
IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

338 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

IT’S A FILE INFECTOR… IT’S
RANSOMWARE… IT’S VIRLOCK

Vlad Craciun, Andrei Nacu & Mihail Andronic
Bitdefender, Romania

Email {vcraciun, anacu, mandronic}@
bitdefender.com

ABSTRACT

Win32.Virlock, with all its variations, is both a new kind of
fi le infector and a piece of ransomware (screen-locker) at the
same time. In this paper, we aim to cover the techniques used
by this virus and discuss methods that can be used to detect
and disinfect systems affected by it.

Virlock uses several techniques, including code obfuscation,
staged unpacking, random API calls and large/redundant areas
of decrypted code, to make it diffi cult to analyse. It also
protects its code by decrypting only the sequences that are
going to be executed. After a sequence of code is executed,
Virlock encrypts it again. By staggering the decryption/
encryption process, it ensures that a memory dump at a certain
point will not reveal its features but only the piece of code that
is being executed at that time.

There is also a moment in its fi rst execution when it shifts its
shape by changing certain instructions and encryption keys so
that new generations will look different. Each new infection is
different from any other, mostly because of the timestamps
that play an important role in computing the encryption keys.
Having these protection methods will also make any clean-up

attempt quite a challenge. The disinfection process for this
virus involves searching inside malware code for specifi c
instruction arrangements.

We will present some ideas that could help in detecting and
disinfecting a Virlock-infected system.

INTRODUCTION

Malware has grown signifi cantly in the last decade, both in
prevalence and complexity. It has developed from innocent
bad jokes and simple trojans to advanced polymorphic fi le
infectors, rootkits and ransomware. While security companies
have studied all the types of malware and built specifi c
categories for them, it can be diffi cult, today, to categorize a
malicious application as a trojan, a piece of spyware, or even a
fi le infector, as they tend to be more complex and to embed
several different kinds of behaviour at once.

Security vendors have been forced to develop different kinds
of engines to reach faster conclusions in malware analysis,
be it static or dynamic, but security products by defi nition are
usually a step behind the malware creators, even if we try to
minimize that time-interval. The security industry had tried
to fi gure out better solutions and better engines to prevent
malware execution in advance by using artifi cial intelligence,
but no matter how hard we try, or how much time we invest
in research, there is always something new which doesn’t get
caught. There are many cases in which we reach the
conclusion that an engine is not doing the best to protect
against a new piece of malware, or that making a small
improvement will slow down the entire product. In some
cases we reach the conclusion that a particular detection
method is simply not adequate for a specifi c piece of
malware.

Figure 1: Example of a common fi le infector (appended code to clean application).

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

339VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

1. RANSOMWARE AND FILE INFECTOR
EVOLUTION

1.1 Old fi le infectors, behaviour and purpose

Known categories: appenders, prependers, EPO,
polymorphic, interleaved.

Purpose:
The fi rst fi le infectors were just bad jokes or proofs of concept.
The earlier ones interleaved malicious code with original
application code or prepended malware code to a clean
application. By prepending the malicous code to a clean
application, the authors increased the time needed for analysis,
and also gained time for their malware to spread while users
were searching for solutions. This is also a safe way to expose
users’ computers to hackers; fi le infectors act like agents,
collecting confi dential user data, or continuously delivering
other kinds of malware to the infected system.

Behaviour:
Malicious code is executed fi rst, infecting the system or
ensuring it is running within another process or thread and
eventually deploying any missing fi les, then it executes the
original application. When a portion of the clean application
is executed, the malware will also be executed at some point,
this being triggered by a patched API import or by malicious
code insertion. After the malicious code has fi nished running,
the clean application’s code continues to be executed from
where it was left off.

1.2 Old screen-lockers: behaviour and purpose

Purpose:

An easy way to get money from users by blocking access to
their working environment. (Childish play for grownups!!!)

Behaviour:

This kind of malware creates an additional desktop and
switches to the new environment, just as if another user had
logged on. Some of them may encrypt user fi les, but most of
them don’t. The ones that do encrypt user fi les, like some
CryptoLockers, do not lock the user’s screen, because the
damage is already at a stage where the user might wonder
where the backup is, or whether a decryption tool is worth
paying for.

Let us mention some of the well known pieces of ransomware
among both families:

• ACCDFISA, PornoBlocker, Rannoh, IcePol,
CryptoWall, CoinVault.

In the following chapters we will uncover the main features
and components of Virlock; however we are not going to
focus on the infection process. This type of malware has the
vaccine within itself, but only applies it for each infected fi le
at runtime. We will focus mainly on its design and its abilities
to sneak past some security solutions.

2. ANALYSING VIRLOCK, REFINING
BEHAVIOUR, COMBINING PURPOSE
Virlock combines the technology of fi le infection with the

screen-locking features of regular screen-lockers. The authors
embed both infection and disinfection tools, throwing away
the management system to bind infected users to some private
decryption keys. Their remaining concern is about users who
are willing to pay their fee rated in bitcoins.

The screen-locking picture is very similar to that of those
pieces of ransomware that pretend to be some higher
authority with full rights to request certain amounts of money
from home-users – for example as fi nes (see Figure 4). Most
texts appearing on the locked screen are trying to scare the
users, for example threatening them with prison for up to fi ve
years or more if they do not pay the money.

2.1 Analysing Virlock – refi ning behaviour
Virlock is changing the way in which the infection process
takes place:

• It has an ingenious polymorphic engine (most fi le
infectors don’t come with such an engine), making the
detection process more diffi cult with each infected system.

• It doesn’t just insert a piece of code into the clean
application as most fi le infectors do, but the entire clean

Figure 2: Ransomware blocking user screen and requesting
payment.

Figure 3: RSA1024 CryptoLocker displaying message to user.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

340 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

application becomes a small piece of the malware itself
(similar to Morto/Sality/ACCDFISA).

• It uses techniques to cheat users at fi rst glance (seen in a
few other pieces of malware), to bypass users’ doubts
that an infected fi le is really malicious.

• It has a lot of features (not new, but different) that make
the reverse-engineering process more diffi cult, overload
the analysts and annoy them.

• It has screen-locking (borrowed from screen-lockers) to
increase the time taken to get to an infected sample –
most home-users prefer to reinstall their operating
system rather than trying to remove the malware.

• It uses multi-threading and rooting into the environment
to get full control over the infected systems without the
need for drivers, and to execute different paths inside the
same application, but from different points of view
(running processes/services/threads).

2.1.1 Not embedding malware code, but
embedding a clean fi le

The infection process is somewhat different from the
infection process of other known fi le infectors. However,
there are small similarities between Virlock and both the
Sality fi le infector and the ACCDFISA ransomware:

• Virlock and Sality: both replace the clean application
with the malware which contains the original application
packed or modifi ed.

• Virlock and ACCDFISA: ACCDFISA uses the RAR
archiver to make all the infections self-extractable – this
is very similar to Virlock’s behaviour but with the small
difference that Virlock uses its own techniques to
accomplish the same behaviour.

2.1.2 Anti-analysing techniques

At the moment we know about fi ve different Virlock

versions. They’re not too different but they do differ in such a
way that some simple checks will not catch them all.

2.1.2.1 Code obfuscation

One of the main techniques used to harden the reverse
engineering and analysis process is obfuscation. Obfuscation
is present in all fi ve versions and is similar between some and
different between others. However, while obfuscation may
contribute to detection, it is not a key-point in doing that.

Figure 5 shows some screenshots of obfuscated code from
four different versions.

If we are going to trace the entropy of those pieces of code, or
count the number of some target instructions which repeat
excessively, we can create some checkpoint conditions that
Virlock infections will not pass. Code can be obfuscated in
lots of confi gurations, but some of them are built based on
some basic principles. It is not too diffi cult to observe the
criteria with which an obfuscation engine was built.

We could also de-obfuscate some instruction blocks by
following the true aim of an obfuscated piece of code.
However, de-obfuscation becomes irrelevant when one can
look at the execution traces. They are still a plus when
building documents to reveal the true meaning of some code.

Obfuscation also contributes to making the static analysis
procedure more diffi cult.

2.1.2.2 Anti-debugger

There are lots of anti-debugger techniques, and usually,
malware creators combine those features with techniques to
detect virtual machines, emulators or supervisor tools like
PIN from Intel (which allows one to instrument an executed
application), or API loggers which inject tracing modules or
pieces of code into a target process.

Virlock does not combine all of these, but it uses the strongest
of them all, in order to bring the analyst to a point where he/
she could easily give up.

Figure 4: Virlock screen lock.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

341VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Multi-staged unpack
This is a known technique for making the reverse engineering
procedures harder, for both static and dynamic analysis. If a
piece of code is unpacked piece by piece, one at a time, while
it is executed, then performing a static analysis could be very
diffi cult. Following the modifi cations inside a debugger might
also be tricky, as some debuggers simply refuse to
disassemble the code at the point where they think that there
is no code in the fi rst place. If we add to that the fact that code
might re-encrypt the previously executed code, then things
get really interesting.

Staged unpack
Staged unpack is a feature which minimizes the ‘area’ of
‘plain-text’ code at any time. There is a piece of code, more
like a template, which repeats itself along the execution of the
malware, and at each step:

• It hashes the buffer to be unpacked

• It decrypts the next piece of code, only if the hashes match

• It executes the code inside the decrypted chunk (possible
more function-templates)

• It rehashes the unpacked code and alters the hash, inside
the code

• It re-encrypts the previously decrypted code.

The template follows the data structure of a linear linked
list, where each node is itself a linear linked list of many
possible function calls. We are seeing linked lists inside
linked lists mainly because each function call inside
such a code-chunk calls another unpack-execute-repack
template.

Figure 7 shows the code template for the mentioned trick
inside a particular infection, which starts by checking the
integrity of the packed chunk-code at 40193F, decrypts
the buffer at 4019C0, jumps to unpacked code at 401A7E,
and fi nally rebuilds the HASH for the unpacked code
which it overwrites at the beginning of the code template
and re-encrypts the entire code starting at 401A7E.

If someone is trying to make some process-dumps to have a
look at the code inside the malware while it’s executing,
they might be surprised to fi nd that the malware is almost
fully packed, just as it was in the fi rst place. The surprise
gets bigger, as one is thinking that the malware might have
some running threads which did not get dumped at the time
of the process dump and while trying to grab all the memory
pieces, one will obtain nothing more than the fi rst process
dump.

Figure 5: Obfuscated code inside four different Virlock versions.

Figure 6: Short example of execution fl ow, following the chunk encryption/decryption template.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

342 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Checking for the presence of a debugger

Every infected sample checks for the presence of a debugger
at some point. There is a standard way to do that, which is by
querying a fl ag inside PEB, called isDebuggerPresent at
[fs:[30h]+2], bit 0 (see Figure 8).

In our example, if it’s being debugged, the code jumps to
0x495A2D . If we are taking a closer look we can see in

Figure 9 that the code is being executed in those conditions.

Eventually we fi nd a piece of code looping on itself and
calling Sleep.

Most of the time, we can trick the application by changing the
condition fl ags; and thus the condition itself or the value
being compared. However, the time spent getting one’s hands
on that piece of code is sometimes too much to continue with
the dynamic analysis that way.

Figure 7: Template-code for staged unpack (yellow square -> unpacked code).

Figure 8: Anti-debugger checking inside PEB.

Figure 9: Code executed when debugger is found.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

343VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Rooting inside the execution environment

We mentioned earlier that the malware does not use all
known methods to harden the analysis procedure, but it uses
the strongest of all methods gathered together to at least
discourage analysts or to create problems for automated tools.

The technique described in this section does not refer to a
behaviour that rootkits are using, but rather to a behaviour
which spreads the infection inside the infected system,
making self-copies and additional processes or services, each
of them with a couple of threads. If the malware gets to
execute inside such a confi guration, then the synchronization
policies between processes and threads will enable it to do its
main job, otherwise one will not get anything useful from it.

At the beginning of the execution, an infected sample will
fi rst create two copies (of the original infection core –
morphed) inside hidden folders with random names but
constant length (eight characters), one located in
%AllUsersProfi le% and one inside %UserProfi le%:

[%UserProfi le%\[a-zA-Z]{8}\[a-zA-Z]{8}.exe]

[%AllUsersProfi le%\[a-zA-Z]{8}\[a-zA-Z]{8}.exe]

The copy located in the %UserProfi le% folder is executed
fi rst using CreateProcess and it is also set as a starting point
inside the startup key:

[HKCU\Software\Microsoft\Windows\CurrentVersion\Run].

Second and (in some cases) third copies are written in the
%AllUserProfi le% folder inside different subfolders. One of
them is executed like the fi rst copy in order to work together
with it (one of the copies ensures that the other is not killed,
and if that happens then it just recreates it), and the other is
created as a service to supervise some tasks and gain
privileged access to operating system components.

It is important at that point to note that the malware copies are
not only different from the fi rst one (using a polymorphic
packer), but also have some key-fl ags changed. The changing
of fl ags will enable, for example, one of the copies to execute
a slightly different path inside the malware just like a switch-
case block. For example, the malware self-disinfects the fi le
inside it, only if a certain fl ag located at a hard-coded address
says that this can be done.

A series of batch-fi les and VBS scripts are written on the disk
temporarily to help the malware infect fi les by fi rst making a
backup and then overwriting the target fi le. Scripts are also
used to change security policies inside the registry, in order to
hide the malware or to disable default security features.

The following is a list of commands altering registry entries:

reg add HKCU\Software\Microsoft\Windows\
CurrentVersion\Explorer\Advanced /f /v HideFileExt /t
REG_DWORD /d 1

reg add HKCU\Software\Microsoft\Windows\
CurrentVersion\Explorer\Advanced /f /v Hidden /t REG_
DWORD /d 2

reg add HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Policies\System /v EnableLUA /d 0 /t
REG_DWORD /f

Straight after the installation, the malware tries to brute-force
the user logon account password with at least a few thousand
common password templates, and straight after that creates a
new user with a random name and full administrator rights.

Figure 10: New account created by Virlock after successfully
brute-forcing the administrator password.

The following are just a few examples of passwords that had
been tried by the malware:

password, P@ssw0rd, 1234, Password1, 123456, admin,
12345, Passw0rd, p@ssw0rd, Pa$$w0rd, !QAZ2wsx,
test, sunshine, P@ssword, 1qaz@WSX, 123456789,
12345678, abc123, qwerty, letmein, changeme, master,
Password!, passw0rd, 1q2w3e4r, Password01,
password1, hunter, qazwsx, welcome, Welcome123,
secret, orig_Administrator, princess, dragon, pussy,
baseball, football, monkey, 696969, operator123,
N0th1n9, !qaz@wsx, 1q2w3e4r5t6y7u8i, abcd12345,
7654321, Administrator, q1w2e3r4, q1w2e3r4t5.

A process created with the following command line will
discard any possible API-tracer or debugger following the
process execution. However, we can still trick such
behaviours by altering the code at the entry-point and forcing
a debugger to enter fi rst, modifying the parameters for
CreateProcess, or using some advanced environment
emulators:

CreateProcessW("%TEMP%\AccMwMEs.bat", " "%TEMP%\
AccMwMEs.bat" "C:\samples\virlock.exe" ", …………)

[AccMwMEs.bat]
echo WScript.Sleep(50)>%TEMP%/fi le.vbs
cscript %TEMP%/fi le.vbs
del /F /Q fi le.js
del /F /Q %1
del /F /Q %0

When an infected sample gets to execute on a clean system,
we say that the sample is the original one which is the
primary cause of the infection. This sample is almost like any
other fresh infected sample, which was not executed after the
infection. There are some fl ags hard-coded into the malware
so that it knows, at runtime, whether the sample being
executed is a fresh infection that has not been executed
before, or a drop made by malware targeted as a service or a
malicious process running on the user’s system. Figures 11
and 12 illustrate that behaviour.

2.1.2.3 Anti-emulation

Most malware creators integrate into their applications
techniques to escape emulation and/or virtual machines.
There are a number of known methods to accomplish that, we
won’t discuss all of them, but mainly those used by Virlock.

Among all the techniques which can cause emulators not to
work, there are time constraints and unimplemented emulated
API calls. Some emulators which are at the beginning, might
have problems overcoming both of these, others might give
up over time constraints (mainly because authors consider
this a performance hit), and other advanced emulators could
solve all of these in more effi cient ways. However, most
emulators are somewhere in the middle most of the time. We
have to consider the possibility that from time to time

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

344 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Hard-coded value Meaning

0 Installed malware process, usually two synchronized processes

1 Original sample, installs malware components

2 Intermediate actions (while rooting into environment), brute-force user account password

3 Multithreading and synchronization (screen-locking, online payment)

4 Sample is running as service

Table 1: Associations between hard-coded values and their meaning.

Figure 11: First context switching actions.

Figure 12: Last context switching actions.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

345VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

malware creators reverse our engines and create malware
which might target some of these security engines. If that is
the case, then no matter how strongly an emulator is built, it
might become useless if it’s being targeted by malware.

Randomly chosen API calls

In an attempt to morph itself, Virlock rebuilds itself inside each
infection, decorating the core of functionalities with things like
random API calls from randomly chosen modules. The
malware uses some tables, meaning that it does not choose
from a huge set of possibilities but from a fi nite set. It chooses
a random number of libraries which the future infection will
import, and from those libraries, some random APIs inside
each of them are chosen as imports.

If emulators are only emulating a certain set of APIs, then
that might impede their ability to continue at the point of an
unknown API call, or an API call not implemented
accordingly (Figure 13).

Increasing the number of executed
instructions

Most malware, be it packed or unpacked, does not require
more than a few million instructions to be executed. At that
point there are optimizations such as binary translation, which
tries to improve performance over emulated loops like
decryption blocks which get to be executed by the real
processor and not by the emulator. Binary translation is
sometimes combined with fi le-read operations – the best
emulators will try to reduce the number of read operations
and at the same time the maximum number of instructions
allowed to be executed.

All versions of Virlock have a fi rst stage decryption. Without
it, any further code execution is basically impossible. There is

currently no version that executes fewer than 60M
instructions for that purpose, and the number of instructions
increases for bigger fi les and larger obfuscated loops, to
hundreds of millions of instructions. Some infections also
spread the obfuscated loops over a large area of the infected
fi le, thus passing to emulators the pain of consecutive fi le
reads, which also is a hit for performance.

There are many cases where the binary translation for loops is
almost impossible if we are not fi rst going to de-obfuscate the
code being executed by the loop. Figure 14 shows such a case
where just three calls to load more than 180 APIs from
different modules is taking at least 500k instructions.

2.1.3 Cheating users

Very rarely seen in other pieces of malware of this kind
(which embed the clean fi le into a totally different fi le),
Virlock tries to cheat users into thinking that an infected fi le
is actually what its icon claims it to be. There is a stage in the
infection process where the malware searches inside the
registry for the application associated with an extension type,
in order to get to the fi le containing the icon of the associated
application. This is a primary step for grabbing the icon and
embedding it into the fi nal infected fi le as an icon-resource.
At a fi rst glance, there is no difference between the original
fi le and the infected one.

Straight after the infection, the malware will set a registry
setting to hide extensions for known fi lenames. That way users
will see their original fi les with their relevant icons and no EXE
extension, so no one will ever doubt the actions of the fi le.

2.1.4 Polymorphic engine

The thing that makes Virlock so special is that it has a
polymorphic engine which mutates its shape in future

Figure 13: Consecutive blocks of random API calls, trying to escape emulators from the beginning.

Figure 14: Loading some APIs (calling is based on templates discussed in 2.1.2.2).

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

346 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

infections. In this section we reveal the techniques used by
the malware to accomplish this task.

Straight after the API-loading process, the malware allocates
two buffers (one of them big enough to hold the core of the
malware) to prepare the morphing process for the infections
to come. The core of the malware is somewhere inside the
infected application, but only visible after a few stages of
successive decryption procedures. Figure 16 shows the
schematics of the core, which resides packed, layered inside
any infected fi le.

A polymorphic engine is located in our example at 0x45E636
and it is called several times during the installation of the
malware into the newly infected system. Each new malware
copy will also have modifi ed the fl ags discussed previously,
accordingly.

The process of shape-changing is accomplished in two steps,
for each of the two dropped fi les which are going to do the

real infection. Figure 18 shows the preparation for the
reshaping of a self-copy.

The fi rst stage consists of preparing random fi le names, some
random seeds, and the buffers involved in the morphing
procedure (see Table 2).

We also see at this step the creation of two different MZPE
fi le headers, originally packed inside the malware (see

Figure 18: Preparing the reshape of a self-copy.

Figure 15: Infected fi les with extensions revealed.

Figure 16: Virlock core with embedded clean application.

Figure 17: Code calling the polymorphic engine.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

347VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Figure 19). Their purpose is to fulfi l the creation of the
processes which will actually carry out the infection.

In the beginning of the second stage, the malware creates a
custom import table, also based on time seeds (see Figure 20).
The RDTSC instruction, which provides those time-seeds, is
called very frequently, not only to randomize stuff, but also
for choosing random locations in the target application, where
relevant data regarding decryption keys, buffer pointers, etc.,
will be placed.

In Figure 21, we can see a sequence of instructions which
progressively builds the decoration of the new infection.

All the steps required for a full fi le creations are called in a
sequence of three consecutive calls, as shown in Figure 22
{reshape / append / recrypt}.

2.2 ANALYSING VIRLOCK – COMBINING
PURPOSE
We have seen lots of malware categories that combine their
powers with other malware categories. The results of those

combinations have, most of the time, been some kind of
surprise for security products. Not only do malware authors
learn from security products how to improve their
performance, but we also learn from malware authors that
there is always something which we have not taken into
account in the fi rst place. This sounds like an evolving loop,
where security products try to nullify malware actions, while
on the other hand malware authors try to nullify security
products’ actions. Well, at least the loop is more like a three-
dimensional spiral, otherwise we would not exist at this
moment in time.

The following is a brief history of combined malware
actions including Virlock, which we fi nd as a reference for
this case:

• Viking / Jadtre – rootkit and fi le infector

• CBDoorK – rootkit and backdoor

• Sality – fi le infector, botnet, worm

• Virlock – ransomware, fi le infector.

Buffer alias Buffer size Buffer ptr Description

TAB1 0x200 0x970000 Randomization table 1

TAB2 0x2300000 0x1100000 Working buffer for reshaping procedure

TAB3 0x10000 0x9A0000 Intermediate table 1

TAB4 0x10000 0xAA0000 Intermediate table 2

TAB5 0x200 0x980000 Randomization table 2

Table 2: Buffers involved in the morphing procedure.

Figure 19: Preparing headers for the fi les to be constructed.

Figure 20: Building a customized import table.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

348 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

2.2.1 File infector and screen-locker
Until Virlock, no other malware combined these features.
Malware authors who write ransomware are doing it for the
money – they say as much in their readme fi les appearing on
the infected computers. For example, a piece of ransomware
using the Bitlocker feature from Windows tells the infected
users that ‘This is just how business works, pay and you’ll get
your data back.’

Early versions of ransomware only locked users’ accounts,
hoping that some of them would fall into their trap – and they
succeeded, but there is always room for improvement. Some of
the next versions tried to encrypt users’ fi les with symmetric
keys and locked the users’ accounts, making it more diffi cult to
revert the process. But as the security products improved their
strategies and delivered rescue-CDs to users, malware authors
improved their methods of cryptography, using asymmetric
algorithms, and gave up the screen-locking. When infecting
users with those kinds of ransomware, malware creators need a

management system in order to bind private-keys with malware
versions. Maybe they did not expect their methods to be so
fruitful, but they seem to be overwhelmed by the number of
infected users and public/private keys. It is not unusual for a
user to try to pay, and get a decryptor which attempts to
decrypt fi les from a different infection.

Virlock tries somehow to escape the load produced by the
key-infection management system while improving the old
techniques used in locking fi les and user accounts by
embedding the clean fi le and packing it safe inside the
malware with random and hard-coded keys. It also tries to
crack users’ account passwords, to lock their account in order
to make it as diffi cult as possible for the users to recover their
fi les. Using the presented technique for fi le infection, security
products have to consider an entire arsenal of variables in
order to begin a clean method, because it would be very easy
to miss a certain hard-coded-key and to damage the fi le
instead of recovering it.

Figure 21: Reshaping a new infection.

Figure 22: Main reshape steps for self-copies.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

349VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

3. GETTING TO THE CORE OF VIRLOCK
We’ve seen so far that Virlock uses a template-based reshape,
so we can use that template as some kind of regular
expression to fi nd some inner pylons / code-blocks to start
with. Studying the fi ve different versions until now, there are
certain similarities between them, which will lead us to
classify a sample as infected.

In this chapter we will try to reveal the malware’s weak
points and see how those weaknesses may contribute to
studying it better in all its present forms.

3.1 Revealing the core, inside different
malware versions
First, there is an initial layer of decryption which will end up
by continuing the execution somewhere at
FirstSectionVA+0x400 or FirstSEctionVA+0x1000 with or
without additional obfuscated code and possibly a short
second decryption stage (Figure 23).

There are two major switch sections inside the malware
which choose a path of execution depending on the hard-
coded fl ag discussed in section 2.1.2.2. We will consider the

Figure 23: First chunk of relevant code in all fi ve versions.

Figure 24: A comparison between all fi ve versions inside context-switch sections.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

350 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

two sections as the core of the malware, as they are present
inside all versions, no matter how obfuscated the code is, and
the path to those functionalities is unique if an emulator
behaves just like a real operating system.

Not all versions are as compact, as shown in Figure 24. There
are some cases where junk-code might appear between
relevant instructions in our target code, but ignoring them is
not as diffi cult as one may think.

3.2 Searching for a match
Most detection algorithms will just try to fi nd a relevant piece
of code inside a piece of malware. Looking at the code shown
in Figure 25, we might be tempted to say that we found
something relevant for our malware (a branching point where it
chooses to execute as installed or as a fresh infection).
However, in other malware versions we found other such

pieces of code, doing the same thing but with modifi ed
instructions. Considering this, the detection cannot choose that
sequence of instructions to follow, but we need some rules
depending mostly on the constant addresses given in the piece
of code and the instruction types, which are not so different
across different malware versions. This kind of matching
seems to be as powerful as a regular expression-matching
algorithm, but additional changes have to be considered.

3.3 Cleaning infected fi les

To recover the clean fi le from the malware, we need to follow
the code until a point at which we can check whether the
infection contains a clean fi le (switch-fl ag == 1) or not (switch-
fl ag != 1). If we do have a clean fi le, we need to grab the hard-
coded values inside the malware (different with each infected
fi le) and to force the emulation of decryption functions.

Figure 25: Piece of malware code to decrypt clean fi le.

Figure 26: Finding clean fi le using hard-coded variables.

Figure 27: Infection timeline for Win32.Virlock.Gen.1.

IT’S A FILE INFECTOR… IT’S RANSOMWARE… IT’S VIRLOCK CRACIUN ET AL.

351VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

A simple clean procedure is to use the emulation to execute
the decryption function. After that, we can grab from
memory, using the specifi ed variables, the actual clean fi le.
The starting point of a particular clean fi le inside the malware
is shown in Figure 26.

4. STATISTICS

Figure 27 shows a graphic for the timeline of
Win32.Virlock.Gen.1, which is the most widespread version
at the moment.

In Figure 28, we see how many systems have been infected
since March 2015 for the three most common detections.
Almost 39,700 unique fi les were detected by Bitdefender on
148 systems in less than fi ve months. The highest number of
infections were detected in Canada – almost 30,000,
representing 75% of all infections. We expect a small
increase in the next few months as the authors of the malware
seem to still be working on it, and a total decrease by the
middle of next year, by which time many security products
will have solutions for it.

5. CONCLUSIONS
It seems that malware creators are constantly learning from
their mistakes and they always fi nd new ways to bypass
security products, be it with a small improvement such that
their sample will not be detected for a few days, combining
technologies that could force certain security products to
redesign their engines (due to performance-hits) in order to
come up with a feature to successfully detect and clean the
malicious application, or forcing security companies to search
for better solutions or to give-up by not being able to keep up
with damages done by specifi c malware infections.

Virlock is among the few malware applications which
combines different technologies to harden the reverse
engineering process and at the same time to make the creators
of security products question their technologies. The redesign

process of certain engines is not always an easy step, and most
of the time this is not a solution. For example, to add some
features to emulators, in order to execute unimplemented APIs,
to track a certain sequence of generic assembly instructions, or
to increase the complexity of search algorithms near to the
complexity of strstr(), might result in performance hits which
will impact the overall functionalities of the security product.
Some designers being inspired in the fi rst place might laugh at
the idea that an improvement could be made as a next step
inside an already evolved tool, but that is not always the case.

With the advance of malware technologies in the last few
years, we fi nd it even harder to revert malware, or to revert
the infection process and to restore the system to a clean state.
Ransomware using asymmetric encryption algorithms is
constantly destroying user-data requiring money to get data
back. More than ever, we need methods to automate dynamic
analysis and at the same time to extract relevant features from
different infections along with improving the prevention
techniques. Model-checking and symbolic simulation may be
a solution from that point of view, and maybe combining that
with time-line analysis and control of a running operating
system environment, we might prevent, learn and successfully
revert much more complex infections.

There is also a small chance that by using classifi ers to extract
common vector-features from traces obtained from emulation
of such malware, and then dynamically observing the
modifi cations which take place during the infection, one
could generate the detection process (which resumes to a
search problem in the space of fi les to be scanned), along with
the disinfection process, in just one click.

ACKNOWLEDGEMENTS
This work was co-funded by the European Social Fund through
Sectoral Operational Programme Human Resources
Development 2007 – 2013, project number POSDRU/187/1.5/
S/155397, project title ‘Towards a New Generation of Elite
Researchers through Doctoral Scolarships.’

Figure 28: Left: Win32.Virlock.Gen.1, Top-right: Win32.Virlock.Gen.3, Bottom-right: Win32.Virlock.Gen.4.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

