
DEAD AND BURIED IN THEIR CRYPTS... MODY & PANAKKAL

265VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

DEAD AND BURIED IN THEIR
CRYPTS: DEFEATING MODERN

RANSOMWARE
Samir Mody & Gregory R. Panakkal

K7 Computing, India

Email {samir.mody, gregory.panakkal}@
k7computing.com

ABSTRACT
Cryptolocker, Cryptowall, CTB Locker, etc. are well-known
families of modern ransomware which use strong encryption
algorithms with large asymmetric keys to encrypt target fi les,
rendering them nigh on impossible to decrypt locally since the
private keys are controlled by the malware syndicates.
Therefore data recovery following a ransomware infection is a
huge challenge. It is imperative to arrest the ransomware as
early as possible before encryption takes place.

Complex obfuscation and anti-emulation techniques used on
the ransomware droppers ensure that static blocking in real
time is diffi cult. However, low-level system-wide interception
of designated events by security software allows close
monitoring of the behaviour of untrusted executable code –
which currently includes ransomware components – thus
making contextual dynamic blocking a high-percentage
option.

Based on the runtime behaviour of several pieces of modern
ransomware, this paper describes in detail the various stages at
which ransomware processes can reliably be terminated,
mitigating against false positives and performance
degradation. We explore in depth the blocking of suspicious

events such as data-overwrite attempts at both fi le system and
disk levels, behavioural anomalies of OS processes,
incongruous calls to cryptographic functions whether OS
crypto APIs or statically linked OpenSSL library code
(de-obfuscated in memory), etc. It may even be possible to
adopt and adapt certain strategies to arrest ransomware for
mobile platforms. We will delve into a novel anti-ransomware
solution for Windows, optimally combining various strategies
to generically detect and prevent attempts to encrypt target fi le
types on disk.

METAMORPHOSES OF A BEAST
The purpose of this paper is to explore strategies for
terminating ransomware – the ubiquitous fi le-encrypting kind
– before too much damage has been done. In order to stop
ransomware in its tracks it is imperative that we understand
the stages encountered in a typical attack scenario, bearing in
mind that a fi rm strike at a particular juncture is likely to stop
the ransomware dead.

The modus operandi of ransomware involves several stages
and binary components. The denouement for our intents and
purposes is the point at which all the target fi les have been
encrypted using large keys and industry-standard algorithms,
and a demand for ransom has been splashed on the screen to
torment the hapless victim. Ransom payment mechanisms are
of no relevance to this paper.

The delivery mechanism for primary-stage ransomware
components via socially engineered mass-mailed spam,
drive-by downloads, botnets, etc., is identical to that of most
other malware. It would suffi ce to mention that standard
blocking techniques and good security hygiene at the fi rst line
of defence would prevent many such attacks. However,
ransomware attacks are generally very successful, implying
that the complete delivery of the payload does take place on a

Hash Wrapper type Comments

SHA256: f9889210ed894d5da3930689339cc617fb73555d066854266
5fd3b0a3a83f319,

MD5: d23c1057bfe4f1aaaf5a5a5bc37bd061

MSIL .NET

SHA256: 114fd64e54c0a3a63327e443bb61e7f8ef3096de681177c834
e38125092f5b6b,

MD5: 06ea9899946dd36a8a7d71aacd22c19b

Visual Basic

SHA256: ae4e6153f82c891ce8af249c009dc87ad57bf06cdbdba13fefed
45589a245a72,

MD5: de25f04dedaffde1be47ef26dc9a8176

NSIS Contains ‘06 - Clark Gable.mp3’
(649KB) decrypted and loaded
by handover.dll (56KB)

SHA256: 55c8378c218443dc23a8b2a1ae30546f2bd65456b67397afaf
5dc61ba10fe6e8,

MD5: ac174e6f5f0a55f7d281730af01e0316

MS Visual C++ 8

SHA256:
eec15c8c9722feee291df4685dbaa145423b3727b3ebe355c6e39d
7944de4bc6,

MD5: b5b6aa8ae13ee6a7f0094bd75a25780e

Custom unknown Linker version suggests
underlying VC8 but unknown
EP

SHA256: 7b685212ffaa7c11538ac8907f62198e95787e2e570d47cbc7f
d3692d638f044,

MD5: 1b8011e409cda6f173abe3517557921d

Custom unknown Downloader component. Linker
version suggests underlying
VC6 but unknown EP

Table 1: A variety of wrapped CTB Locker components.

DEAD AND BURIED IN THEIR CRYPTS... MODY & PANAKKAL

266 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

regular basis, notwithstanding current static pattern and
dynamic behaviour checking, and in-built OS privilege-
limitation features such as UAC.

This paper will focus on strategies to contextually block
ransomware at runtime, i.e. assuming other security layers
have been bypassed. Therefore the ransomware lifecycle
described herein will only encompass a microcosm of the
ransomware runtime behaviour deemed to represent its core
encryption functionality. Note that it is assumed throughout
the paper that ransomware components launch solely in user
mode, i.e. kernel-mode ‘rootkit’ drivers are not used to hide
ransomware functionality from security software. This
assumption is deemed reasonable due to the fact that none of
the ransomware families investigated thus far deploy kernel
components. Admittedly, any future kernel rootkit
functionality in ransomware would jeopardise the effi cacy of
our generic contextual blocking strategies.

Beauty but a beast

It is worth digressing briefl y to investigate the obfuscation
techniques used by ransomware which aid the bypass of static
pattern-matching, and process injection, which could
complicate dynamic behaviour blocking.

The authors of ransomware invest a lot of resources in
obfuscating their wares with changing wrappers such that
they appear harmless with their nefarious functionality well-
hidden, thus rendering blocking based on static methods
diffi cult.

CTB Locker exhibits versatility in its disguises and is
therefore considered a good exponent of static-detection-
bypass via obfuscation techniques. Table 1 exemplifi es CTB
Locker’s obfuscation prowess.

Given their current delivery mechanisms, ransomware
components would be considered untrusted, low-privilege
processes by the OS and security software. Even UAC alone
would be suffi cient to thwart some ransomware functionality,
such as encryption of fi les in certain areas (e.g. Program
Files), deletion of system restore points, etc., assuming that
an EOP vulnerability has not been exploited in the meantime.

Ransomware families tend to use process injection to unpack
their obfuscated code into spawned processes, including OS
processes such as explorer and svchost (in the cases of CTB
Locker and Cryptowall [1]), in order to complicate the
tracking of process activity. Spawning non-OS child
processes could lead to a loss of context, and activities which
appear to originate from OS processes are less likely to be
monitored and tagged as suspicious by security software. On
the other hand the process-injection-into-OS-process
functionality does provide opportunities for security software,
for example:

1. An untrusted process injecting into an OS process is
suspicious. Ransomware tends to use
WriteProcessMemory to inject its binary content into
a running process. A hook on WriteProcessMemory,
allowing the context of the process injected into (i.e.
OS process) to reliably be determined, enables
security software to arrest the injector ransomware
process immediately.

2. The incongruity of contextual writes to target fi le
types emanating from a standard OS process, or the

presence of artefacts related to cryptographic and hash
functions within their process space would be deemed
suffi ciently suspicious to warrant stern action.

A more elaborate description of the aforementioned context-
based writes and presence of certain magic numbers, etc.,
vis-à-vis ransomware-controlled processes will be given later
in the paper.

Casting the pupation spell
Modern ransomware generally deploys advanced encryption
algorithms on target fi les without error. One notable exception
is an early version of TorrentLocker using AES in CTR mode
with fi xed IV and reused key, which allowed extraction of the
keystream via simple XOR [2, 3] given an instance of known
plaintext, and then application of this key on other encrypted
fi les. Another exception is the inept use of RSA by Bitcrypt,
which generated woefully short keys [4]. It is henceforth
assumed that decryption of targeted fi les requires possession
of the requisite key.

Figure 1 is an abstract depiction of the stages typically
employed by ransomware to encrypt target fi les.

Figure 1: Typical stages involved in ransomware encryption
of target fi les.

1. Create local session key: A symmetric cipher is
generated using an initialization vector based on
random events and identifi ers on the local machine.
The typical key generated is 256-bit AES, but other
symmetric encryption algorithms such as RC4 may
be used instead of AES.

2. Encrypt target using session key: Files bearing the
targeted extensions are encrypted using the session
key to form amorphous ‘pupate blobs’. Encryption
usually covers the entire target fi le (CTB Locker),
but sometimes simply covers a suffi ciently large area
(TorrentLocker). The ransomware may also append
[2, 3] or prepend [5] the encrypted content with
metadata required to decrypt the fi les, e.g. an

DEAD AND BURIED IN THEIR CRYPTS... MODY & PANAKKAL

267VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

encrypted version of the session key along with the
public key used to encrypt it. The pupate blobs tend
to be saved to fi lenames with the following format:

<exact original fi lename>.<ransomware extension>

 The crucial observation is that post-encryption,
targeted fi les are fundamentally altered such that they
are no longer of recognized fi le types, i.e. magic
markers such as ‘JFIF’ (JPG images) are overwritten,
and TXT fi les suddenly contain random binary
content. These changes are key (no pun intended) to
our anti-ransomware strategy.

3. Encrypt session key with Master public key: In
order to ensure that encrypted target fi les can be
decrypted only by obtaining the Master private key
from the C&C server, the session key is encrypted
using the paired Master public key. The asymmetric
encryption algorithms used thus far are RSA (e.g.
Cryptolocker) and ECDH (e.g. CTB Locker). As
mentioned above, the encrypted session key may be
embedded into the pupate blobs. It is noteworthy
that the actual public key used to encrypt the
session key may not be the Master public key per se
but another key generated locally and linked back
deterministically to the Master private key [5]. In
addition, in certain cases the Master public key is
used to encrypt the target fi les either as a whole, e.
g. CryptoWall (see [1]) or in part, e.g. Dirty
Decrypt (see [1]), instead of encrypting using a
symmetric session key. Nevertheless, the pupate
blobs created would continue to exhibit the
fundamental structural changes described in point 2
above.

4. Despatch encrypted session key to C&C: Once the
session key is encrypted with the Master public key it
is sent back to the C&C. Thereafter, the unencrypted
session key would be expected to be destroyed so
that it cannot be dumped from memory and thus used
to recover the targeted fi le content from the pupate
blobs.

Appear Master public key

The Master key pair is generated either on the C&C or
another machine controlled by the malware syndicates. Figure
1 suggests that the malware retrieves the Master public key
from the C&C, as was the case with Cryptolocker [6] and
Cryptowall [7].

If the Master key has to be downloaded before any encryption
takes place, an excellent opportunity is provided to security
software to neuter the ransomware simply by blocking the
network traffi c. For example, in the case of Cryptolocker the
DGA-based domain names could be calculated offl ine and
blocked en masse, and in the case of Cryptowall, a policy
block on TOR traffi c would do the trick.

However, the Master public key could be pre-embedded in the
malware binary, as in the case of CTB Locker. CTB Locker
and TeslaCrypt (NB: TeslaCrypt does not currently appear to
make use of any asymmetric keys [8]) do not require an
Internet connection to cause their damage. The network
communication is required simply to deliver the encrypted
session key.

SWORDS DRAWN AND READY FOR BATTLE
Security software can and should fi ght back against
ransomware. Let us explore in detail our generic
anti-ransomware strategy.

Every family of ransomware adopts the following high-level
workfl ow:

1. Locate target fi les: Ransomware, much like its
equivalent legitimate counterparts, performs target
selection by enumerating certain drives and
directories for fi les with specifi c extensions such as
TXT, JPG, DOCX, ZIP, etc.

2. Take data hostage: The selected target fi les are
encrypted as described earlier.

3. Demand ransom: After all target fi les have been
encrypted, a ransom message is displayed.

We can exploit the above workfl ow to our advantage in
detecting ransomware functionality. In order to establish core
intent with precision during various fi le operations, it is
important to keep track of their context.

We decided to implement a framework with the help of a
kernel-mode driver for this purpose. This hawk-like
component helps in tracking the activities of multiple
processes/threads in a centralized area and correlating them.

The interception points and technologies used in the kernel
driver are listed below.

Remote code injection and execution
As mentioned earlier, many families of ransomware inject
code into running processes, including OS processes, to
execute their workfl ow. However, code-injection is a common
technique used by many different types of malware. A typical
HIPS component could effectively block code-injection
attempts made by a potential piece of ransomware without
necessarily knowing it was one.

Intercepting a combination of ZwAllocVirtualMemory and
ZwWriteVirtualMemory APIs in kernel, and blocking any
cross-process attempts at manipulating memory where the
target is an OS process (e.g. svchost.exe, explorer.exe, etc.)
seals the deal. Placing hooks on ZwCreateThread, or
registering for ObjectManager thread callbacks, allows
blocking attempts at the point of starting a new control fl ow
in an OS process, such as to enumerate directories.

However, perhaps due to a lack of sophistication, not all
ransomware performs suspicious actions such as process
injection. TeslaCrypt, which executes the required workfl ow
as part of a freshly spawned copy of itself, could go under the
HIPS radar.

Generic ransomware tracking
The kernel driver we developed as the PoC is a fi le system
minifi lter, which has interception points on the following IRP
requests:

• IRP_MJ_CREATE: to track fi le/directory opening/
creation

• IRP_MJ_DIRECTORY_CONTROL: to track
directory enumeration

• IRP_MJ_WRITE: to track fi le writes

• IRP_MJ_CLOSE/IRP_MJ_CLEANUP: to track fi le/
directory close.

DEAD AND BURIED IN THEIR CRYPTS... MODY & PANAKKAL

268 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Given that directory enumeration is the fi rst critical step
performed by the ransomware, and it is not a very common,
high-frequency operation across all processes, the driver starts
by associating a context when it detects a directory
enumeration.

During our study, we have observed ransomware optionally
split the workfl ow over multiple threads. Our TeslaCrypt
sample (SHA256: a7ad727abfec279fe5ef781a0714ef781dacd
18f6253f443a4677c5a2cf74083, MD5: 41d0cf71eb2c996924
feb0a446d943b2) uses the same thread for enumeration and
data encryption within its own process space. On the other
hand, the CTB Locker sample we studied (SHA256:
fa876bc9cd4ff4574f5bfb52e8959764a4703d25acccccf4d687
23fad05e8c8b, MD5: 8a5fb8b49ed88d093177786c8111736a)
uses separate threads spawned from injected code in svchost-
process-space for enumeration and encryption. The CTB
Locker case implies that tracking context merely at thread
level, or at process level would not be suffi cient to accurately
establish intent. Therefore the kernel driver tracks the context
at allocated code-block level within a process.

Once a code-block is fl agged for monitoring, all fi le I/Os
emanating from that block that can possibly change a fi le are
tracked, e.g. renames/moves, writes, etc. A small journal of
change-activities is stored for the purpose of reverting any
operation once a ransomware-like operation is detected. Note
that the journal is expected to remain small since the
ransomware is expected to be terminated very early in its
encryption loop.

At the fi le-data-write interception point, i.e. before any data is
actually overwritten, the existing fi le type is detected based
on its content. If the fi le types are recognized via magic
values at fi xed offsets in the headers (e.g. big-endian magic
‘JFIF’@0x6 for JPG; ‘PK’@0x0 for ZIP/DOCX/XLSX;
0xD0CF@0x0 for DOC, etc.), then an attempt to overwrite
the headers with unrecognized content is an instant indicator
of a potential encryption attempt. If the target fi le type is
unrecognized, or if it has text-like content, then a signifi cant
rise in the fi le data entropy is enough to fl ag the encryption
operation. It is interesting to note at this stage that the
ransomware itself makes no attempt whatsoever to establish
target fi le type but is content to trust the fi le extension. This
fact provides an opportunity to determine the target fi le type
merely by extension, and to present shadow targets to the
ransomware, if so required.

After detecting the attempted encryption operation, we are
presented with the best opportunity to block ransomware
without allowing the malware to do any real damage.
However, the driver is required to distinguish between
legitimate encryption programs and ransomware. It currently
uses various heuristics to distinguish between them:

• The source of the encryption process, if from an OS
process, is a dead giveaway of its malicious nature.

• The aggressiveness with which the enumeration and
encryption occur is also a strong indicator. A slow
encryptor (similar to a slow-infecting virus) is yet to
appear and we may not see one due to the short life
expectancy of any particular C&C server involved.

In order to reduce the amount of fi le-data-write tracking,
which could have an impact on system performance, we
considered limiting monitoring via the detection of magic
values used in encryption/hash algorithms such as AES,

SHA256, etc. in code-blocks where directory enumeration
has been initiated. This is effective when the malware is
linked statically to an encryption library such as OpenSSL.

Use of MS Crypto APIs can be detected via hooks on Crypto
APIs, or by scanning for Crypto API names within the code-
block. However, we resorted to the use of entropy detection
and known-data-overwrite to detect an encryption attempt. Of
course, entropy is also raised when fi le content is compressed;
however, most compression programs work on newly created
fi les rather than existing fi les, thus escaping false detections.

Mitigating the risk

The detection framework described above entails the usual
risks associated with detecting malware, i.e. performance
degradation and false positives, e.g. if a user genuinely wishes
to encrypt his/her fi les. Fortunately, both of these risks can be
mitigated against by tightening the process context for
interception, monitoring and detection.

Within an end-point environment, the sources of infection can
be classifi ed by their probability, allowing us to narrow down
the processes that require contextual tracking, even merely for
directory enumeration.

Files from external sources such as the Internet, optical
media, and removable devices are primary candidates for
closer observation. Specifi c processes that act as network
services that may be remotely exploitable are also candidates
for closer observation. On the other hand, legitimate
encryption software is likely to be installed in the Program
Files area, and may well be signed or excluded in some way,
thus engendering a trust level which obviates the need for
prying eyes.

Sector-level monitoring

If future ransomware were to adopt kernel rootkit-like
components it may be possible for them to bypass the
interception points discussed above. In order to complicate
this type of bypass strategy we considered the use of
disk-level interception for monitoring ransomware activities.

However, unlike a fi le system minifi lter driver, a disk fi lter
driver that can intercept disk sector reads and writes lacks
contextual information about the caller fi le or process from
which the I/O is initiated. This makes contextual optimal
interception at disk level infeasible, leading to potential
system performance degradation and increasing the
susceptibility to false positives, and therefore this approach
was promptly shelved.

IN A FAR AWAY LAND…

Ransomware also infects mobile devices, the most well-
known family being Simplocker [9] for Android. Although
considerably less sophisticated than its Windows counterparts,
Simplocker does exhibit some advanced functionality such as
using AES encryption with changing keys [10], and
communicating with a C&C via .onion domains.

The anti-ransomware strategies described above for the
Windows platform could also work for Android and other
mobile platforms. However, there is one major stumbling
block. Security software on mobile operating systems such as
Android are accorded the same privilege as any other app

DEAD AND BURIED IN THEIR CRYPTS... MODY & PANAKKAL

269VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

[11], including the ransomware itself. This means that the
extent of monitoring and control from a security software
perspective is limited, and the ransomware could even execute
fi rst, as in the case of the Koler malware family [11]. Security
software is unable to intercept API calls, but may only
subscribe to broadcast notifi cations which may well be far too
late to minimize the damage.

DEAD AND BURIED IN THEIR CRYPTS
Ignoring the screen-locking species for the present, modern
ransomware is indeed complex, utilizing sophisticated
techniques to bypass current security measures with ease, and
holding data hostage with a vice-like grip.

However, it is possible to fi ght back very effectively against
ransomware, as has been described in this paper. Contextual
interception, on Windows operating systems, of attempts to
encrypt target fi les can be used to generically detect and
terminate ransomware before any major damage is done.

This anti-ransomware strategy, if deployed widely across
security software, should sound the death knell for modern
ransomware. R.I.P.

REFERENCES

[1] Kotov, V.; Singh Rajpal, M. Understanding Crypto-
Ransomware. Bromium, Winter 2014.
http://www.bromium.com/sites/default/fi les/
bromium-report-ransomware.pdf.

[2] Crypto blunder makes TorrentLocker easy to crack.
Virus Bulletin. http://www.virusbtn.com/
blog/2014/09_10.xml.

[3] Léveillé, M.-E. M. TorrentLocker. ESET, December
2014. http://www.welivesecurity.com/wp-content/
uploads/2014/12/torrent_locker.pdf.

[4] Researchers crack ransomware encryption.
http://www.virusbtn.com/blog/2014/02_21.xml.

[5] CTB-Locker encryption/decryption scheme in
details. Zairon. February 2015.
http://zairon.wordpress.com/2015/02/17/ctb-locker-
encryptiondecryption-scheme-in-details.

[6] Jarvis, K. CryptoLocker Ransomware. Dell
SecureWorks CTU(TM), December 2013.
http://www.secureworks.com/cyber-threat-
intelligence/threats/cryptolocker-ransomware/.

[7] Allievi, A.; Carter, E. Ransomware on Steroids:
Cryptowall 2.0. Cisco, January 2015.
http://blogs.cisco.com/security/talos/cryptowall-2.

[8] Allievi, A.; Carter, E.; Tacheau, E. Threat Spotlight:
TeslaCrypt – Decrypt It Yourself. Cisco, April 2015.
http://blogs.cisco.com/security/talos/teslacrypt.

[9] Lipovsky, R. ESET Analyzes First Android File-
Encrypting, TOR-enabled Ransomware. ESET, June
2014. http://www.welivesecurity.com/2014/06/04/
simplocker.

[10] Chrysaidos, N. Mobile Crypto-Ransomware
Simplocker now on Steroids. AVAST, February 2015.
http://blog.avast.com/2015/02/10/mobile-crypto-
ransomware-simplocker-now-on-steroids.

[11] Mody, S.; Dhanalakshmi, V. Early launch Android
malware: your phone is 0wned. Virus Bulletin.
October 2014. http://www.virusbtn.com/
blog/2014/10_31.xml.

