
UNVEILING THE KERNEL... ZAKI & HUMPHREY

239VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

UNVEILING THE KERNEL:
ROOTKIT DISCOVERY USING

SELECTIVE AUTOMATED KERNEL
MEMORY DIFFERENCING

Ahmed Zaki & Benjamin Humphrey
Sophos, UK

Email {ahmed.zaki, benjamin.humphrey}@
sophos.com

ABSTRACT
As an increasing number of automated malware analysis systems
become mainstream, the emphasis on the relevance of the data
extracted from the analysis task increases. Conceptually,
automated malware analysis systems provide information about
a sample and also identify modifi cations to a computer system
induced by the sample. Traditionally, the focus of such analysis
systems has primarily been on monitoring process, disk and
network-level behaviour with varying levels of granularity.
While providing a varied set of information, these systems offer
limited ability to identify and classify rootkits. The very nature
of rootkits makes them hard to classify (and in some cases even
detect) using these scanning techniques. Kernel memory
modifi cations can indicate that samples are trying to conceal
information or hijack execution paths, thus exhibiting malicious
behaviour. In an environment with a large throughput of analysis
jobs, the need arises for an effi cient and accurate way to identify
such complex threats that could otherwise be misclassifi ed or
pass unnoticed. We present a system for identifying rootkit
samples that is based on automated analysis. In this system we
recognize the performance and memory constraints of a high-
throughput environment; instead of monitoring modifi cations to
the whole memory, we capture changes to data structures and
memory regions that, on a Microsoft Windows operating system,
are known to have been targeted by rootkits in the past. We
explain the reasons behind the design decisions and how they
have refl ected on identifying different classes of rootkits. In our
research, we also explore the effectiveness of using this model as
a standalone component to identify malicious behaviour. In order
to do this, we run a large set of known clean versus malicious
fi les to identify traits that could be indicative of malicious
activity.

1. INTRODUCTION
The volume of malware is increasing exponentially. The number
of samples seen by anti-virus vendors each day now exceeds the
personnel resources available to analyse and classify them. In
order to reduce the workload, automated analysis systems are used
to identify, classify and cluster samples based on their malicious
behaviour. Using static (examining fi le attributes) and dynamic
(behavioural) techniques, these systems examine each sample, and
usually make a reasoned assumption about its maliciousness.

Kernel-mode rootkits pose a particular problem when it comes to
automated analysis. A rootkit is ‘malicious software that allows

an unauthorized user to maintain access to a computer by
concealing programs and processes, fi les, or data from the
operating system’ [1]. Kernel-mode rootkits are a sub-class of
rootkits that introduce changes in the kernel memory of an
operating system to conceal or manipulate information provided
by the kernel itself. Examples of kernel-mode rootkits include
Necurs [2], TDL [3] and Turla [4]. A rootkit’s ability to hide in
the operating system increases the likelihood that automated
analysis systems will fail to produce any intelligible data. Tools
such as GMER [5] can be used to detect rootkit activity, but scan
times can be long and the tools can be cumbersome to automate.
In an environment where the throughput of samples is in the tens
of thousands, speed of analysis is certainly an issue.

To create an automated analysis system that can detect kernel
mode rootkits, it is necessary to create a reliable method of
identifying rootkit-like behaviour that is effi cient and fast to keep
analysis times to a minimum. We propose a system that fulfi ls
these criteria, based on the Cuckoo Sandbox [6] modifi ed to use
the Sophos AV engine. Using the engine, selected areas of the
kernel are extracted and saved to create ‘Before’ and ‘After’
snapshots to identify the changes made to the kernel. By
examining these changes it is possible to identify rootkit activity.

2. SYSTEM SPECIFICATIONS
We use a Windows 7 SP1 x86 virtual machine in a VirtualBox
virtualization environment, version 4.3.10. The kernel memory
differencing is implemented as part of a Cuckoo Sandbox
installed on Ubuntu OS version 12.04.

The guest virtual machine has the Sophos anti-virus engine
installed by default. Detections are reported as part of the
analysis information and sent to the host component. Once a
sample executes, a kernel memory scan is started by the analyser
inside the guest machine. In addition to scanning for known
malware traits in kernel memory, the scan dumps specifi c kernel
structure information to disk in JSON format. (More on this data
is explained in Section 2.1.) This data is saved to the server
module with other standard behavioural analysis information as
part of each analysis.

In order to capture kernel memory changes made by the sample,
we need a baseline snapshot of the kernel data before execution
of the sample (the baseline data). The baseline data is associated
with a virtual machine snapshot. Each snapshot has a unique
identifi er and baseline data. The baseline data is generated by
performing a dummy analysis with no fi les submitted. The
results of the analysis are tagged as baseline data, and
comparisons are made with data obtained from subsequent
analysis tasks.

Cuckoo

We utilize the Cuckoo Sandbox as a base framework for
automating sample analysis. Cuckoo Sandbox is an open-source
malware analysis system [6]. It supports running different types
of fi les using different virtualization technologies.

Cuckoo Sandbox’s modularity makes it ideal for our purposes. It
can be split into a host-side management component and a
guest-side component running in a virtual machine (VM). The

UNVEILING THE KERNEL... ZAKI & HUMPHREY

240 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

host-side component is responsible for the core execution of the
analysis task: starting a VM, preparing an analysis task for
execution (packaging the guest-side components that run inside
the VM to collect analysis information), collecting the raw data
resulting from the analysis, processing it, and fi nally running a
set of signatures and reports to present the results. The
guest-side component runs selected modules packaged by the
host-side component and returns the results to it [6].

Cluster requirements
In building an effi cient automated analysis system capable of
processing high sample volumes, both time and stability are key
requirements. We did not want the time taken to complete a job
to extend beyond four minutes. This time interval captures the
total time from the sample submission to the report generation.
By adhering to this requirement we could be confi dent that our
system would work effi ciently in a cluster environment.

We can split the overall task into three main time frames:

1. Preparation and initialization – starting the VM and
sending the sample to the VM for execution and analysis.

2. Analysis – running the sample in the VM, returning the
raw data for processing, and powering off the VM.

3. Processing and reporting – kernel memory data
differencing and executing the signatures against the
processed results.

Using generic anti-rootkit tools inside the VM was not feasible
due to the time it takes to complete a scan (minutes with some
tools), the inconsistent formats of the log fi les produced by the
various scanners, and the footprint some of them have on the
kernel memory, which taints the collected information. A tool
like GMER [5], for example, could take more than two minutes
to perform an exhaustive scan.

We measured the time taken for the kernel memory data to be
produced with our additions, and it added 10–15 seconds to the
standard analysis time. The default time taken from the point the
VM stops until the report is produced can be between 20 and 80
seconds. The time is dependent on the amount of processing
performed on the raw results retrieved from the job, the number
and performance of the signatures that are run on the results,
and the type of report to be produced. On evaluating our
signatures and the differencing mechanism, we found that the
added time is between one and two seconds.

Given the minimal amount of time added, we decided to
maximize utility. We used a default analysis timeout of 120
seconds and set our kernel memory scan to start after 105
seconds. By using those intervals we allowed more time for the
sample to run and make changes to kernel memory and disk so
that the changes would be picked up during the scan. We are
aware that this setting could be costly in a cluster environment,
since many samples do not execute in automated systems and
thus we would be wasting the 120 seconds. The timeout and scan
start settings can be altered to reduce the delay before the scan.
The benefi t for us was that the feature did not add a signifi cant
time delay in producing the necessary information.

The overall analysis task time from sample submission to report
generation using VirtualBox on a standalone machine took

between three and four minutes. This included the initialization,
analysis and reporting time. This length of time is acceptable in
a cluster environment.

2.1 Usage of the Sophos AV Engine

The requirements for the kernel examination component of this
system are:

• A presence in the kernel.

• The ability to dump areas of kernel memory selected at
runtime.

• The ability to write dumped memory to a JSON fi le.

The decision to use the Sophos AV engine to gather the
required data was based on it meeting the above requirements.
The Sophos AV engine is already capable of dumping and
scanning kernel memory, negating the need to design and
implement new software to do so. Since we were already using
the Sophos AV engine to scan for malicious traits during
analysis, we decided to leverage its presence to gather the
desired information.

Selecting the areas of the kernel to examine

To select which areas of the kernel to examine, it is necessary to
understand what effect kernel-mode rootkits have on the kernel.
For a kernel-mode rootkit to have a presence in the kernel it
must load a driver. The driver will then modify various functions
or pointers to hide malicious activity from the user, other
programs, and sometimes from itself.

Drivers

A driver object represents an individual driver in the system [7].
The DRIVER_OBJECT structure contains information about a
driver including its name, initialization routine, unload routine,
a pointer to the loaded driver image, a pointer to its device
object, and its MajorFunction dispatch table.

When a rootkit loads its driver, a DRIVER_OBJECT structure
is created for it. The DriverStart fi eld points to the loaded image
of the rootkit driver. When the initialization routine is executed,
as well as creating its own driver object, a rootkit driver can
modify the driver objects of other drivers.

To track changes, driver objects and device objects are
enumerated, and data from each is extracted and dumped. For
speed and memory effi ciency, only specifi c fi elds from the
structures are dumped.

Modules
A kernel module is a loaded image fi le that resides in kernel
address space. The address space typically comprises drivers
and the Windows kernel. Currently, the information dumped to
the JSON fi le is minimal, consisting of the module name, image
base and module size. By comparing before and after snapshots
of the module list, it is possible to tell which modules have been
added (indicating the possible presence of a new driver), and
which modules have been changed. Changes to the image base
or size of a module suggest that the module has been replaced,
thus indicating the presence of a rootkit.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

241VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

System Service Dispatch Table (SSDT)

The System Service Dispatch Table (SSDT) is an array of
function pointers that resides in kernel address space. The entries
in the array reference core functions exported by the Windows
kernel (e.g. ntoskrnl). These functions provide an interface for
user-mode programs to perform tasks such as opening a fi le or
querying a directory. By modifying the address of a function
pointer or the code that an entry points to, rootkits can hook a
function and control the data that is passed to and from it.

To detect changes to the SSDT, the entire table is dumped. The
addresses in the table are checked (during processing) against the
ones saved in the baseline snapshot to detect any hooks. Typically,
when the code of a function is hooked, an assembly language
‘jmp’ instruction is written to the beginning of the function which
jumps to hook the code. To detect such code hooks, the fi rst eight
bytes of each function are also dumped, to enable the processing
module to compare them against the baseline snapshot.

Interrupt Descriptor Table (IDT)

The IDT is a processor-specifi c array that has 256 entries. Each
entry (an interrupt vector) in the array contains information about
its corresponding interrupt handler. Interrupts are operating
system conditions that divert the processor to code from the
normal fl ow of execution of a program [8]. These interrupts are
called (using the INT x assembly language instruction) by both
hardware and software. As defi ned by Intel, the fi rst 32 entries are
reserved for exceptions [8] (i.e. INT 0 - Division by 0), and the
rest are ‘user’ defi ned. The Windows operating system and various
core system drivers also install interrupts, but there remain spare
entries that rootkit developers can use to their advantage.

The entire IDT for each processor is dumped to the JSON log to
enable us to fi nd new IDT additions and hooks.

Callbacks

A callback is a function that is executed on completion of a
specifi c event. The Windows operating system provides routines
that allow driver writers to register callbacks on a number of
events that rootkit writers can exploit. The routines that are of
most interest are:

• CreateProcessNotify – triggered when a new process is
created

• LoadImageNotify – triggered when a new image is loaded

• CreateThreadNotify – triggered when a new thread is
created

• CmRegister – triggered when an operation is performed on
the registry.

A rootkit registering any of these callbacks will be able to hide
processes, images, threads or registry entries upon creation.

The callbacks of each type are enumerated and added to the
JSON log.

Disk information

Rootkits reside in kernel address space, but bootkits begin
outside the operating system. Their execution begins in either a

modifi ed Master Boot Record (MBR) or a modifi ed Volume
Boot Record (VBR). A common task of a bootkit is to load a
driver, typically from hidden storage at the end of the disk,
which may proceed to hide the modifi ed MBR/VBR. As the
bootkit executes before the operating system is fully started, it
can bypass detection by security software.

To detect the presence of a bootkit, checksums of the MBR and
VBRs for all partitions are written to the JSON log. In addition
to the initial boot code, the MBR also contains the disk’s
partition table [9]. The entire partition table is also dumped and
written to the JSON log so that changes in partition location/
size (also indicative of a hidden fi le system) can be detected.

2.2 A processing module

Cuckoo’s processing modules are Python scripts that analyse the
raw data from the guest-side component of the sandbox and
append the result to a global data structure [6]. To identify
changes in the kernel data we had to add a custom processing
module that would compare the data received from the analysis
to the baseline data associated with the guest machine. Since
new analysis tasks are started from the same snapshot, we do
not encounter noise caused by ASLR in kernel memory space.

After differencing both data structures and identifying any new
changes, the processing module produces two dictionary
objects. One object encompasses all the changes identifi ed (the
diff object), while the second object includes all the information
retrieved from the analysis task (the task object). Both objects
are then appended to the global container which holds
information produced by other processing modules. The task
object will include information about driver objects, modules,
kernel callbacks, the system service dispatch table, the
interrupt descriptor table and hashing of the master boot record,
along with information about each partition defi ned in the
partition table.

The diff object will show whether information has been
changed, added or deleted. The comparison mechanism is
agnostic to the number or name of the data; it assumes both
objects are JSON formatted. Post comparison, noise is cancelled
from the diff object. We identifi ed noise heuristically and used a
list approach to identify driver objects and modules that we do
not include in the diff output. We decided to exclude noise
coming from the following modules, since it was almost always
due to paging in:

• \windows\system32\autochk.exe

• \systemroot\system32\drivers\kmixer.sys

• \systemroot\system32\drivers\spsys.sys

• \systemroot\system32\drivers\asyncmac.sys

• \windows\system32\devobj.dll

• \windows\system32\setupapi.dll

Some drivers will experience the creation of devices once the
execution starts, while others will change DEVICE_OBJECT
addresses. The device object attached to \Driver\usbhub named
‘\Device_HID00000000’ gets a different address each time the
job starts. The same problem occurs for \Driver\mouclass,
which is the class driver for all mouse devices. Namely, a

UNVEILING THE KERNEL... ZAKI & HUMPHREY

242 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

‘\Device\PointerClass’ DEVICE_OBJECT gets a different
address. This different DEVICE_OBJECT gets attached to the
list of devices of \Driver\mouhid and \Driver\hidusb.

We also found less common cases of \Driver\swenum and
\Driver\asyncmac having devices attached to them, so we also
fi ltered noise coming from them.

The drivers from which noise was fi ltered were:

• \Driver\mouhid

• \Driver\usbhub

• \Driver\mouclass

• \Driver\hidusb

• \Driver\umbus

• \Driver\asyncmac

There was noise introduced in the SSDT information returned
due to paging of certain portions of the ntoskrnl.exe. We
excluded all changes introduced due to paging out, and tagged
data that had been paged in.

2.3 A driver analysis package

Cuckoo uses separate packages to instruct the analyser inside
the guest machine to conduct the analysis procedure [6]. By
default, Cuckoo provides packages to handle running dynamic
link libraries (DLL), PDF, VBS and DOC fi les, among other
packages. Cuckoo Sandbox is unable to process driver fi les for
analysis by default. Since kernel-level malicious alteration is
normally introduced by a malicious kernel module, we wanted
the ability to run driver fi les alone to capture their pure
behaviour.

The driver analysis package (sys package) gets invoked if the
analyser identifi es that the fi le is of native type. Since our guest
machine is 32-bit, we restricted the analysis package to 32-bit
driver fi les.

The sys package will invoke Sc.exe, which is provided in the
Windows Resource Kit to register the service. This is done by
running the command:

sc create newservicebinPath=<C:\path_to_fi le.sys>
type=kernel start=auto error=normal

The default parameters used to create the service are:

• Servicename=newservice

• Type=kernel

• Start=auto

• Error=normal

Each parameter can be changed by the user when a sample is
submitted for analysis.

‘Sc create’ is the equivalent of calling the CreateService Win32
API.

The sys package supports two ways to execute the driver fi le.
The default method uses the NtLoadDriver Windows API. The
other method for execution is using sc.exe by running the
command:

sc start newservice

This is equivalent to calling the StartService Win32 API.

Using sc.exe, which is a command-line interface to the service
control manager, takes care of the prep work necessary to
register a service in the service control manager database.

‘sc create’ creates the service registry key under HKLM\System\
CurrentControlSet\services, which both NtLoadDriver and
‘sc start’ use to start the service. The sys package also provides
an option to try both methods (sc.exe and NtLoadDriver) to
check which one succeeds.

2.4 The signatures
Cuckoo provides an easy way to interpret the results of an
analysis by matching the results via signatures. The signatures
will look for predefi ned patterns in the results and fl ag them if
they are present [6]. Each signature has an attribute called
‘severity’ that is used to defi ne how malicious a signature is.
This allows a user to write purely informative signatures in
addition to ones that indicate malicious behaviour. (We explain
more about the values we assigned to each signature to build a
malicious index in section 3.2.)

We have written a set of signatures in order to identify certain
modifi cations to the kernel data retrieved from an analysis task.
Table 1 shows the signatures and their defi nitions.

2.5 The report
We built a template in the Django framework used by Cuckoo to
show all the information we gathered from an analysis task. The
report is split into seven tabs, with each tab showing the
information specifi c to a certain category in the results data
container.

Kernel memory changes
This category shows the changes to the kernel introduced during
the analysis. For example, in Figure 1 we can see that a new
device was attached to \Filesystem\FltMgr and \Filesystem\
RAW. Also, the MBR SHA1 has been changed.

Drivers
This section shows a breakdown of all the driver objects found
in kernel memory after running the sample. The breakdown also
shows the I/O request packet handlers for each object.

Modules
This section shows all modules found on the system by
enumerating the linked list of modules starting with ntoskrnl.exe.
For each module we get the name, address and size.

SSDT
This section shows the entries in the system service dispatch
table. For each system call we get its address and starting bytes.
This shows if any inline hooks are added to the system calls.

Callbacks
These sections show any callbacks installed by any drivers. For

UNVEILING THE KERNEL... ZAKI & HUMPHREY

243VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Signature name Defi nition

generic_new_driver Flags driver objects that have been created in the analysis job.

generic_modifi ed_driver Flags changes to already existing driver objects.

generic_deleted_driver Flags driver objects that have been deleted during an analysis job.

generic_new_module Flags new modules created during an analysis job.

generic_deleted_module Identifi es modules that were present before the analysis job took place, but which aren’t present anymore.

generic_modifi ed_module Identifi es changes to properties such as size or address of a module.

generic_ssdt_hook Identifi es changes to the system service dispatch table. Namely, changes in the address of any of the
system calls (and fl ags them).

generic_idt_hook Identifi es changes to the interrupt descriptor table of any processor.

generic_new_callback Identifi es new driver-supplied callbacks. We check:

• LoadImageNotify

• CreateThreadNotify

• CreateProcessNotify

• CmRegister (registry callbacks)

generic_modifi ed_callback Identifi es changes to the table holding driver-supplied callbacks.

generic_attached_device Identifi es new devices added to driver objects.

generic_modifi ed_mbr Identifi es if the SHA1 checksum of the MBR has changed during the analysis.

generic_modifi ed_vbr Identifi es if the SHA1 checksum of the VBR has changed during the analysis

generic_modifi ed_eod_size Identifi es if the size of the unformatted region beyond the fi le system at the end of disk has changed
during the analysis.

Table 1: Signatures and defi nitions.

Figure 1: A new device attached to \Filesystem\FltMgr and \Filesystem\RAW.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

244 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

each callback we list its type, the driver path that installed it, the
address and SHA1 of the driver.

MBR

This section contains information available in the MBR and its
SHA1. In addition to listing each partition’s detailed
information by parsing the partition table entries, we also list

the SHA1 of the VBR that this partition points to and the
address of the last sector of the formatted fi le system and the
last sector of disk.

IDT

This section shows the descriptors in the interrupt descriptor
table. For each descriptor we show its type and address.

Figure 2: Drivers.

Figure 3: Modules.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

245VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

3. RESULTS

Approach

To assess the effectiveness of the system we tested three groups
of samples. First, we picked a group of rootkits that were
thoroughly documented and compared the results obtained from
running the samples in our systems versus the behaviour
documented by researchers. We also ran a set of known malicious
driver fi les and a set of known clean driver fi les to analyse the
results. Finally, we ran a set of known malicious standard
executables and analysed the results obtained from them.

3.1 Known malicious rootkits

We picked a group of four well documented and researched
rootkit samples to assess against our system. In cases where the
report or blog article about the sample contained SHAs, we used
those, otherwise we selected SHAs which we had previously
analysed.

TDL

TDL has many variants. We tested a variant that employs an
MBR infection technique to load its malicious driver. TDL4 is
discussed thoroughly in [10, 11]. According to [10], on an x86

Figure 4: SSDT.

Figure 5: Callbacks.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

246 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

system, the kernel-mode drivers are tasked with maintaining the
hidden fi le system to store the bootkit components, injecting the
payload into system processes, and performing self-defence.
The dropper tries to employ the print spooler provider load
method to load its driver in kernel memory. The sample we
looked at employed direct writes to disk by getting a handle to
PhysicalDrive0 using NtCreateFile, and then used a sequence of
DeviceIOControls to write to the disk, as explained in [11].

The SHA of the sample we analysed was c46ac210e06aad56dda
12df3c0ccebb45108a745. Figures 8 and 9 show the changes
introduced in the kernel.

\Filesystem\RAW

{u’devicename’:u’(unnamed)’,

u’devobj_extension’:

 {u’deviceobject’: u’0x8482c030’},

u’driverobject’: u’0x83e1f1b8’,

u’deviceobject’: u’0x8482c030’,

u’attacheddevice’:

 {u’devicename’: u’(unnamed)’,

 u’devobj_extension’:

 {u’attachedtoname’: u’(unnamed)’,

 u’attachedtoobject’: u’0x8482c030’,

 u’deviceobject’: u’0x84895710’},

Figure 6: MBR.

Figure 7: IDT.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

247VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

 u’driverobject’: u’0x84a41c40’,

 u’deviceobject’: u’0x84895710’,

 u’drivername’: u’\\FileSystem\\FltMgr’,

 u’type’: u’FILE_DEVICE_DISK_FILE_SYSTEM’},

u’drivername’: u’\\FileSystem\\RAW’,

u’type’: u’FILE_DEVICE_DISK_FILE_SYSTEM’}}]}

\Filesystem\FltMgr

{u’devicename’: u’(unnamed)’,

u’devobj_extension’:

 {u’attachedtoname’: u’(unnamed)’,

 u’attachedtoobject’: u’0x8482c030’,

 u’deviceobject’: u’0x84895710’},

u’driverobject’: u’0x84a41c40’,

u’deviceobject’: u’0x84895710’,

u’drivername’: u’\\FileSystem\\FltMgr’,

u’type’: u’FILE_DEVICE_DISK_FILE_SYSTEM’}}]}

What we observe from the changes to the driver objects are the
changes seen in the DEVICE_OBJECTs relating to two drivers:

\FileSystem\FltMgr and \FileSystem\RAW. If we examine the
changes above, we see that a single device has been created and
attached to the device pointed to by \Filesystem\RAW. That
same device is now pointed to by \FileSystem\FltMgr. The
DEVICE_OBJECT is represented as the one at address
0x84895710.

Another change is in the MBR SHA which indicates that the
sample has written the malicious MBR to disk:

[{u’Original’:u’4b1713e6d41c71667f2af1681fad8be1e1011
63f’},

{u’Changed’: u’a192e0fa1db37219932b17ecdd23ad59e5c57e
f0’}]

Finally, there are changes in the SSDT that are the result of
paging in parts of the kernel. These are marked as paged in during
processing of the raw results. While they might not necessarily be
system calls made by the sample, they could lie within a page that
was paged in and thus show up in the differencing (see Table 2).

Figure 8: Changes introduced in the kernel.

Figure 9: Kernel memory changes.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

248 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Gapz

Gapz is a bootkit that is famous for its sophistication. It was
thoroughly analysed in [12]. Gapz comes as two different
variants: an MBR infector and a VBR infector. The
MBR-infecting version of the bootkit hijacks the boot process to
hook the int 13 handler. The VBR-infecting variant only alters a
DWORD: the ‘hidden_sectors’ value in the BIOS Parameter
block of the VBR, which will instruct the VBR code to transfer
control to a malicious loader instead of the standard IPL. The
kernel-mode changes include writing blocks of its malicious
kernel module to kernel memory in addition to hooks to IRP_
MJ_INTERNAL_DEVICE_CONTROL and IRP_MJ_

DEVICE_CONTROL handlers of the disk miniport driver. Both
variants employ the same kernel-mode component.

The SHA of the VBR infector we used was
1f206ea64fb3ccbe0cd7ff7972bef2592bb30c84. As documented
in [12], this sample injects the shellcode responsible for writing
to disk into explorer.exe. The sample gets a handle to the
volume and to the disk by calling NtCreateFile on
GLOBALROOT\ArcName\multi(0)disk(0)rdisk(0)partition(1)
and PhysicalDrive0, respectively. As with TDL, it issues a series
of DeviceIOControls to write to them.

As can be seen in Figures 10 and 11, the differencing identifi ed
a change in the VBR for partition 0.

NtDeletePrivateNamespace {u’startbytes’: {u’Added’: u’8bff558bec83ec10’, u’PagedIn’: 1}}

NtSaveKey {u’startbytes’: {u’Added’: u’8bff558bec83e4f8’, u’PagedIn’: 1}}

NtPulseEvent {u’startbytes’: {u’Added’: u’6a1468a8e6982e8’, u’PagedIn’: 1}}

Table 3: Changes in the SSDT that are showing as paged in calls.

Figure 10: A change in VBR is noted.

Figure 11: A change in the VBR for partition 0 is identifi ed.

Figure 12: MBR.

NtDeletePrivateNamespace {u’startbytes’: {u’Added’: u’8bff558bec83ec10’, u’PagedIn’: 1}}
NtQueryInformationJobObject {u’startbytes’: {u’Added’: u’6890010068d051’, u’PagedIn’: 1}}
NtSaveKey {u’startbytes’: {u’Added’: u’8bff558bec83e4f8’, u’PagedIn’: 1}}
NtGetNextThread {u’startbytes’: {u’Added’: u’6868010068180f’, u’PagedIn’: 1}}
NtPulseEvent {u’startbytes’: {u’Added’: u’6a1468a8e6982e8’, u’PagedIn’: 1}}

Table 2: Changes in the SSDT that are marked as paged in during processing of the raw results.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

249VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

{u’vbrsha1sum’: [{u’Original’: u’7a781423dbb768786a816
33441f8d533594583f5’},

{u’Changed’: u’64f08b44562578234af25a1cfef84d2bccf1a5

’}]}

We can also see changes in the SSDT that are showing as paged
in calls (see Table 3).

In our standard system set-up we did not capture the changes
introduced in kernel memory during our standard test. We caught
the write to the VBR, which is suffi cient indication of malicious
behaviour. The reason we could not see the kernel memory
changes is because the dropper requests a reboot in order to kick
off the VBR/MBR loading of its kernel-mode component.

Turla (a.k.a. Uroburous, Snake)
In March 2014, German security fi rm G Data released a red
paper which contained an analysis of the Uroburous rootkit
[13]. Shortly afterwards, BAE Systems also released a
comprehensive white paper on the rootkit [4]. The G Data paper
indicated that the rootkit may have been involved in a Russian
cyber attack against the US. Due to tensions between Russia
and Ukraine at the time, multiple news companies covered the
story, including the New York Times [14].

As described in [4] and [13], the rootkit comprises a driver and
a virtual fi le system that is contained in a fi le on the disk. The
rootkit creates an entry in the Interrupt Descriptor Table (IDT).

The code for several functions in the SSDT is then hooked with
an INT instruction (see [8] for details) that triggers the
malicious software interrupt. A parameter is passed to the
interrupt, identifying from which function it was called. This is
used to look up a function in a custom dispatch table which
executes the appropriate code for the hook.

From running an analysis on sample 39e492e839ad47ab6b5860
8f0f6b7290b52122eb, we get the results shown in Figure 13.
The results tell us that SSDT functions have been hooked, and
that the IDT has been modifi ed, which is consistent with the
behaviour of Turla.

Upon closer inspection of the SSDT (see Figure 14), we can see
that a number of functions have been modifi ed. Functions like
NtQuerySystemInformation and NtReadFile are often targeted
by rootkits.

The diff is showing that there is a difference in the fi rst eight
bytes of each function. Closer examination of the
NtCreateThread start bytes reveals that it is only the fi rst fi ve
bytes that have changed.

{u’startbytes’: [{u’Original’: u’682403006820b4’},
{u’Changed’: u’6a08cdc3906820b4’}]}

On translating the modifi ed bytes into assembly language we get:

6A08 push byte +0x8

CDC3 nt 0xc3

90 nop

Looking up the IDT entry at index 0xc3 on the IDT tab (see
Figure 15), we see that the code for the interrupt is located at
0x8495a2b0. Cross referencing this address with the IDT entry
in the kernel diff (Figure 16), we see that 0xc3 is the newly
added IDT entry.

Figure 15: Looking up the IDT entry at index 0xc3 on the
IDT tab.

Figure 16: Cross referencing 0x8495a2b0 with the IDT entry in
the kernel diff.Figure 13: Results of sample analysis.

Figure 14: A number of functions have been modifi ed.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

250 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Necurs

The Necurs rootkit was fi rst discovered in May 2011 [15], but
became well established in 2012. It was one of the fi rst
widespread rootkits to target x64 systems. It was originally
packaged with fake anti-virus malware, but recently it has
been used with the infamous Gameover Zeus variant [16].
Although it has been around for a while, the rootkit is as
prevalent as ever.

Necurs is the name for the kernel-mode part of the rootkit. It
consists of a driver fi le which, when installed on a system,
works alongside other malware to hide its presence and make it
diffi cult to remove. The way this is achieved differs depending
on the processor architecture and operating system of the host
computer. As our analysis system is only running on x86
Windows 7, we will only discuss the effects of the rootkit on this
particular set-up.

When Necurs is installed on Windows 7, a service is created and
the malicious driver is loaded. The driver hides the service and
the driver fi le on disk by installing a fi le system fi lter driver. It
also installs a LoadImageNotify callback to control which
programs can be loaded.

By looking at the signatures (Figures 17 and 18) after running a
Necurs sample (412769f14bbc629a16208cda5fd6dc25e5f8e8bb),
we see that a number of kernel modifi cations have occurred.
These indicate that a new driver and a new callback have been
installed.

Figure 17: Signatures after running a Necurs sample.

Figure 18: Signatures after running a Necurs sample.

Closer examination of the driver object (Figure 19) shows a
name but no path. This means that our system could not access

the driver. The most likely reason for this is that the driver is
hidden. Something is hiding it from the fi le system, yet the
driver object exists in memory. While this is not necessarily a
malicious trait, it is certainly suspicious, and is worth
investigating further.

Figure 19: Closer examination of the driver object.

The next point of interest is the addition of device objects. By
looking at the kernel diff (Figure 20) we see that a device has
been added to /FileSystem/FtlMgr, which is the fi le system fi lter
manager. This is defi nitely of interest. Examination of the added
data shows that the driver object related to the added device
belongs to the newly added driver.

Similarly, examining the callback that has been added (Figure
21) also reveals that the code for the callback is contained in the
newly added driver.

To summarize, the scan has revealed:

• A new driver that is hidden

• A fi le system fi lter

• A LoadImageNotify callback

This collection of traits is indicative of rootkit-like behaviour,
and is consistent with the behaviour of the Necurs rootkit.

3.2 Building a malware index using kernel
memory differencing

To assess whether kernel memory differencing can be used to
build a metric to decide if a sample is malicious, we performed
two experiments. In the fi rst experiment, we ran a group of
malicious and clean 32-bit driver fi les and observed the changes
in the kernel introduced by running the drivers. In the second
experiment we ran a set of malicious standard executable fi les to
fi nd out what proportion of them introduced kernel memory
changes.

Figure 20: A device has been added to /FileSystem/FtlMgr.

Figure 21: Examining the callback.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

251VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Running a set of driver fi les
We observed from our fi rst experiment that not all successfully
loaded drivers produced kernel memory data. From the set of
successfully loaded malicious drivers, 82.3% produced kernel
memory data that could be used later for differencing. From the
clean set, 51.2% returned kernel memory data.

The reasons for failure were shared by clean and malicious
drivers. A common reason was insuffi cient time for the log to be
generated. Because the scan starts 105 seconds into the 120
seconds available for the analysis, and can take between 10 and
15 seconds, we sometimes miss the log by a second or two.
Since the agent terminates before the machine shuts down fully,
this is time taken from the 120 seconds. There is a trade-off
between speed of analysis and data gathered. Our testing
produced enough successful replication from malicious fi les for
an automated analysis system.

From a set of malicious driver fi les:
Total drivers successfully loaded: 1,854
Total tasks with kernel data retrieved: 1,525

Signature Number of hits Percentage

generic_new_driver 1524 99.9

generic_modifi ed_driver 1171 76.8

generic_deleted_driver 0 0

generic_new_module 1523 99.8

generic_deleted_module 0 0

generic_modifi ed_module 0 0

generic_ssdt_hook 30 1.96

generic_idt_hook 0 0

generic_new_callback 1332 87.3

generic_modifi ed_callback 0 0

generic_attached_device 1149 75.3

generic_new_device_links 1441 94.5

generic_modifi ed_mbr 0 0

generic_modifi ed_vbr 0 0

generic_modifi ed_eod_size 0 0

We expect that a successfully loaded driver would create a
driver object and a new module. All of the malicious drivers
created a new driver object on loading, except for one. This
driver installed ‘CreateProcessNotify’ and ‘LoadImageNotify’
callbacks pointing to an ‘unknown/module’, and installed inline
hooks at ‘NTEnumerateKey’ and ‘NtFlushInstructionCache’.
This is indicative of highly suspicious behaviour.

Figure 22: The driver installed ‘CreateProcessNotify’ and ‘LoadImageNotify’ callbacks.

Figure 23: Callbacks pointing to an ‘unknown/module’.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

252 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Another interesting fi nd was a sample that created a new driver
object upon loading, but which did not show a newly added
module in the differencing data. Looking at the job we fi nd that
the sample installs an SSDT hook by altering the VA of the
service function ‘NtMapViewOfSection’. Again, this is highly
suspicious behaviour.

From a set of running clean driver fi les:

Total drivers successfully loaded: 1,053

Total tasks with kernel data retrieved: 5,40

Signature Number of hits Percentage

generic_new_driver 539 99.8

generic_modifi ed_driver 98 18.15

generic_deleted_driver 0 0

generic_new_module 539 99.8

generic_deleted_module 0 0

generic_modifi ed_module 0 0

generic_ssdt_hook 15 2.77

generic_idt_hook 1 0.18

generic_new_callback 45 8.33

generic_modifi ed_callback 0 0

generic_attached_device 74 13.70

generic_new_device_links 472 87.40

generic_modifi ed_mbr 0 0

generic_modifi ed_vbr 0 0

generic_modifi ed_eod_size 0 0

These results show that the number of hits on newly created
drivers corresponds to the hits on the new module. This makes
sense, since a successfully loaded driver would also have added
a module. An interesting fi nding was that on the Windows 7
machine, the percentage of samples that installed SSDT hooks
was higher. Delving into those clean samples showed that they
were either security software drivers that installed hooks in the
SSDT or ones used for general system administration. For
example, in Figure 25 we can see the SSDT hooks installed by
regmon.sys from Microworld Technologies Inc.

Another interesting sample was a clean driver that installed an
IDT hook. Checking the results for that job shows that the driver
also hooks NtOpenKey and NtCreateKey. Furthermore, it
modifi es the disk driver object by hooking an IRP, namely
IRP_MJ_POWER. While it looks suspicious, this is actually a
driver from Aladdin Knowledge Systems called ‘aksfridge.sys’

Figure 24: The sample installs an SSDT hook by altering the VA of the service function ‘NtMapViewOfSection’.

Figure 25: SSDT hooks installed by regmon.sys from Microworld Technologies Inc.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

253VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

of ancillary function driver type. We are still investigating the
function of this driver.

PE results

We collected a set of malicious PE fi les (detected by a static
detection) and ran them for analysis to see whether our system
can identify rootkit behaviour from executables.

First, we observed that the percentage of jobs that produced
kernel memory data was much higher than any of the driver
replication sets. This is positive news for us, since PE fi les
constitute a large proportion of malicious fi les.

It is clear that the number of malicious PEs that induced
rootkit-like behaviour was not large. We can still infer useful
information by delving into the samples that triggered some of
those signatures.

We can see an example of a sample that created two new driver
objects in addition to installing an SSDT hook (Figures 26 and
27). This sample is detected as Troj/NtRootK-DJ. The sample
drops two driver fi les in %SYSTEM32%\drivers\. We could see
the two objects for the two drivers created in addition to the
SSDT hook installed below in the kernel memory differencing.
By comparing the VAs, we see that the SSDT hook lies in the
second driver.

Figure 28 is a screen capture of the kernel memory
differencing produced by a sample of Mal/DownLdr-BZ. The
sample drops a malicious driver fi le in several locations. The
dropped driver fi le is detected as Mal/Rootkit-X. We can see
that in the kernel memory differencing there is a newly
attached device object to the PnP Manager driver. This device
object is of type FILE_DEVICE_CONTROLLER. This could
indicate that the sample is trying to hide the existence of
malicious fi les. The type of the device in addition to the
location to which it is attached is suffi ciently interesting to
warrant further investigation.

Ranking severity

Combining the data for all the malicious fi les versus all the
clean fi les, we get a clearer picture of the high-contributing
signatures. It is important to note that our set of malicious fi les
is larger than the set of the clean fi les.

Total number of malicious fi les with kernel data: 1,828

Total number of clean fi les with kernel data: 540

Signature Malicious Clean Total hits

generic_new_driver 1536 539 2075

generic_modifi ed_driver 1185 98 1283

generic_deleted_driver 0 0 0

generic_new_module 1535 539 2074

generic_deleted_module 0 0 0

generic_modifi ed_module 0 0 0

generic_ssdt_hook 37 15 52

generic_idt_hook 1 1 2

generic_new_callback 1332 45 1377

generic_modifi ed_callback 0 0 0

generic_attached_device 1151 74 1225

generic_modifi ed_mbr 0 0 0

generic_modifi ed_vbr 0 0 0

generic_modifi ed_eod_size 0 0 0

Number of malicious PEs: 319

Number of malicious PEs with kernel memory log: 303

Signature Number of hits Percentage

generic_new_driver 12 3.9

generic_modifi ed_driver 14 4.6

generic_deleted_driver 0 0

generic_new_module 12 3.9

generic_deleted_module 0 0

generic_modifi ed_module 0 0

generic_ssdt_hook 7 2.3

generic_idt_hook 1 0.3

generic_new_callback 0 0

generic_modifi ed_callback 0 0

generic_attached_device 2 0.7

generic_modifi ed_mbr 0 0

generic_modifi ed_vbr 0 0

generic_modifi ed_eod_size 0 0

UNVEILING THE KERNEL... ZAKI & HUMPHREY

254 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Combining the results above with our experience in analysing
rootkits, we assigned maliciousness indexes to each signature
following the Cuckoo signatures severity style. In Cuckoo, a
signature’s severity fi eld indicates its maliciousness. For
example, a signature that triggers to highlight an action that is
usually performed by clean software will have the lowest
severity value of ‘1’. An action frequently performed by clean
software will trigger a signature of a higher severity value, ‘2’.
Actions that are largely only exhibited by malicious software
will trigger a signature that has the highest severity value of ‘3.’

Our previous assumption that modifying the IDT or the SSDT
should mainly be performed by malicious drivers proved to be
incorrect. It transpires that the registration of a new callback is
more suspicious than, for example, an SSDT hook. We showed
earlier how a clean driver installed an IDT hook in addition to
hooking the IRP table of the disk driver. An expected fi nding for

Figure 26: Two driver fi les are dropped in %SYSTEM32%\drivers\.

Figure 27: The SSDT hook lies in the second driver.

Figure 28: Kernel memory differencing produced by a sample of Mal/DownLdr-BZ.

us was the low severity of generic_new_driver and generic_
new_module, since this is behaviour that can be induced by both
clean and malicious fi les. Generic_ssdt_hook was also relatively
low, but we attribute that to the high number of clean software
security drivers in our clean set. Most of these will add SSDT
hooks for monitoring purposes. We decided to make the severity
of this signature medium. Generic_modifi ed_driver, generic_
new_callback and generic_attached_device provided most
results from this experiment. We can assign a medium severity
to those, since they are more likely to be performed by
malicious fi les. For the rest of the samples where we did not get
any hits, we assigned a severity based on past experience and
our understanding of how malicious rootkits operate.

It became obvious from the results that no single signature from
those that fi red is a clear indication of maliciousness. Some
were weighted when it came to malicious behaviour, but none
were suffi ciently high on their own. Some signatures failed to
trigger so we had to resort to our experienced opinion to assign
a severity level. Table 4 is a breakdown of the severity levels we
assigned to indicate maliciousness.

4. CONCLUSION
We have presented an automated analysis system that performs
kernel memory differencing, focusing on identifying rootkit-like
behaviour. After testing this system against some prevalent
rootkits and a set of clean and malicious drivers we can draw
several conclusions.

Primarily, we proved that the system successfully revealed
rootkit manipulations in the cases of the prevalent rootkits
tested. Although the system did not capture all the changes

UNVEILING THE KERNEL... ZAKI & HUMPHREY

255VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

documented by other researchers, we believe that in a
high-throughput cluster environment, the amount of information
provided will suffi ce to indicate maliciousness. Analysts using
the system can then perform extensive research on the sample.
Since the signatures can also match on specifi c data, this system
will provide the opportunity to cluster samples based on
induced kernel changes. For example, the system allows
clustering of samples that add devices to \Filesystem\FltMgr or
hook IRPs of the disk miniport driver. The signatures can even
validate IRPs outside drivers by checking the size and address
of ntoskrnl. Correlating changes in the kernel and validating
them can be done on static snapshot data, which ensures
authenticity, unlike trying to query volatile information on a live
system.

4.1 Future work
Although we are getting good results, work remains to be done
before the system is complete. First and foremost, the system
must reliably be able to replicate every fi le that it receives.

Exploring other areas of the kernel
It is still worth exploring the possibility of examining other
areas of kernel memory. For instance, checking the functions
exported by ntoskrnl for hooks (TDSS hooks IofCallDriver,
which is a function exported by the kernel). As part of our future
work we intend to improve the identifi cation of modifi cations to
modules. We currently only present the image base, size and
name of a module. Additionally, research will be done into
comparing individual kernel objects, to see if any useful
information can be obtained as long as the analysis processing
time is not increased too much.

Adding features
An obvious enhancement to the system would be the ability to
handle 64-bit fi les. At the moment the system does not have this

functionality, but with common rootkits [2] now infecting x64
systems, this would be a worthwhile improvement.

Straying from the kernel, investigation will be conducted into
the ability to detect user-mode rootkits building on the system
we have already. Families like Beta Bot [17] utilize user-mode
API hooking and other rootkit techniques in order to remain on
system. This would be useful information to get from an
automated analysis.

Finally, the reporting needs improvement in order to show
where the same device is being attached to several driver
objects. With more data being produced through the kernel
memory scan like objects, ntoskrnl exports, we also intend to
give more focus to devices.

Overall, we believe that such an automated system will provide
greater visibility into the state and prevalence of rootkits in the
wild. It will enhance the tracking of families and the
identifi cation of rootkit behaviour whether by clean or malicious
fi les. It functions as a system that could fl ag malicious
behaviour and also as an enabler to fl ag samples that could
prove to be worthy of further investigation.

Improvements to sample clustering
Sample clustering is not just a problem for rootkits, but for all
malware, with numerous papers being penned on the subject.
Identifying common behaviours and traits in large sample sets is a
problem every anti-virus vendor faces. The system presented in
this paper is not intended to solve sample clustering problems.
However, we believe that it can serve as a platform for identifying
behaviour exhibited by samples in ways that other systems
cannot. For example, many rootkits will typically install a service
and load a driver. This information alone cannot be relied on for
clustering purposes. Our system exposes information per service
and/or driver loaded, such as device names and types, that can be
used to cluster samples. While the usual static and dynamic
analysis methods provide a lot of data that can be used to cluster
samples, the ability to access, dump, and diff areas of kernel
memory gives a whole new dimension to the dataset.

Using the data exported by our system (as described in Section
2.1), it is possible to write signatures (as described in Section
2.4) which can be used to identify common traits. Clustering
samples that, for example, commonly hook the same APIs, or
insert devices into the device stack of the same drivers is a good
way to group rootkits into the respective families.

As the next stage of this project we would like to expose the
signature output to be utilized by our existing sample clustering
system to increase the accuracy of clustering rootkit samples.

REFERENCES
[1] Rootkit. Dictionary.com. http://dictionary.reference.

com/browse/rootkit.

[2] Ferrie, P. The curse of Necurs – Part 1. Virus Bulletin,
April 2014, p.4. http://www.virusbtn.com/pdf/
magazine/2014/201404.pdf.

[3] DrWeb. BackDoor.Tdss.565 and its modifi cations (aka
TDL3). http://www.drweb.com/static/BackDoor.
Tdss.565_%28aka%20TDL3%29_en.pdf.

Signature name Severity

generic_new_driver 1

generic_modifi ed_driver 2

generic_deleted_driver 1

generic_new_module 1

generic_deleted_module 1

generic_modifi ed_module 2

generic_ssdt_hook 2

generic_idt_hook 2

generic_new_callback 2

generic_modifi ed_callback 3

generic_attached_device 2

generic_modifi ed_mbr 3

generic_modifi ed_vbr 3

generic_modifi ed_eod_size 3

Table 4: breakdown of the severity levels we assigned to
indicate maliciousness.

UNVEILING THE KERNEL... ZAKI & HUMPHREY

256 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

[4] BAE Systems. Snake campaign and cyber espionage
toolkit. 2014. http://info.baesystemsdetica.com/rs/
baesystems/images/snake_whitepaper.pdf.

[5] Gmer.net. http://www.gmer.net/.

[6] Cuckoo Sandbox. http://docs.cuckoosandbox.org/en/
latest/.

[7] Russinovich, M. E.; Solomon, D. A.; Ionescu, A.
Windows Internals, Fifth Edition. 2009.

[8] Intel 64 and IA-32 Architectures Software Developer
Manuals. http://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-manual-325462.pdf.

[9] OSDev.org. Partition Table. http://wiki.osdev.org/
Partition_Table.

[10] Rodionov, E.; Matrosov, A. The Evolution of TDL:
Conquering x64. http://www.eset.com/us/resources/
white-papers/The_Evolution_of_TDL.pdf.

[11] Johnson, J. Alureon: The First ITW 64-Bit Windows
Rootkit. Virus Bulletin. 2010. https://www.virusbtn.
com/pdf/conference_slides/2010/Johnson-VB2010.pdf.

[12] Rodionov, E.; Matrosov, A. Mind the Gapz.
http://www.welivesecurity.com/wp-content/
uploads/2013/04/gapz-bootkit-whitepaper.pdf.

[13] G Data SecurityLabs. Uroburos Highly complex
espionage software with Russian roots. 2014.
https://public.gdatasoftware.com/Web/Content/INT/
Blog/2014/02_2014/documents/GData_Uroburos_
RedPaper_EN_v1.pdf.

[14] New York Times. Suspicion Falls on Russia as ‘Snake’
Cyberattacks Target Ukraine’s Government. 2014.
http://www.nytimes.com/2014/03/09/world/europe/
suspicion-falls-on-russia-as-snake-cyberattacks-target-
ukraines-government.html .

[15] malware-lu. Necurs Quick Analysis. 2012. https://code.
google.com/p/malware-lu/wiki/en_necurs_analysis.

[16] Wyke, J. Notorious “Gameover” malware gets itself a
kernel-mode rootkit... NakedSecurity. February 2014.
http://nakedsecurity.sophos.com/2014/02/27/notorious-
gameover-malware-gets-itself-a-kernel-mode-rootkit/.

[17] MacDermid, K. Beta Bot – A Code Review. Arbour
Networks. June 2013. http://www.arbornetworks.com/
asert/2013/11/beta-bot-a-code-review/.

[18] Monthly Malware Statistics, May 2011. Securelist.
2011. http://www.securelist.com/en/
analysis/204792214/Monthly_Malware_Statistics_
May_2011.

[19] Zaki, A. Guntior bootkit up to new tricks. Naked
Security. June 2013. http://nakedsecurity.sophos.
com/2013/06/12/guntior-bootkit-up-to-new-tricks/.

