
SPEAKING DYREZA PROTOCOL... MAXIMCIUC & VATAMANU

167VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

SPEAKING DYREZA PROTOCOL.
ADVANTAGES OF ‘LEARNING’ A

NEW LANGUAGE
Alexandru Maximciuc & Cristina Vatamanu

Bitdefender, Romania

Email {amaximciuc, cvatamanu}@bitdefender.com

ABSTRACT
Most malware families are capable of evading detection and
ensuring long persistence on infected machines through their
update mechanisms. However, if one is able to reverse
engineer such a sample and simulate C&C communication,
invaluable information can be obtained. First, this means we
can limit damages caused by the malware by providing near
real-time detection, and second the malware’s intent can be
studied by gathering the confi guration fi les that usually come
on the same channel as the other payloads.

In this paper, the steps needed to simulate malware
communication traffi c are analysed. The paper concentrates on
dissecting the network communication, encryption and update
mechanisms for one of the most active malware families in
2015, the Dyreza banker. Since the malware distribution is
realized across many campaigns, the stages of impersonating
various bots with various confi gurations at the same time in an
effi cient and scalable way, are also discussed. Using the
method described, we have been able to extract important
information, such as campaign ID, addresses of the C&C
servers, additional modules that are not always downloaded
during an update, and, of course, the confi guration fi le that
contains all the targeted banks. Besides getting us one step
ahead of the malware, this information has helped us gain an
insight into the way the botnet is coordinated and divided
across different geographic regions.

INTRODUCTION
Malware has evolved over time, but old types of malware still
work in tricking the user. Whereas in 2013–2014 the new trend
on the malware scene was the controversial ‘locker’ families,
in 2015, one of the most active pieces of malware was the
Dyreza banker. Since they appeared, bankers have modifi ed

their methods of stealing credentials, adapting to the
protection methods adopted by the banks’ web servers. Even
though neither the web-inject method used by Dyreza to steal
credentials, nor its spreading method (via spam campaigns) is
new, it seems that they still do the trick.

Although it relies on some old methods, Dyreza is a
sophisticated piece of malware. Its network is complex, its
communication protocol is complicated, and its update process
is divided into many components.

This paper focuses on these aspects, trying to gain an insight
into the direction in which the botnet is heading.

DYREZA REVIEW
Dyreza is one of the most important malware families spread
in 2015 and it has been widely analysed and reversed.
Although many researchers have investigated this piece of
malware, let’s have a quick recap of its main features.

One of the malware’s infection vectors (and the most
‘important’ one) consists of spam campaigns which deliver the
Upatre Downloader. Once on the system, Upatre downloads
and executes Dyreza’s binary fi le. Over time, Upatre’s
payloads changed their encryption method and the download
has ‘moved’ from HTTP to HTTPS in order to reduce its
‘visibility’ to many protection solutions.

Once decrypted by its downloader, the Dyreza binary fi le has its
own encryption layer. We’ll take as an example the fi le with
SHA1 hash ‘fd14ff07b1ca08d7beacee08e540703fd71b3181’.
After applying a XOR operation to each byte with 0x01, we fi nd
another MZ/PE fi le inside. Its hash is ‘0861c1c5d1ba2935c3424
fefa4c2d2b3c610e6d6’. The encryption layer for this one is
based on the VMPC algorithm. The Dyreza binary fi le hidden
under the VMPC decryption is
‘fd028de0a84762f3f05ab8c799b82a5071ed985e’, which has
the resources shown in Figure 1.

Now, of course, these resources are also encrypted – but in this
case, it’s only a permutation. The last resource, XFNPZPWM1,
is actually the permutation table for the fi rst two:

• BTZE393NE – the main Dyreza DLL, for x86 systems

• POZD1F6E2 – the main Dyreza DLL for AMD64 systems.

In this example, we’ll go further with ‘10d2436272ba6b0123d
061c4c90926088d7efc5d’ (extracted from BTZE393NE after
decryptions), which has the resources shown in Figure 2.

Figure 1: Resources for fd028de0a84762f3f05ab8c799b82a5071ed985e.

Figure 2: Resources for 10d2436272ba6b0123d061c4c90926088d7efc5d.

SPEAKING DYREZA PROTOCOL... MAXIMCIUC & VATAMANU

168 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

As can be seen in Figure 2, there are fi ve resources in this
sample. Four of them are encrypted as follows:

• 0Y2HGIF36 and 4QVYNQKU1 are encrypted with a
simple XOR with the fi rst 32 bytes in 6ET5APHF3

• 733YSOAC4 and 9TDUCOGN5 are encrypted with
AES256-CBC (which will be described later).

The most important resource for our project is 9TDUCOGN5,
which we will refer to as baseConfi g from now on.

COMMUNICATION PROTOCOL
All binary fi les come with embedded encrypted confi guration
data (baseConfi g), which contains, among others, the campaign
ID and a list of server IPs to connect to (Figure 3).

Figure 3: Example of decrypted confi guration data
(baseConfi g).

After parsing it, the malware tries to connect, successively, to
the IPs specifi ed in the baseConfi g in order to retrieve an
XML resource. Figure 4 shows the format of the request for
this operation.

Figure 4: Example request for XML resource.

Where:

• baseConfi gServerIP is hard-coded in baseConfi g

• campaignID is hard-coded in baseConfi g

• botID is a concatenation of:

- <COMPUTERNAME>

- “_W”

- <winMajorVer>

- <winMinorVer>

- <winBuildNumber>

- “.”

- <MD5HEX(<COMPUTERNAME>)>

• windowsVersion is the Windows version, e.g. Win_7,
Win_XP_32bit, Win_Vista_SP1

• botVersion is hard-coded in the main Dyreza DLL

• botExternalIP is the computer’s external IP address;
usually, the bot uses legitimate STUN servers to fi nd it.

It looks as if no validation is made server-side regarding the
MD5 hash and the computer name.

The above request will retrieve a buffer containing an XML
fi le. The encrypted buffer is shown in Figure 5.

This XML fi le will contain different server IPs with special
roles to which the bot will connect subsequently, sending or
retrieving other data.

The format of the response is show in Figure 6.

Figure 5: Encrypted buffer containing the XML fi le.

SPEAKING DYREZA PROTOCOL... MAXIMCIUC & VATAMANU

169VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Figure 6: Response format.

Figure 7 shows the resultant XML fi le after decrypting the
encodedData (the 400 bytes in the above example).

Figure 7: XML fi le.

Every server has its own purpose. For example, <modules>
servers are used to get the ‘plug-ins’:

• wg – form-grabber plug-in

• tv, vnc – plug-ins with VNC capabilities

• m_i2p – the I2P communication plug-in.

The encryption algorithm is the same for all the components,
embedded or downloaded. It comes in the form of AES256
CBC. The AES key and IV are computed using the SHA256
hash function applied to the fi rst 0x30 bytes of the encrypted
buffer:

• the fi rst 0x20 bytes from the buffer are used to generate
the key

• the next 0x10 bytes from the buffer are used to derive the
IV.

The AES key and IV computation code is illustrated in
Figure 8.

As far as we’ve seen, the cntRounds parameter has two
possible values:

• 64 – when the bot wants to decrypt a downloaded
resource or the embedded baseConfi g

• 1 – when the bot wants to decrypt the ‘state fi le’ located
on the computer’s hard drive.

The Dyreza banker is a very sophisticated and complex piece
of malware. For this paper we didn’t invest too much time in
reversing all the bits in the binaries, but rather we focus on a
few important components and the methods used by the bot to
keep them up to date.

FRAMEWORK
The primary role of our framework is to monitor Dyreza’s
network and the update of its confi guration fi les and to help
us understand its dimension and geographic distribution.

Figure 9 provides a summary of how the framework works.

The framework is subscribed to the Dyreza collection. When
a new binary fi le is encountered, it is fi rst unpacked and then
the embedded information is extracted (baseConfi g and
botVersion). These pieces of information are inserted into our
database for follow-up correlations.

The next step is the impersonation of a valid zombie. We
have to randomly generate values for bot ID, computer name,
external IP and Windows version in order to build the request
for the XML resource (Figure 4). If the download succeeds,
the received buffer is decrypted and parsed and kept internal
for the bot instance. In the XML fi le we have a list of
modules, datapost and commands servers. If, on the other
hand, the download or decryption fails at some point, we retry
it with a different C&C address from the baseConfi g fi le (we
limited the retry count to 33, which is usually a little more
than a half of the C&C servers specifi ed in the baseConfi g fi le
– the bad guys are pretty generous!)

Parsing the XML resources, new IP servers are retrieved,
some of which are used later to fetch the plug-ins, while
others are only fl agged in our database. The new request for
these plug-ins is shown in Figure 10.

Figure 8: Decryption code.

SPEAKING DYREZA PROTOCOL... MAXIMCIUC & VATAMANU

170 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

The componentNames of interest to us at the moment are:

• respparser, httprex, httprex2, respparser2, rps2 and bccfg
– the serverIP in this case is from the C&C list from the
baseConfi g resource.

• tv32, wg32, m_i2p32, vnc32, tv64, wg64, m_i2p64 and
vnc64 – in this case the serverIP is from the modules list
in the previously decrypted XML resource.

If the whole process succeeds, the downloaded buffer is
decrypted. The hashes (SHA512) for encrypted and decrypted
buffers are stored in the database for further correlations.

The fi nal step is to retrieve a new update for the baseConfi g
resource (newBaseConfi g). This newBaseConfi g will replace
the old baseConfi g at the next iteration in our framework. The
request is in the format shown in Figure 11.

The response illustrated in Figure 12 contains, besides the
campaignID and botID, the new version for the baseConfi g
resource.

Once the decryption process has successfully been completed,
information from the new confi guration fi le is inserted into
the database (the IPs for the new servers). If the component is

Figure 9: Framework’s fl ow.

Figure 10: Request for plug-in download.

Figure 11: Request for newBaseConfi g.

Figure 12: Encrypted newBaseConfi g.

SPEAKING DYREZA PROTOCOL... MAXIMCIUC & VATAMANU

171VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

not known to us (the computed SHA512 hash on the
decrypted buffer is new), a notifi cation is sent.

Should the decryption fail, we save the raw buffer for further
inspection and send a notifi cation of failure.

After all the servers have been used for downloading new
data, the whole process reiterates, now using the newly added
servers’ IPs from the database alongside the old ones in the
download processes.

ADVANTAGES AND DISADVANTAGES
The main advantage of this project is its scalability: with a
single machine you can ‘pretend’ to have hundreds of
infected machines and get a better insight into the payloads,
or you could bypass any ‘sleeps’ imposed by the malware in a
normal infection scenario.

Another important advantage is that the framework is capable
of requesting a certain resource that would be served only in
special circumstances by simulating every necessary condition.

We chose to write this project in Go (golang) because of its
built-in concurrency (and we use it a lot, running about 30
‘infected machines’ at the same time), C-resemblance, static
typing and static linking. Also, it’s a nice language to play
with.

The main disadvantage of a project like this is that one has to
invest a lot of time in reversing and re-building the protocol
in a language of your choice, but after fi nalizing the project
the results are worth it.

STATISTICS
In our four months of investigations we processed
approximately 3,000 samples. At the time of the writing this
paper, we have registered 242 different campaign IDs in our

database. Most of them have a standard format, a
concatenation between a date (day and month), a country id
and a number (2402uk2, 0903us23, 2402uk1, 2502uk1,
1903no13). There are two exceptions among the campaign
IDs: man and cor. These appear to be accompanied only by
numbers: man1, man2, man3, man4 and cor1.

Analysing our data, we didn’t fi nd a certain campaign that
would target a particular country or a particular bank. The
resources in charge of defi ning the redirection from the
legitimate URL to the malicious domain server seem to have
almost the same list of banks (or targeted sites) among all the
campaigns. From time to time, small updates are made,
adding new web pages to the existing list of ‘victims’. Also,
we observed that, over time, the malware creators added new
types of ‘victims’. While at fi rst the list of URLs represented
only banking institutions and fi nancial groups, recently
updates have also contained payment services, shopping
websites, sites that sell or buy bitcoins, domain registration,
mail-sender and web-hosting services, job marketplaces and
others.

At the time of the writing this paper, we had extracted 585
targeted websites from the downloaded resources. The most
affected countries, in regards to banks or fi nancial
institutions, are illustrated in Figure 13.

As can be seen, the countries with the biggest number of
targeted institutions are the United Kingdom with 79,
Germany with 59, and Australia with 48 fi nancial institutions.

Another important aspect we observed is that the IPs for any
of the servers change often (new IPs appear in our database
weekly). 802 distinct IP addresses (here we include the
servers from the baseConfi g fi les and the servers contained in
all the downloaded resources) passed through our system in
four months. It seems that most of them are (were) located in
Ukraine and Russia, as can be seen in Figure 14.

Figure 13: Top targeted countries.

SPEAKING DYREZA PROTOCOL... MAXIMCIUC & VATAMANU

172 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Another interesting thing was to follow the update process for
the downloaded resources. Figure 15 illustrates the updates
for the respparser, httprex, httprex2, respparser2, bccfg and
rps2 components. The most intriguing aspect retrieved from
our database is that there seem to be two different
confi gurations running at the same time for some of the
resources, specifi cally for the respparser, httprex and bccfg
components. The graphic illustrates data between 28 April
and 27 May.

Let’s take for example the respparser component. As can be
seen, there are two streams of updates running for this

component at the same time. Both streams were changed on
28 and 30 April, 5 May and 7 May.

The differences were as follows:

• On 28 April:

- ‘stream1’: 1dbedbf20… changed to 3ecd3c2814f…
The only major change was the server used for
redirects.

- ‘stream2’: eac085223c.. changed to
ba521cc05db5f5c1e96.. The only major change was
the server used for redirects.

Figure 14: Dyreza servers’ geographical distribution.

Figure 15: Update process.

SPEAKING DYREZA PROTOCOL... MAXIMCIUC & VATAMANU

173VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

 The difference between the new resources
(3ecd3c2814f.. and ba521cc05db5f5c1e96..) refers to
the targeted sites and consists of four modifi ed lines.

• On 5 May:

- ‘stream1’: 97fc64d22d2b.. changed to
1d1e16488ac23d3a.. Updates: four modifi ed
URL-parts and one IP (used for redirects).

- ‘stream2’: 4d27c077fc8d03.. changed to
5f3afc1ea20ad681c9.. Updates: six modifi ed
URL-parts and one IP (used for redirects).

 The interesting part is that the only difference
between the new resources (1d1e16488ac23d3a and
5f3afc1ea20ad681c9) is now an IP address.

At the time of writing this paper, both respparser ‘streams’
contain two IP addresses (one that is shared between the two
streams and one that is different) and they both have the same
list of URL-parts they are interested in.

The httprex resource, as can be seen above, suffered an
update on one of the streams on 28 April, specifi cally from
dcd09dbfb66ca2e17b.. to d7353ad066e22969..; the change
consisted of:

• A server address change

• The addition of a few new URLs of interest and the
‘repair’ of some of the old targeted URLs.

On 4 May, that same ‘stream’ changed again (from
d7353ad066e22969.. to 8717582749255c91a..), again by
changing the IP address of the server (see Figure 16); also,
they added 10 more ‘targets’ to the confi guration fi le.

Around 12 May, the same stream got an update again (this
time only the server address was changed), which was
followed shortly afterwards by an update of the second

stream (from 02a4e01827ade443.. to 5288e74db54f10ba6..):

• A server address change

• Lots of targeted domains were added.

Some of these new targeted domains were added to the fi rst
stream on 28 April.

Another interesting thing is that most of the campaigns we’re
impersonating are tied to a specifi c stream, but there are a few
campaigns that from time to time do a ‘stream-boundary-
trespassing’. For example, Figure 17 plots data from 21 May
to 25 May, for respparser (above) and httprex (below). The x
axis represents all the campaigns we follow. The y axis
represents the number of successful downloads for the
component over that period of time.

There were a few bots corresponding to specifi c campaigns
that, over that period, mostly fetched resources for one of the
streams and on a few occasions fetched resources for the
other stream (for the respparser resource the fi rst stream is
shown in light green and the second stream in dark green, and
for the httprex resource the fi rst stream is shown in light
purple and the second stream in dark purple). If we were to
zoom into the image we would see that some of the
campaigns that made those ‘stream-boundary-trespasses’
were: 0204us22, 1102us2 and 1902us1 (see Figure 18).

CONCLUSIONS
‘Learning a new language’ takes time and you always have to
keep an eye on fresh samples and validate that the protocol
and the resources are still the same – but once all of this is
done, some interesting aspects are highlighted. Speaking the
same protocol as Dyreza brought us new insights into the
botnet. Although it seemed at fi rst to be ‘just another banker’,
we learned by retrieving components that are not

Figure 16: Streams differences for the httprex resource.

Figure 17: Campaigns’ stream-transitions.

SPEAKING DYREZA PROTOCOL... MAXIMCIUC & VATAMANU

174 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

downloaded, or which take a long time before being
downloaded in a normal infection, that this is a complex piece
of malware. We were able to impersonate many infections for
different campaigns in a scalable manner. Based on this
information we saw how the botnet is coordinated and
divided across different geographic regions and how the
update process is carried out between different campaigns
over time.

ACKNOWLEDGEMENTS
This work was co-funded by the European Social Fund
through Sectoral Operational Programme Human Resources
Development 2007 – 2013, project number
POSDRU/187/1.5/S/155397, project title ‘Towards a New
Generation of Elite Researchers through Doctoral
Scolarships’.

Figure 18: Stream-transition for campaigns 0204us22, 1102us2 and 1902us1.

