
WAVEATLAS: SURFING THROUGH THE LANDSCAPE... CALVET ET AL.

135VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

WAVEATLAS: SURFING 
THROUGH THE LANDSCAPE OF 
CURRENT MALWARE PACKERS

Joan Calvet
ESET, Canada

Fanny Lalonde Lévesque, José M. Fernandez, 
Erwann Traourouder & François Menet

École Polytechnique de Montréal, Canada

Jean-Yves Marion
Université de Lorraine, France

Email joan.calvet@eset.com; 
{fanny.lalonde-levesque, jose.fernandez, 

erwann.traourouder}@polymtl.ca; 
Jean-Yves.Marion@loria.fr

ABSTRACT
Obfuscation techniques have become increasingly prevalent in 
malware programs as tools to thwart reverse engineering 
efforts and evade signature-based detection by security 
products. Among the most popular methods is the use of 
packers, which are programs that transform an executable 
fi le’s appearance without affecting its semantic execution. The 
use of packers is now widely adopted by malware authors. 
However, despite the rise in malicious programs distributed 
with packers, we still lack a global picture of their current use. 
What kind of packers protect malware nowadays? Is there a 
common model? Previous attempts, based on static 
database-signature tools, failed to build an accurate picture of 
malware packers, their main limitation being that static 
analysis says nothing about the actual behaviour of the packers 
and, due to its static nature, it misses run-time features. 

In this paper, we present WaveAtlas, a novel framework 
designed to map the code used by packers. Using a dynamic 
analysis approach, it reconstructs in a nutshell the structure of 
the code modifi cation tree, where the root is the packed code 
and packer, and the nodes represent code snippets extracted in 
successive ‘waves’. We report on a large-scale experiment 
conducted on a representative sample of thousands of 
self-modifying malicious code. Our results allowed us to 
successfully identify common features of malware packers, 
ranging from their self-modifi cation code usage to exotic 
choices of machine instructions. In particular, we were able to 
confi rm some commonly held beliefs regarding the use of 
packers by malware writers. For example, malicious payload 
(e.g. code including network callbacks) is typically present in 
the last or one-before-last waves. Furthermore, the number of 
waves is relatively small and the structure of the trees 
relatively simple, indicating that malware authors are probably 
using simpler tools and parameters as a compromise between 
stealth and effi ciency.

1. INTRODUCTION
Over the years, malicious software writers have employed 
various techniques to protect their creations against detection 
and analysis. Probably the best known of those techniques is 
the use of so-called packers. We defi ne a packer as a program 

transformation whose output is a program that will decrypt or 
decompress part of its code during its execution. 

There exists a wide range of different packers, from 
commercial protections normally sold for legitimate purposes 
– but also used by malware – to custom packers developed 
specifi cally to protect malware. However, we still lack a global 
picture of the packer landscape. Most of the academic research 
on this topic is focused on the unpacking problem, i.e. the 
construction of automatic tools to retrieve payloads from 
packed samples, while there has been little research focused 
on giving a clear picture of the use of packers by malware. On 
the industry side, published work in this area mostly consists 
of detailed descriptions of specifi c and unusual packers, and 
does not provide a global appreciation of the malware packer 
problem.

A clear picture of malware packers, in particular of their usage 
trends, would bring new opportunities to defenders. For 
example, it would help in designing binary analysis methods 
tailored for them, while most of the existing work in this area 
only applies to non-protected binary programs. 

Extending the knowledge on malware packers is the objective 
of WaveAtlas, an experimental method we built to study 
malware packers on a large scale using dynamic analysis 
(initially published, in French, in [1]). In this paper, we 
describe the fi rst experiment we performed using this method, 
in order to propose and check the prevalence of a particular 
packer model among malware.

2. RESEARCH HYPOTHESIS
In our fi rst experiment with WaveAtlas, we postulate that a 
certain packer model is particularly common among malware. 
This packer model is defi ned on execution traces, i.e. the lists 
of instructions executed at runtime by a program. Those traces 
are divided into subsets, called code waves, in the following 
way: 

• Executed instructions that are part of the initial memory 
image of the program belong to the code wave of index 0.

• Executed instructions that have been written by an 
instruction belonging to the code wave of index i belong 
to the code wave of index i +1.

Hence a code wave includes the instructions created at the 
same ‘depth’. We can now formulate our research hypothesis.

Research hypothesis: The packer model defi ned by the two 
following characteristics is prevalent among successful 
malware:

1. The fi rst code waves – all code waves except the last 
one – serve solely to protect the malware payload

2. The last code wave contains the malware payload, 
defi ned here as any code modifying the system state 
(fi le creation, process injection, network 
communications, etc.)

The crux of this simple model is therefore a dichotomy 
between external code waves serving for protection only, and 
the innermost code wave implementing the payload. Our 
research problem is then to test the validity of this hypothesis, 
and supports our overall research goal of highlighting global 
trends in malware packers. The hypothesis focuses on 
successful malware – a notion that will be defi ned precisely 
later – to indicate that we do not intend to cover all existing 



WAVEATLAS: SURFING THROUGH THE LANDSCAPE...   CALVET ET AL.

136 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

packers, but rather those that were successful from the 
malware writers’ point of view.

3. RELATED WORK
While numerous studies have addressed the problem of 
unpacking, very few published works have tried to give a 
global picture of the packer problem. According to Brosh 
et al. [2], more than 92% of malware in 2006 was protected 
using packers. In 2010, Morgenstern et al. [3] reported that 
70% of protected malicious programs were using public 
packers, either available for sale, or freely downloadable on 
the Internet. More recently, malware writers have started to 
adopt more and more custom packers made specifi cally to 
protect malware. According to Morgenstern et al. [3], custom 
packers represented more than 40% of the cases in 2010.

These statistics show the importance of malware packers, and 
a recent tendency to favour custom packers. Nevertheless, 
they do not give any indication as to the internal working of 
packers, and therefore do not answer our research problem. 
Additionally, they are based on static signatures tools (e.g. 
PEiD, SigBuster, YARA), which are prone to false positives 
and do not analyse the internal code waves.

Daniel Reynaud ran a dynamic analysis on 100,000 malware 
samples in 2010 for his Ph.D. thesis [4]. He noticed that more 
than 95% of them were packed. However, no indicators were 
given on the code wave functionalities, and therefore these 
results cannot be used to test our hypothesis. Moreover, the 
results suffered from an important bias: 56% of the samples 
came from the same malware family, due to the method of 
collection (honeypot).

A recent concurrent work by Ugarte-Pedrero et al. [5] studies 
malware packers through dynamic analysis, notably by 
building a taxonomy of packer complexity. This is an 
important contribution that gives precise concepts to reason 
about packers. Their experimental conclusion states that 

packers with a strict boundary between protection layers and 
payload – but where the payload is not necessarily in the 
deepest layer – are the most common among malware 
(so-called ‘Type III’ packers). Nevertheless, it is unclear to us 
to what extent those experimental results can be generalized, 
due to the choice of samples to analyse. Those samples were 
submitted to a specifi c sandbox system over the years, and the 
authors limited the number of sample per malware family to 
one for each month. Hence the dataset depends heavily on the 
users submitting to this sandbox, and we have no details of its 
exact composition. Therefore, the representativeness of the 
dataset remains unclear: does it represent the threats faced by 
normal users in the wild or the threats faced by a few 
corporations using this sandbox system? We also wonder how 
one could assess a dataset contains only one sample of each 
family, given the well-known labelling problem from 
anti-viruses, in particular the presence of generic detection 
names. The malware sample selection problem is a diffi cult 
one to tackle, and we will explain in detail how we dealt with 
it in the WaveAtlas project. Finally, the authors seem to 
assume their dynamic analysis environment can monitor the 
complete execution of all malware samples, without showing 
any evidence to support that. We will explain how we 
validated our experiments in the WaveAtlas project. 

4. EXPERIMENTAL ENVIRONMENT
We describe here the WaveAtlas framework, which comprises 
both the experimental set-up and the procedure to analyse 
malware packers. 

Selection of samples
The fi rst experimental step is to choose the malware samples 
to analyse. More precisely, we need to select malware 
families, from which we will pick some samples. As stated in 
our research hypothesis, we want to study successful malware, 
so how do we defi ne the success of a malware family?

Family name(s)
Activity 
period

Mentions in 
industry 
publications

Mentions in 
academic 
publications

Offensive actions

Storm Worm

(Nuwar,

Peacomm,

Zhelatin)

2007–2008 53,300 1,190
Attack against the peer-to-peer protocol in 
2008 by independent researchers [6]

Waledac 2008–2010 34,800 249
Attack against the peer-to-peer protocol in 
2010 by Microsoft and partners [7]

Koobface 2008–2011 103,000 363
Attack against the command-and-control 
infrastructure in 2010 by independent 
researchers [8]

Confi cker

(Downadup,

Kido)

2008–2011 324,000 1,390
In 2000, Microsoft offered a bounty of 
$250,000 for any information related to the 
operators’ identity [9]

Cutwail

(Pushdo)
2008–2015 48,300 231

Attack against the command-and-control 
infrastructure in 2010 by academic 
researchers [10]

Ramnit 2010–2015 129,000 44 No known attacks

Table 1: Selected malware families.



WAVEATLAS: SURFING THROUGH THE LANDSCAPE... CALVET ET AL.

137VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

The fi rst criterion could be its prevalence, i.e. the number of 
samples of the family found in the wild. However, this would 
artifi cially infl ate the importance of fi le infectors, which 
produce an enormous number of samples that hardly 
correlates with the actual number of victims. Therefore, we 
decided to consider different criteria. We started from the 
assumption that the security community demonstrates a 
strong interest in specifi c malware families only when they 
pose an important threat. Consequently, those malware 
families have very likely been successful from their operators’ 
point of view. We then defi ned two measurements of success 
for a malware family:

• The number of publications from the security 
community on the malware family. We measured this 
indicator using a customized search engine for security 
industry publications [11] and Google Scholar for 
academic publications. This measurement is intended to 
show the global interest in a malware family.

• The fact that some offensive actions have been taken 
against the malware family. The security community 
sometimes launches attacks against certain malware 
families, either technical ones [6, 8] or law enforcement 
ones [7]. These operations require a lot of effort, and are 
therefore only done when the malware family represents 
a signifi cant threat.

Based on these criteria we selected the six malware families 
(excluding targeted attacks), as described in Table 1. 

For each family, we picked 100 samples recognized as 
members of the family by at least four different major anti-
virus vendors. We collected those samples from the public 
malware database malware.lu [12] and, as explained later, we 
made sure they were not corrupted fi les.

Experimental set-up

The experimental set-up we built to execute malware and 
analyse their execution traces is described in Figure 1.

Figure 1: WaveAtlas experimental set-up.

This environment was created in the Sécurité des Systèmes 
d’Information (SecSI) laboratory of the École Polytechnique 
de Montréal. A smaller version was also built in the High 
Security Laboratory (HSL) in Nancy [13]. The set-up at the 

Polytechnique includes a cluster of 100 physical machines on 
which we deploy virtual machines. For the needs of our 
experiment, we defi ned three types of virtual machines:

• Analysers execute malware samples on Windows XP 
under the control of a tracer for a period of 20 minutes 
maximum. The tracer was built with Pin [14] and 
provides us a detailed execution trace. The analysers are 
also in charge of processing the execution traces and 
collecting the measurements we will present later. Each 
analyser is connected to a single isolator. 

• Isolators execute the network simulator INetSim [15]. 
This software answers to network requests coming from 
the analysers with standard messages, in order to make 
them believe they are connected to the Internet. The 
isolators also control the experiments on the analysers, 
and collect the results.

• The experience controller deploys the samples to 
analyse, and centralizes the results coming from the 
isolators.

In total, we have 388 isolator/analyser tandems in our 
WaveAtlas set-up. Our tracer monitors only the main thread 
of execution, which is enough to analyse the payload of most 
samples (see experiment validation below).

Remark: The duration of 20 minutes was chosen such that 
we could get for each malware family 100 experiments where 
the sample modifi es the system (see experiment validation 
below). It corresponds to an execution trace of maximum 110 
million instructions in our set-up. 

Experiment validation

A malware sample belonging to a selected malware family 
does not necessarily provide valid experimental results. For 
example, the fi le could be corrupted, or it could detect our 
analysis environment and refuse to execute normally. To fi lter 
out such invalid experiments, we defi ne two checks to be 
made after each experiment in order to verify its validity.

First, we consider an experiment – a run in an analyser – to be 
technically valid only if the tracer terminates its execution 
normally, and if the execution trace contains more than 500 
instructions. This fi lters out cases where a technical problem 
arose during the experiment. 

Second, we consider an experiment to be behaviourally valid 
only if the sample modifi ed the system state during its 
execution. We defi ned a set of API functions that modify the 
system and we verifi ed that the malware successfully called 
one of those functions (fi le creation, registry modifi cation, 
etc.). This is a strong criterion that indicates that the malware 
likely started executing its payload and trusts the environment 
to be a real machine to infect.

All experimental results presented in the following section 
concern experiments both technically and behaviourally 
valid. We made sure this corresponds to 100 experiments for 
each selected malware family. 

5. EXPERIMENTAL RESULTS

The execution traces collected allowed us to extract a series 
of measurements that will be presented in the following 
subsections. Before discussing the purpose of code waves, we 
fi rst assess the importance of packers among our sample set. 



WAVEATLAS: SURFING THROUGH THE LANDSCAPE...   CALVET ET AL.

138 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Figure 2 shows the number of code waves measured during 
the execution of our samples, which concerns only the main 
thread of execution.

Figure 2: Number of code waves.

As seen in Figure 2, almost all malware samples are packed: 
98.28% of them possess at least two code waves and there is 
no clear trend in the number of waves.

We now present measurements to test our research 
hypothesis, namely to check if code waves at various depths 
serve to protect and/or to interact with the system.

Machine instruction choice

Looking at which machine instructions are used in a program 
can give a hint as to the code purpose. In particular, it can 
help to distinguish effi cient code produced by a compiler 
from obfuscated code produced by a packer. To analyse that, 
we looked at assembly mnemonics. An assembly mnemonic 
is the English abbreviation of a machine instruction; for 
example jmp, push or nop are mnemonics of x86 
instructions.

We fi rst established a list of 82 ‘classic’ mnemonics by 
executing standard Windows programs (e.g. Calculator, 
Notepad) and extracting their mnemonics. Those classic 
mnemonics are the ones chosen by modern compilers for 
performance reasons. We then considered a code wave to 
have ‘exotic’ code if it executes more than 10 non-classic 
mnemonics. We also counted the number of different 
mnemonics present in each wave, as presented in Table 2.

…the fi rst 
code wave

…the 
middle 
code 
waves

…the 
penultimate 
code wave

…the 
last 
code 
wave

Part of 
samples 
with exotic 
code in…

10.12% 0% 0% 0%

Number of 
different 
mnemonics 
in…

110 63 80 77

Table 2: Machine instructions.

In order to compare execution traces with different numbers 
of code waves, we present our results based on the relative 
positions of code waves. For example, the fi rst row of Table 2 
can be interpreted as follows:

• There are 10.12% of samples with exotic code in their 
fi rst code wave, which is the one with index 0. This code 
wave is present in all samples.

• There are 0% of samples with exotic code in at least one 
of their middle code waves, which is the set of code 
waves whose index is strictly superior to 0 and strictly 
inferior to the index of the penultimate code wave. 
Therefore, only samples with at least four waves have 
middle code waves, namely 52.15% of our sample set 
(see Figure 2).

• There are 0% of samples with exotic code in the 
penultimate code wave. Only the programs with at least 
three code waves have a penultimate code wave, namely 
70.67% of our sample set.

• There are 0% of samples with exotic code in the last 
code wave, which is the one of maximal index. Only the 
samples with self-modifi cation code have a last wave, 
namely 98.28% of our sample set.

Regarding the results, the fi rst code wave is the only one to 
have exotic code, and it contains signifi cantly more 
mnemonics than the others. Hence it was probably not created 
by the same kind of program transformation as the others, and 
the objective of this transformation was likely not 
performance, but rather protection. 

Remark: As we just explained, not all the samples possess 
the four categories of code waves. Still, all percentages are 
calculated on the whole sample set, in order not to artifi cially 
overemphasize the importance of code waves that are not 
always present. 

Function call convention

There is no formal defi nition of a function call in x86 
machine language. Function calls are usually 
implemented with the machine instruction call, whose 
semantic is to redirect the execution fl ow and to save the 
caller address onto the stack (in order to come back to it 
later, usually with a ret instruction). However, this is just 
a convention followed by compilers, and nothing prevents 
the use of calls to redirect the execution fl ow without 
ever coming back to the caller location. Such a technique 
puts most binary analysis tools in a diffi cult situation, 
because they assume the execution fl ow returns after each 
call.

We checked the usage of the function call convention in our 
malware samples, by counting:

• the number of good function calls, defi ned as when the 
execution fl ow comes back after a call instruction

• the number of bad function calls, defi ned as when 
the execution fl ow never comes back after a call 
instruction.

As there could be a few legitimate cases where the execution 
fl ow does not come back (for example because an exception 
is thrown inside the function), we set a threshold of 10 
function calls. 



WAVEATLAS: SURFING THROUGH THE LANDSCAPE... CALVET ET AL.

139VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

…the 
fi rst 
code 
wave

…the 
middle 
code 
waves

…the 
penultimate 
code wave

…the last 
code wave

Part of 
samples 
with more 
than 10 
good 
function 
calls in…

15.88% 11.17% 62.13% 60.38%

Part of 
samples 
with more 
than 10 
bad 
function 
calls in…

10.82% 0% 0% 0.17%

Table 3: Function calls.

Based on our results presented in Table 3, we can observe 
that:

• The fi rst and the middle code waves have signifi cantly 
fewer good function calls than the others. The 
penultimate and the last code waves employ the usual 
function implementation intensively, probably because 
they tend to be created by a classic compiler.

• The fi rst code wave contains bad function calls in a 
signifi cant number of samples, whereas the other code 
waves have none. This non-typical usage of function 
calls is likely employed to make code analysis harder.

Exception throwing
An exception is usually thrown by a program when there is a 
software problem, like a division by zero, an invalid memory 
access, etc. Alternatively, it can be used as a means of 
protection to redirect the execution fl ow to a custom 
exception handler, and thus make the execution fl ow harder to 
follow. 

We measured the number of exceptions thrown during our 
malware execution (see Table 4). We fi rst observe that a 
signifi cant number of samples throw exceptions in their fi rst 
code wave. As all our experiments have been validated, those 
exceptions likely do not correspond to software problems, but 
rather to protection tricks.

…the 
fi rst 
code 
wave

…the 
middle 
code 
waves

…the 
penultimate 
code wave

…the 
last 
code 
wave

Part of 
samples 
that 
thrown an 
exception 
in…

20.24% 0.52% 8.9% 0.35%

Table 4: Exception throwing.

There are also a surprisingly high number of samples with an 
exception thrown in the penultimate code wave. After manual 

analysis, we discovered that these samples belong to the 
Ramnit malware family, where an invalid memory access is 
made when the last code wave has been fully decrypted 
(which is the expected behaviour).

System modifi cation

As previously explained, we considered an experiment run to 
be valid only when the system was modifi ed during the 
malware execution. We measured in which code wave this 
system modifi cation takes place (see Table 5).

…the 
fi rst 
code 
wave

…the 
middle 
code 
waves

…the 
penultimate 
code wave

…the 
last 
code 
wave

Part of 
samples that 
modifi es the 
system in…

2.09% 1.05% 24.96% 72.95%

Table 5: System modifi cation.

For more than 70% of samples the last code wave is the 
location where interaction with the system takes place. This is 
a strong indicator that the last code wave usually implements 
the malware payload. On the other hand, very few samples 
modify the system in the fi rst or the middle code waves. The 
objective of those fi rst code waves is therefore not to 
implement the payload.

Finally, there are a surprisingly high number of samples that 
modify the system in the penultimate code wave. This 
observation contradicts our research hypothesis, as we 
postulated that only the last code wave would interact with 
the system. To understand that behaviour, we took the 
following steps:

• We measured the number of samples modifying the 
system both in the penultimate and the last code wave. 
We found that none of the samples actually modifi ed the 
system in both code waves.

• We manually analysed the samples with system 
modifi cation in the penultimate code wave. The 
concerned samples belong either to the Confi cker family, 
or to the Ramnit family. In both cases, we observed the 
same behaviour in the last code wave: hooks. This 
technique consists of writing small code snippets at the 
beginning of library functions, in order to redirect the 
execution fl ow to the malware code when those library 
functions are called. Having hooks in its own process can 
make the monitoring of the execution fl ow harder.

 As hooks are dynamically written code, they belong to a 
new code wave according to our defi nition. In both 
families the malware payload puts the hooks in place, 
and hence this payload becomes the penultimate code 
wave, while the hooks code becomes the last one. This is 
the reason we have system modifi cation in the 
penultimate code wave in these samples, and no system 
modifi cation in the last code wave.

Payload functionalities

To establish more precisely the participation of each code 
wave in the payload, we analysed the library function calls. 



WAVEATLAS: SURFING THROUGH THE LANDSCAPE...   CALVET ET AL.

140 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

To do so, we classifi ed Windows library functions in the 
following four groups related to malware payload:

• Network communications

• Windows registry manipulations

• Process manipulations

• File manipulations

We then measured which code wave makes more than three 
calls to the functions of each group. The results are presented 
in Table 6.

…the 
fi rst 
code 
wave

…the 
middle 
code 
waves

…the 
penultimate 
code wave

…the 
last 
code 
wave

Network 
communications 
in…

0% 0% 0.17% 19.55%

Windows 
registry 
manipulations 
in…

0% 0% 1.05% 28.62%

Processes 
manipulations 
in…

0.87% 0.35% 7.33% 44.15%

Files 
manipulations 
in…

10.99% 0.35% 7.33% 36.47%

Table 6: Functionalities.

We observe that the last code wave participates signifi cantly 
more than the others in all four functionalities. Therefore, the 
last wave is usually the one that implements the malware 
payload. The others waves tend not to implement the 
monitored functionalities, and hence are not part of the 
malware payload.

6. HYPOTHESIS VALIDATION
We established that more than 98% of our malware samples 
are packed. Based on the previous experimental 
measurements, we can now check the validity of our research 
hypothesis, namely the prevalence of a packer model with the 
following two characteristics in successful malware:

1. ‘The fi rst code waves – all code waves except the last 
one – serve solely to protect the malware payload.’

 This has been partially validated due to the 
following observations:

a. The fi rst code wave is particularly aggressive:

i. It contains exotic machine instructions in more 
than 10% of the samples, whereas the other 
code waves only have standard instructions.

ii. It misused function call conventions in more 
than 10% of the samples, whereas the other 
code waves do not have such bad function 
calls.

iii. It throws exceptions in more than 20% of the 
samples, whereas the other code waves rarely 
do.

b. The middle code waves do not modify the system 
(less than 2% of the samples). In particular, they 
do not implement payload functionalities (less 
than 1% of the samples). This is the same for the 
fi rst code wave.

 We conclude that the fi rst and the middle code waves 
do not participate in the payload implementation, but 
are rather here to protect the malware.

 However, the purpose of the penultimate code wave 
is not always protection. As we have seen, it can be 
the location of the malware payload in specifi c cases. 
In those cases, the boundary between the protection 
and the payload is before the penultimate code wave 
and not before the last one.

2. ‘The last code wave contains the malware payload.’

 This has been partially validated due to the 
following observations:

a. The last code wave tends to be standard code. It 
contains no exotic machine instructions, very few 
exceptions thrown, and a lot of classic function 
calls. This code wave was therefore likely 
produced by a standard compiler.

b. The system is modifi ed in the last code wave in 
more than 70% of the samples.

c. The last code wave is the only code wave where 
a signifi cant number of samples implement their 
payload functionalities.

We conclude that the last code wave implements the malware 
payload, with the exception of some special cases where it 
just contains hooks.

Our experiment hence shows that packers used by successful 
malware tend to simply add code layers around the payload. 
Also, the payload is not necessarily in the last code wave, but 
can also be in the penultimate code wave.

7. CONCLUSION AND FUTURE RESEARCH
This paper presented the fi rst large-scale experiment we 
conducted with the WaveAtlas framework. We analysed 
malware packers and partially validated that a certain packer 
model was prevalent among successful malware.

The simplicity of the packer model we exposed may come as 
a surprise. Why are malware still using such straightforward 
packers after all these years? It seems that, as defenders, we 
have failed to deal with the problem. A possible explanation 
is that packers are actually posing problems for anti-virus 
products, which is likely due to their very limited resources 
on users’ machines. In others words, packers following the 
standard model may seem easy to unpack for a human analyst 
with unlimited execution time, but are much more diffi cult to 
deal with in the constraints of real-time protection on end-
user machines. Therefore, malware writers do not need to 
adopt more complex packers, as their primary goal is to infect 
their targets.

An important observation made during our experiments is 
that the purpose of a code wave is either to protect or to 
implement the payload, but rarely both at the same time. We 
believe this should lead to tailored program analysis, either 
focused on code produced by classic compilers, where for 
example functions can be defi ned in the usual way, or on code 



WAVEATLAS: SURFING THROUGH THE LANDSCAPE... CALVET ET AL.

141VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

produced by packers, where we need abstractions of the code 
other than functions.

As a fi rst research avenue with WaveAtlas, we could 
specifi cally study some long-running malware families, like 
Sality, which has existed since 2003, to check the evolution of 
their protection over the years. This would give us an idea of 
the impact of security products, e.g. by answering questions 
such as whether malware writers had to change their 
protections at some point.

Another interesting possibility is to establish the real 
prevalence and importance of public packers (commercial or 
free) among malware. The usual way to detect the usage of 
those packers is through the use of static tools (e.g. PEiD, 
SigBuster) which only check the fi rst code wave. However, 
public packers can also be used in internal code waves, and 
even when they are present in the fi rst code wave they can be 
combined with other packers. Thanks to its dynamic 
approach, WaveAtlas could provide a clearer picture of the 
usage of those packers.

REFERENCES
[1]  Calvet, J. (2013). Analyse Dynamique de Logiciels 

Malveillants. Ph.D. Thesis. Université de Lorraine & 
École Polytechnique de Montréal.

[2]  Brosch, T.; Morgenstern, M. (2006). Runtime 
packers: the hidden problem. BlackHat USA.

[3]  Morgenstern, M.; Pilz, H. (2010). Useful and useless 
statistics about viruses and anti-virus programs. 
Proceedings of the CARO Workshop.

[4]  Reynaud, D. (2010). Analyse de codes auto-
modifi ants pour la sécurité logicielle. Ph.D. Thesis, 
Université de Lorraine.

[5]  Ugarte-Pedrero, X.; Balzarotti, D.; Santos, I.; 
Bringas, P. G. (2015). SoK: Deep Packer Inspection: 
A Longitudinal Study of the Complexity of Run-
Time Packers. Proceedings of the IEEE Symposium 
on Security and Privacy.

[6]  Wicherski, G.; et al. (2008). Stormfucker: Owning 
the storm botnet. 25th Chaos Communication 
Congress (CCC).

[7]  Microsoft (2010). Deactivating botnets to create a 
safer, more trusted internet. http://www.microsoft.
com/mscorp/twc/endtoendtrust/vision/botnet.aspx.

[8]  Villeneuve, N.; Deibert, R.; Rohozinkski, R. (2010). 
Koobface: Inside a crimeware network. Technical 
Report, Munk School of Global Affairs.

[9]  Microsoft (2013). Microsoft collaborates with 
industry to disrupt confi cker worm. 
http://www.microsoft.com/en-us/news/press/2009/
feb09/02-12Confi ckerPR.aspx.

[10]  Stone-Gross, B.; Holz, T.; Stringhini, G.; Vigna, G. 
(2011). The underground economy of spam: A 
botmaster’s perspective of coordinating large-scale 
spam campaigns. Proceedings USENIX Workshop 
on Large-Scale Exploits and Emergent Threats 
(LEET).

[11]  Hanel, A. (2013). Malware analysis search. 
http://www.google.com/cse/home?cx=01175000200
2865445766%3Apc60zx1rliu.

[12]  Malware.lu (2013). Malware Sample Database. 
https://avcaesar.malware.lu/.

[13]  High Security Laboratory (2015). 
http://www.lhs.loria.fr/.

[14]  Luk, C.-K.; Cohn, R.; Muth, R.; Patil, H.; Klauser, 
A.; Lowney, G.; Wallace, S.; Reddi, V. J.; 
Hazelwood, K. (2005). Pin: building customized 
program analysis tools with dynamic 
instrumentation. Proceedings of the 26th ACM 
SIGPLAN conference on Programming Language 
Design and Implementation (PLDI).

[15]  Hungenberg, T.; Eckert, M. (2010). INetSim. 
http://www.inetsim.org/index.html.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


