiler, classes.dex, checking if the architecture is x86 or ARM, copying
anti-runtime injection and anti-debug capabilities of Bangcle, the required native library binaries, encrypted classes.jar, and

2.4 Additional studies on Bangcle

269

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS

public static void runAll (Context paramContext)
{
x86Ctx = paramContext;
doCheck (paramContext); // checking integrity of classes.dex
checkUpdate (paramContext) ;
try
{
File localFile = new File(“/data/data/” + paramContext.getPackageName () + “/.cache/”);
if (!localFile.exists()) {
localFile.mkdir () ;
}
checkX86 (paramContext); // If it is x86 platform, copy related library binary
CopyBinaryFile (paramContext); // copy encrypted classes.jar and JNI binary
createChildProcess (paramContext); // create child processes
tryDo (paramContext) ;
runPkg (paramContext, paramContext.getPackageName()); // call MyClassLoader
return;

Listing 3: Runall method of Bangcle’s Util class.

public native void al (byte[] paramfrray0fBytel, byte[] paramArray0fBytel); =¥ pA226AD0639E094643D446D 1 19B40AF7 0001072C
g p14285A16A5AD0SC58C6229A0216C28CE 0000SESC

public native void atl (Application paramfpplication, Context paramContext); ;_- pFBCOF628D4A0CEDBS4B22B8AF 32C6440 0000E1CD
g pFFBE07FCFECECTE0F 1B93B14618C1170 00021E60

public natiwve void at2 (Application paramBpplication, Context paramContext); = p48661E 70099254 280F 22F90CE 1DD9FEC 0000A 100
p6543834C664025CDBICCE865EA4FSD21 00008744

public native veid cl(Object paramObjectl, Object paramObject2); #| PBAE0SFC ID43625EF 272F4502COBIATE 00021E54
. . . 3 ;)) g p&14EBEAS27F7CFE77711182EACCBCICE 00021E63
public native veoid c2 (Object paramObjectl, Object paramlbject?); ; p2DE56E55CE 1600 1EDC4DBASSAD 25 1451 0000BEE4
public natiwve Object c3(0Object paramlbjectl, Object paramObject2); % POEOBASF1418271A7182A3D7E36F3698C 00021800
@ pS9E15566C42CE17277A9BC 11BD46E660 00021E6C

public natiwve void rl(byte[] paramArray0fBytel, byte[] paramhrrayOfBytel): @ P68 1D68CABE 7EBF085ECE 19A06ED 1300 00008238
@ pA3E4F5DB 10866DA44836DD6A227TDTFES 000216EC

public native veoid r2 (byte[] paramBRrray0iBytel, byte[] paramArray0fByte2, byte[] paramArray0f @ P261352038FFCD16031F67632A01C2816 0000FSAD
(¥ p92B745BE45892302EFA4F4ESSADASASL 0000EDA4

public native ClassLoader rcl(Context paramContext); =] p6C5CE88FDD1835CECT 33F97EBAD4BIB2 00021C00
p654E3EENBCC4136DDGABE0AFI 54ABACD 0000E113

public native void sl (0bject paramObjectl, Object param0bject2, Object paramObject3); [E#| p403FB1BE0452ED04B365494693196D2F 00021AFC
@ pFOF81B620C6DEDD307E414D 3004785366 00021C04

public native Cbject setl(Activity paramlctivity, ClassLoader paramClassLoader); [E#| pCOBSAC27ABSDC40DOC0AITEECTEDG34B 0000FCSC
E p5F7D2555538480 36 7DEEGF 72B840DCFB 00005304

public natiwe Object set2(Application paramhpplicationl, Application paramApplication?, Class 5 INI_OrlLoad 00007278

Figure 3: The function names in the ACall class and libsecexe.so.

JNI binary to specific locations, creating child processes, then
using the MyClassLoader class to load the decrypted classes.jar

at runtime. Listing 3 displays the core method in the Util class.
esg | grep
Meanwhile, Bangcle’s ACall class deals with binaries such as i-ptra

libsecexe.so in the Android Libraries layer. However, it is
impossible to establish a relationship between the Java source
code and the libsecexe.so binary since almost all function names
in the binary are encrypted (shown in Figure 3). The standard
format of the method name should follow the following
template: Java_package_class_method, namely the Java
package name, class name, then function method name [3].

When it is running, the Bangcle-packed application creates three
processes (shown in Figure 4) instead of only one process in the
original application. Moreover, the three processes in Bangcle
are performing ptrace (process trace) so that debugging tools
like gdb have trouble connecting them. This is because ptrace in
Android limits only one process to observe and examine the
trace’s memory and registers. Figure 4 also demonstrates the
evidence of mutual tracing in three Bangcle processes [4, 5]. * Anti-decompiler — the Util class also decrypts classes.jar in
Finally, we summarize Bangcle’s capabilities: memory and employs MyClassLoader to load the decrypted
Jjar file at runtime.

Figure 4: Three processes from a single Bangcle application as
well as the anti-ptrace log.

* Anti-temper — the Util class provides hash checking to
check the integrity of classes.dex. * Anti-runtime injection — it is impossible to establish a

270

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS

relationship between the ACall class and libsecexe.so due
to the encryption.

¢ Anti-debug — Bangcle employs an anti-ptrace technique to
prevent analysis by debugging tools.

3. FACING THE CHALLENGES

Section 2 demonstrated the packing and unpacking processes of
ApkProtect, Bangcle and [jiami on the basis of comparing the
file structures, analysing decompiled resource code, and runtime
debugging. This section will introduce and describe the
challenges for security researchers posed by the above packing
services.

3.1 Explosive growth of packed malware

Figure 5 shows a trend line of Android malicious applications
based on three packers. Since September 2013, there has been a
dramatic increase in the number of malicious applications packed
using Bangcle — Bangcle’s scanning engines have not been able
to achieve the developers’ aim of avoiding packing malware
applications. Meanwhile, the use of ApkProtect and [jiami has
seen a continuous and steady growth over the last five months.

BAEE EiiTh wRAE Eass

[*i2k-2 151

SEEFR: Jiami_com.sophos.andrpacker.apk
MD5: acBa2656fb865a854bfc006cec744047
Sha-1: 8435c1485963994b778d28c36ad34613369f26b
MR 543KB
SIEHE: 2014-04-26 19:45:33
RIFEFR: AndrPacker
1 JC=Unknown/ST=Unknown/L=Unknown/O=Unknown/OU=Unknown/CN=Unkn

i
owdZ#$4%Z : com.sophos.andrpacker
EFEE: 10

Q BibiTmmE

fraEr: BFEnE
HEh{EE . ZEADEE http:/www.ijiami.cn/

f wweE

ant
o
5

android.permission.RECEIVE_SMS

®) mast

1000
900
800
700
600
500
400
300
200
100

0 L—

13-07 13-08 13-09 13-10 13-11 13-12 14-01 14-02 1403 1404

=——=Bangcle ==ApkProtect ljiami

Figure 5: The trend lines of Android malicious applications
based on three packers.

3.2 Ineffective reverse engineering (RE) tools

Existing RE tools are not able to disassemble the payloads of
packed samples due to the anti-decompiler characteristics of
packers. The payloads of packed samples are encrypted by
advanced cryptographies such as AES and DES. The packing
process and the crypto key generation are classified as
confidential. Moreover, the algorithms are embedded in the
native binaries to make RE much more difficult.

3.3 Failure of dynamic analysis systems

Dynamic analysis systems such as DroidBox, Apk-Analyzer.net
and [jinshan.com [6] are unable to offer successful dynamic
results for packed Android applications. The systems either
provide very basic static information or simply crash when
attempting to start applications. Figure 6 shows screenshots of
the running behaviours of the test application in DroidBox and
[jinshan.com.

Unfortunately, AndrPacker has
stopped.

oid... | @ 5554:droidbox

Figure 6: Neither DroidBox nor ljinshan.com is able to offer
dynamic analysis.

3.4 Runtime anti-debug

So far, Android packers present two runtime anti-debug
challenges: ljiami is capable of modifying the dex header to
prevent memory searching, while Bangcle prevents
anti-debugging by creating three interactive processes. Both
cause serious consequences for existing debugging tools — even
the Volatility project (see section 4).

3.5 Difficult to detect by security solutions

By taking advantage of Android packers, cybercriminals are
able to change an application’s dex file as a means of

thwarting signature-based scanners. Even if an anti-virus
scanner has a database that includes the signature of the original
APK sample, it will be unable to detect the newly packed

271

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS

version of the malware. Figure 7 displays a recent SMSSend 2. Download the Android SDK and NDK.
example, showing the original malware as well as the version 3. Download the Android kernel source code
packed with ApkProtect.
4. Cross compile the kernel.
4 | 40f1146e35096e44dab5276d2 1e 7e 22 356320532 -dex 2jar . jar dca5f33e0e0e22a379c46a022bfddb9d68e67de5-dex: 5 Create AVD thel’l emulate the CUStOI'Il kernel Wlth the
- ultmate.safeguard adass
&a AVD.
) AlarmReceiver package ultimate.safeguard;
Eiewaiol public fimal elass a 6. Download and cross compile LiME.
[3] Messengerservice {) i . .
1) safecore public static boolean 2 = true’ 7. Load LiME on the Android device/emulator.
a public static boolean b = false;
Db public static String ¢ = null; .
Me public static String d = null; 8. Acqu1re memory.
d public static String e = null;
De public static String f = null:
of public static boolean g = false:
s piblic static boolean 4 = false; 4.2 Performing memory forensics with Volatility
m h public static boolean 1 = false; .
5 public static int[] 7 = { 15000, 15000 }; -
%; public static int k i 4; plug Ins
m k public static int 1 = 0;
@ PbLic static int @ - 1; Volatility [12] is a single and cohesive framework for memory
=0 public static int n = 57 1
" public static String o = "#safequardf”; analysis of Windows, Linux, Mac and Android systems. It is
public static int p = 9090; . .
public static int g = 9090; open source, Python based, extensible and has scriptable APIs.
<[aos dabs276d21e: dexajarjar | des 2223734620220 mes<exzars o Volatility also pre-ships with a list of very useful plug-ins for
= 95“%'9‘“”“‘*‘5 adass Android including Linux_pslist (which gathers active tasks by
: packages google.service-a? walking the task_struct), Linux_proc_maps (which gathers
. g F[rmport Java-security-Keys process maps for Linux), and Linux_dump_map (which writes
53
prbtic final class & selected process memory mappings to disk). However, a
private static Suxing = = "ssfequard’; working Android Volatility profile with specific module.dwarf
private Cipher % = null; . . .
private Cipher 41 = mull; and the System.map is required to use these plug-ins. The
public () configuration can be found in [12].
{
this(_): . . . Jo .
o The following is the core part of this paper: a Volatility plug-in
public #(String peranString) is designed to locate the offset of the original dex file in the
" . .
Wy Localiey - 2 (paranSoring. gessyces()): memory map via a specific process ID (PID). The relevant code
Cipher localCiphes:; of the plug-in is shown in Listing 4.
for (;:)

Figure 7: An original SMSSend sample plus its packed version In Vc.)l.atility, each plug-in is able to call .another one.
(packed with ApkProtect). Additionally, the results from one plug-in can be provided for

further processing in other plug-ins [13]. A plug-in usually

consists of a class name and three standard functions [14]:
4. BUILDING SOLUTIONS __init__(), calculate() and render_text(). In Listing 4, the class
name is apk_packer_find_dex. The first function of the
__init__() plug-in is the constructor of the class object with the
capability of calling the super class constructor and/or defining
additional command line options. The apk_packer_find_dex
plug-in specifies a parameter name (--PID), a short option (-p)
and help description.

This part is split into three sections: section 4.1 will outline the
required environment and steps for memory acquisition. Section
4.2 will concentrate on the Volatility framework and describe a
new plug-in for analysing acquired memory and locating the
offset of the unpacked dex file in the memory map. Finally,
section 4.3, will demonstrate the usage of the Volatility plug-in

to locate the offset of the unpacked dex file, write selected The calculate() function loads an address space, accesses and
memory mapping to disk and patch back the dex header if parses the data, then prepares the output. Line 21 in the
required. calculate() function in Listing 4 gets a process mapping list

from a specific PID (the same as /proc/$PID/maps). The list
contains the mapped memory regions and the access

4.1 Memory acquisition from Android emulator permissions of the heap, stack, and dynamically linked libraries.

In order to perform memory analysis, a copy of the RAM from Lines 23-33 are a loop to read data from anonymous mappings
a target Android device or emulator is required. As Android is because the original dex file should be unpacked in one of them.
based on Linux, a newly developed Loadable Kernel Module Lines 36-37 utilize a YARA rule to locate the offset of the
(LKM), named LiME (Linux Memory Extractor) [7] is used for map_list in the dex file. The YARA rule is declared in variable
acquisition of volatile memory. It is necessary to cross compile signatures based on the map_list structure shown in Table 3.

LiME for use on an Android device/emulator. Additional steps
are required for the prerequisites and environment setting. These
steps, which can be found in several online wiki documents
[8-11], consist of:

As discussed in section 2.3, the dex header is modified by the
Ijiami packer, the map_list structure is thus a credible alternative
for finding the original dex file. We know that the map_items in
a map_list should start from TYPE_HEADER_ITEM, then
1. Initialize an Android build environment including path TYPE_STRING_ID_ITEM followed by TYPE_TYPE_ID_

and required package on either a Linux or OSX system. ITEM. We also know that the size (count of the number of

272

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS

signatures = {
'map_header’ : ’rule map header { \
strings: \
Shex = {00 00 ?? 22 01 00 00 00 00 00 00 00 01 00 22 2?2 22 22 22 22 70 00 00 00 02 00} \
condition: S$hex 1}’

apk packer find dex

(linux common.AbstractLinuxCommand) :
””"”Gather information about the dex Dump in Memory running in the system”””

def init (self, config, *args, **kwargs):

linux common.AbstractLinuxCommand. init (self, config, *args, **kwargs)
self. config.add option(’PID’, short option=’'p’, default=None,
help='Operate on a specific Android application Process ID’,
action=’'store’, type=’'str’)

def c ate (self):

77" Required: Runs YARA search to find hits ”””

rules = yara.compile (sources = signatures)

proc maps = linux proc maps.linux proc maps(self. config).calculate()

for task, vma in proc maps:
if not vma.vm file:
if vma.vm start <= task.mm.start brk and vma.vm end >= task.mm.brk:

continue

elif vma.vm start <= task.mm.start stack and vma.vm end >= task.mm.start stack:
continue
elif vma.vm end - vma.vm start > 0x1000:

proc_as = task.get process address space ()

maxlen = vma.vm end - vma.vm start

data = proc_as.zread(vma.vm start, maxlen - 1)

if data:

for match in rules.match(data = data):
for moffset, name, value in match.strings:
(usize,) = struct.unpack(‘I’, data[moffset - 4 : moffset]

i=20

offset = moffset
while 1 < usize:

(maptype,) = struct.unpack(’H’, datal[offset: offset+2]
(mapoffset,) = struct.unpack(’I’, datal[offset+8: offset+12]
if maptype == 0x1000:

yield task, vma, moffset - 4 - mapoffset, moffset

break

i+=1

offset += 12

def render text (self, outfd, data):
self.table header (outfd, [(”Task”, ”10”),
("VM Start”, ”[addrpad]”),
("VM End”, ”[addrpad]”),
("Dex Offset”, ”[addrl”),
("Map Offset”, ”[addr]”)])
for (task, vma, offset, moffset) in data:
self.table row(outfd, task.pid, vma.vm start, vma.vm end, offset, moffset - 4)

Listing 4: Apk_packer_find_dex plug-in.

items) of HEADER_ITEM must be one, while HEADER _ memory start and end offsets as well as the dex and map_list
ITEM_OFFSET should begin from 0x0000, and header_size is offset in the memory. Finally, the render_text() function accepts
always 0x70. All of these findings help to assign a specific the outputs and prints the data on screen in a standard fashion.
search string for $hex in the YARA rule.

Once the offset of the map_list has been discovered, lines 41-47 4.3 From memory dump to ‘original’ dex file

in the calculate() function keep scanning map_list to find We use quotation marks around the word ‘original’ because we
TYPE_MAP_LIST and the corresponding map_list_offset. Line can’t acquire the raw dex file: Bangcle inserts its monitoring

48 uses yield to generate a list of outputs including virtual code into the original dex file before packing, and it is difficult

273

274

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

= Ol o [0} Dl | 8w
X e I I O T I < v < vl 0 I B
§ oo |9 Fle awl C =5 lalolalolwllal®l e
il Eld|w G TR N I R T I B 1 B P B R s
ol 2389 a|%lala|ll] el lalal8lald]a]%
Nale|olal® HNw|%lo|w|B|la|2|2|c|8|c|v|C|lu|H|un|°
ol 2w IE=RE= Holal~ds|2|T|a|C|alal~|oll |
n,mu:mmmxx |I,._|-;-|-r-| 1l lll'UT’ru"’
A R P =B AR AR I I = T I O TRl B e I = TR R e
L] Slalal 598 la|ldlgle|Elo|2|8 0|8 |a|0|S|n|l|a|8
o S e I I =T R SlHl8lalv|la|~|lal2|ls|aln|g|o
T | o o > | 0] D ©
& @ g3le 3‘ I BI-H el R T A
rg:) w | 9 jor) L £ Bl |©
map list
item num DWORD
TYPE HEADER ITEM 0x0000 | unused |size 0x0001 [offset 0x0000
TYPE STRING ID ITEM 0x0001 | unused |size offset 0x0070
TYPE TYPE ID ITEM 0x0002 | unused |[size offset
TYPE unused |size offset
TYPE unused |[size offset
TYPE unused |[size offset
TYPE unused |[size offset
TYPE unused |[size offset
TYPE unused |[size offset
TYPE unused |[size offset
TYPE unused |[size offset
TYPE unused |[size offset
TYPE _MAP_LIST 0x1000 | unused |size map_list offset
TYPE unused |[size offset
TYPE unused |[size offset
TYPE unused |[size offset
Table 3: The header_item and map_list structure in a dex file, and their relationship.
$ python vol.py --profile=LinuxGolfish-2 6 29ARM -f lime.dump apk packer find dex -p 876
Volatility Foundation Volatility Framework 2.3.1
Task VM Start VM End dex Offset Map Offset
876 0x4c10d000 0x4cla4d000 0x28 0x8ffc8
Listing 5: Example output of the apk_packer_find_dex plug-in.
R (6 porched_vmmder =T

(D) | |FaES | B R T =T
0ooo C1 11 05 00 97 1C 05
ooio
oozo

9 A B C D E F 01234567859ABCDEE

oo4o0
ooso
00s0
oo7o
ooso
ooso
00a0
O0ED
ooco
oooo
O0ED
00FD
01oo
0110
0120

(0] (S B [T (T | = e

0000 B4 65 78 0A 30 33 35
0010
0020
0030
0040
0050
0060
0070
00s0
0090
0020
00D
n0co
0000
O0ED
00FD
0100
0110

A B CT D E F 0123456789ABCDEH

01z0

Figure 8: Patch DEX_FILE_MAGIC back into an unpacked Ijiami dex file.

to restore the first 0x28 bytes in the header section for an [jiami
dex file. However, the closest to the original dex file can be
acquired using the following four steps:

1. Get the process ID of the target application by using
Linux_pslist.

2. Locate the header and map_list offset of the unpacked

dex file by looking at the apk_packer_find_dex plug-in
output (shown in Listing 5).

3. Dump a memory range specified by the Linux_dump_
map plug-in to disk.

4. Patch DEX_FILE_MAGIC back if required, for
instance, into an unpacked dex file from [jiami packer.

VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS

5. CONCLUSIONS

This paper provides an overview of the most popular Android
packers: Bangcle, ApkProtect and [jiami. It demonstrates the
working principles of each in terms of static and dynamic
analysis. Moreover, the paper describes some particular
characteristics including dex header modification by Ijiami as
well as the anti-ptrace technique employed by Bangcle.

A series of challenges have been discussed in section 3. These
challenges include the explosive increase of Android malicious
applications packed by three different packers, the inefficiency
of existing reversing engineering tools, the failure of dynamic

analysing systems, the anti-debug features, and the obstruction
of generic detection.

Section 4 delivered an outline of the Volatility project. The
Volatility project provides an open and complete framework for
memory extraction and investigation. Volatility supports
memory dump from Windows, OSX, Linux and Android, and
supplies plenty of plug-ins for memory analysis. However, a
customized plug-in named apk_packer_find_dex has been
created to explore the process map list and locate the offset of
the unpacked dex file in memory. We also demonstrated the
acquisition of the original dex file with DEX_FILE_MAGIC
patching.

In conclusion, the paper provides a practical solution for
acquiring the original dex payload for a packed Android
application. However, developing an efficient and effective
detection solution for packed malware is a complicated task as it
is impossible to unpack a piece of packed malware and detect
the payload in the real world. On account of the background and
information given in section 2, a detection solution can be based
on a combination of AndroidManifest.xml, the size of the
encrypted payload, resource files, and resources.arsc.

6. REFERENCES

[1] Guo, F.; Ferrie, P. Chiueh, T.-C. A Study of the Packer
Problem and Its Solutions. Symantec Research
Laboratories, Pages 98 — 115, ISBN: 978-3-540-87402-
7.

[2] http://developer.android.com/reference/android/app/
Application.html.

3] Android on x86: Java Native Interface and the Android
Native Development Kit. http://www.drdobbs.com/
architecture-and-design/android-on-x86-java-native-
interface-and/240166271.

[4] http://blog.csdn.net/pxb1988/article/details/17167795.

[5] http://blog.csdn.net/androidsecurity/article/
details/8892635.

[6] http://fireeye.ijinshan.com/analyse.html?mdS=ac8a265
6fb865a854bfc906cec744947&shal=f8435c148596399
4b778d28c36ad34613369f26b&type=1.

[71 LiME - Linux Memory Extractor. https://code.google.
com/p/lime-forensics/.

[8] https://code.google.com/p/volatility/wiki/
AndroidMemoryForensics.

(9]

[10]
(1]

[12]

[13]

[14]

Getting Started: Building Android From Source.
http://xda-university.com/as-a-developer/getting-
started-building-android-from-source.

http://source.android.com/source/building.html.

https://lime-forensics.googlecode.com/files/LiME_
Documentation_1.1.pdf.

Volatility — An advanced memory forensics framework.

https://code.google.com/p/volatility/.

Macht, H. Live Memory Forensics on Android with
Volatility. https://www1.informatik.uni-erlangen.de/
filepool/publications/Live_Memory_Forensics_on_
Android_with_Volatility.pdf.

https://code.google.com/p/volatility/wiki/
Vol20PluginInterface.

275

