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ABSTRACT
Cryptolocker, Cryptowall, CTB Locker, etc. are well-known 
families of modern ransomware which use strong encryption 
algorithms with large asymmetric keys to encrypt target fi les, 
rendering them nigh on impossible to decrypt locally since the 
private keys are controlled by the malware syndicates. 
Therefore data recovery following a ransomware infection is a 
huge challenge. It is imperative to arrest the ransomware as 
early as possible before encryption takes place.

Complex obfuscation and anti-emulation techniques used on 
the ransomware droppers ensure that static blocking in real 
time is diffi cult. However, low-level system-wide interception 
of designated events by security software allows close 
monitoring of the behaviour of untrusted executable code – 
which currently includes ransomware components – thus 
making contextual dynamic blocking a high-percentage 
option.

Based on the runtime behaviour of several pieces of modern 
ransomware, this paper describes in detail the various stages at 
which ransomware processes can reliably be terminated, 
mitigating against false positives and performance 
degradation. We explore in depth the blocking of suspicious 

events such as data-overwrite attempts at both fi le system and 
disk levels, behavioural anomalies of OS processes, 
incongruous calls to cryptographic functions whether OS 
crypto APIs or statically linked OpenSSL library code 
(de-obfuscated in memory), etc. It may even be possible to 
adopt and adapt certain strategies to arrest ransomware for 
mobile platforms. We will delve into a novel anti-ransomware 
solution for Windows, optimally combining various strategies 
to generically detect and prevent attempts to encrypt target fi le 
types on disk.

METAMORPHOSES OF A BEAST
The purpose of this paper is to explore strategies for 
terminating ransomware – the ubiquitous fi le-encrypting kind 
– before too much damage has been done. In order to stop 
ransomware in its tracks it is imperative that we understand 
the stages encountered in a typical attack scenario, bearing in 
mind that a fi rm strike at a particular juncture is likely to stop 
the ransomware dead.

The modus operandi of ransomware involves several stages 
and binary components. The denouement for our intents and 
purposes is the point at which all the target fi les have been 
encrypted using large keys and industry-standard algorithms, 
and a demand for ransom has been splashed on the screen to 
torment the hapless victim. Ransom payment mechanisms are 
of no relevance to this paper.

The delivery mechanism for primary-stage ransomware 
components via socially engineered mass-mailed spam, 
drive-by downloads, botnets, etc., is identical to that of most 
other malware. It would suffi ce to mention that standard 
blocking techniques and good security hygiene at the fi rst line 
of defence would prevent many such attacks. However, 
ransomware attacks are generally very successful, implying 
that the complete delivery of the payload does take place on a 

Hash Wrapper type Comments

SHA256: f9889210ed894d5da3930689339cc617fb73555d066854266
5fd3b0a3a83f319, 

MD5: d23c1057bfe4f1aaaf5a5a5bc37bd061

MSIL .NET

SHA256: 114fd64e54c0a3a63327e443bb61e7f8ef3096de681177c834
e38125092f5b6b,

MD5: 06ea9899946dd36a8a7d71aacd22c19b

Visual Basic

SHA256: ae4e6153f82c891ce8af249c009dc87ad57bf06cdbdba13fefed
45589a245a72,

MD5: de25f04dedaffde1be47ef26dc9a8176

NSIS Contains ‘06 - Clark Gable.mp3’ 
(649KB) decrypted and loaded 
by handover.dll (56KB)

SHA256: 55c8378c218443dc23a8b2a1ae30546f2bd65456b67397afaf
5dc61ba10fe6e8,

MD5: ac174e6f5f0a55f7d281730af01e0316

MS Visual C++ 8

SHA256: 
eec15c8c9722feee291df4685dbaa145423b3727b3ebe355c6e39d
7944de4bc6,

MD5: b5b6aa8ae13ee6a7f0094bd75a25780e

Custom unknown Linker version suggests 
underlying VC8 but unknown 
EP

SHA256: 7b685212ffaa7c11538ac8907f62198e95787e2e570d47cbc7f
d3692d638f044,

MD5: 1b8011e409cda6f173abe3517557921d

Custom unknown Downloader component. Linker 
version suggests underlying 
VC6 but unknown EP

Table 1: A variety of wrapped CTB Locker components.
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regular basis, notwithstanding current static pattern and 
dynamic behaviour checking, and in-built OS privilege-
limitation features such as UAC.

This paper will focus on strategies to contextually block 
ransomware at runtime, i.e. assuming other security layers 
have been bypassed. Therefore the ransomware lifecycle 
described herein will only encompass a microcosm of the 
ransomware runtime behaviour deemed to represent its core 
encryption functionality. Note that it is assumed throughout 
the paper that ransomware components launch solely in user 
mode, i.e. kernel-mode ‘rootkit’ drivers are not used to hide 
ransomware functionality from security software. This 
assumption is deemed reasonable due to the fact that none of 
the ransomware families investigated thus far deploy kernel 
components. Admittedly, any future kernel rootkit 
functionality in ransomware would jeopardise the effi cacy of 
our generic contextual blocking strategies.

Beauty but a beast

It is worth digressing briefl y to investigate the obfuscation 
techniques used by ransomware which aid the bypass of static 
pattern-matching, and process injection, which could 
complicate dynamic behaviour blocking.

The authors of ransomware invest a lot of resources in 
obfuscating their wares with changing wrappers such that 
they appear harmless with their nefarious functionality well-
hidden, thus rendering blocking based on static methods 
diffi cult.

CTB Locker exhibits versatility in its disguises and is 
therefore considered a good exponent of static-detection-
bypass via obfuscation techniques. Table 1 exemplifi es CTB 
Locker’s obfuscation prowess.

Given their current delivery mechanisms, ransomware 
components would be considered untrusted, low-privilege 
processes by the OS and security software. Even UAC alone 
would be suffi cient to thwart some ransomware functionality, 
such as encryption of fi les in certain areas (e.g. Program 
Files), deletion of system restore points, etc., assuming that 
an EOP vulnerability has not been exploited in the meantime.

Ransomware families tend to use process injection to unpack 
their obfuscated code into spawned processes, including OS 
processes such as explorer and svchost (in the cases of CTB 
Locker and Cryptowall [1]), in order to complicate the 
tracking of process activity. Spawning non-OS child 
processes could lead to a loss of context, and activities which 
appear to originate from OS processes are less likely to be 
monitored and tagged as suspicious by security software. On 
the other hand the process-injection-into-OS-process 
functionality does provide opportunities for security software, 
for example:

1. An untrusted process injecting into an OS process is 
suspicious. Ransomware tends to use 
WriteProcessMemory to inject its binary content into 
a running process. A hook on WriteProcessMemory, 
allowing the context of the process injected into (i.e. 
OS process) to reliably be determined, enables 
security software to arrest the injector ransomware 
process immediately.

2. The incongruity of contextual writes to target fi le 
types emanating from a standard OS process, or the 

presence of artefacts related to cryptographic and hash 
functions within their process space would be deemed 
suffi ciently suspicious to warrant stern action.

A more elaborate description of the aforementioned context-
based writes and presence of certain magic numbers, etc., 
vis-à-vis ransomware-controlled processes will be given later 
in the paper.

Casting the pupation spell
Modern ransomware generally deploys advanced encryption 
algorithms on target fi les without error. One notable exception 
is an early version of TorrentLocker using AES in CTR mode 
with fi xed IV and reused key, which allowed extraction of the 
keystream via simple XOR [2, 3] given an instance of known 
plaintext, and then application of this key on other encrypted 
fi les. Another exception is the inept use of RSA by Bitcrypt, 
which generated woefully short keys [4]. It is henceforth 
assumed that decryption of targeted fi les requires possession 
of the requisite key.

Figure 1 is an abstract depiction of the stages typically 
employed by ransomware to encrypt target fi les.

Figure 1: Typical stages involved in ransomware encryption 
of target fi les.

1. Create local session key: A symmetric cipher is 
generated using an initialization vector based on 
random events and identifi ers on the local machine. 
The typical key generated is 256-bit AES, but other 
symmetric encryption algorithms such as RC4 may 
be used instead of AES.

2. Encrypt target using session key: Files bearing the 
targeted extensions are encrypted using the session 
key to form amorphous ‘pupate blobs’. Encryption 
usually covers the entire target fi le (CTB Locker), 
but sometimes simply covers a suffi ciently large area 
(TorrentLocker). The ransomware may also append 
[2, 3] or prepend [5] the encrypted content with 
metadata required to decrypt the fi les, e.g. an 
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encrypted version of the session key along with the 
public key used to encrypt it. The pupate blobs tend 
to be saved to fi lenames with the following format:

<exact original fi lename>.<ransomware extension>

 The crucial observation is that post-encryption, 
targeted fi les are fundamentally altered such that they 
are no longer of recognized fi le types, i.e. magic 
markers such as ‘JFIF’ (JPG images) are overwritten, 
and TXT fi les suddenly contain random binary 
content. These changes are key (no pun intended) to 
our anti-ransomware strategy.

3. Encrypt session key with Master public key: In 
order to ensure that encrypted target fi les can be 
decrypted only by obtaining the Master private key 
from the C&C server, the session key is encrypted 
using the paired Master public key. The asymmetric 
encryption algorithms used thus far are RSA (e.g. 
Cryptolocker) and ECDH (e.g. CTB Locker). As 
mentioned above, the encrypted session key may be 
embedded into the pupate blobs. It is noteworthy 
that the actual public key used to encrypt the 
session key may not be the Master public key per se 
but another key generated locally and linked back 
deterministically to the Master private key [5]. In 
addition, in certain cases the Master public key is 
used to encrypt the target fi les either as a whole, e.
g. CryptoWall (see [1]) or in part, e.g. Dirty 
Decrypt (see [1]), instead of encrypting using a 
symmetric session key. Nevertheless, the pupate 
blobs created would continue to exhibit the 
fundamental structural changes described in point 2 
above.

4. Despatch encrypted session key to C&C: Once the 
session key is encrypted with the Master public key it 
is sent back to the C&C. Thereafter, the unencrypted 
session key would be expected to be destroyed so 
that it cannot be dumped from memory and thus used 
to recover the targeted fi le content from the pupate 
blobs.

Appear Master public key

The Master key pair is generated either on the C&C or 
another machine controlled by the malware syndicates. Figure 
1 suggests that the malware retrieves the Master public key 
from the C&C, as was the case with Cryptolocker [6] and 
Cryptowall [7].

If the Master key has to be downloaded before any encryption 
takes place, an excellent opportunity is provided to security 
software to neuter the ransomware simply by blocking the 
network traffi c. For example, in the case of Cryptolocker the 
DGA-based domain names could be calculated offl ine and 
blocked en masse, and in the case of Cryptowall, a policy 
block on TOR traffi c would do the trick.

However, the Master public key could be pre-embedded in the 
malware binary, as in the case of CTB Locker. CTB Locker 
and TeslaCrypt (NB: TeslaCrypt does not currently appear to 
make use of any asymmetric keys [8]) do not require an 
Internet connection to cause their damage. The network 
communication is required simply to deliver the encrypted 
session key.

SWORDS DRAWN AND READY FOR BATTLE
Security software can and should fi ght back against 
ransomware. Let us explore in detail our generic 
anti-ransomware strategy.

Every family of ransomware adopts the following high-level 
workfl ow:

1. Locate target fi les: Ransomware, much like its 
equivalent legitimate counterparts, performs target 
selection by enumerating certain drives and 
directories for fi les with specifi c extensions such as 
TXT, JPG, DOCX, ZIP, etc.

2. Take data hostage: The selected target fi les are 
encrypted as described earlier.

3. Demand ransom: After all target fi les have been 
encrypted, a ransom message is displayed.

We can exploit the above workfl ow to our advantage in 
detecting ransomware functionality. In order to establish core 
intent with precision during various fi le operations, it is 
important to keep track of their context.

We decided to implement a framework with the help of a 
kernel-mode driver for this purpose. This hawk-like 
component helps in tracking the activities of multiple 
processes/threads in a centralized area and correlating them.

The interception points and technologies used in the kernel 
driver are listed below.

Remote code injection and execution
As mentioned earlier, many families of ransomware inject 
code into running processes, including OS processes, to 
execute their workfl ow. However, code-injection is a common 
technique used by many different types of malware. A typical 
HIPS component could effectively block code-injection 
attempts made by a potential piece of ransomware without 
necessarily knowing it was one. 

Intercepting a combination of ZwAllocVirtualMemory and 
ZwWriteVirtualMemory APIs in kernel, and blocking any 
cross-process attempts at manipulating memory where the 
target is an OS process (e.g. svchost.exe, explorer.exe, etc.) 
seals the deal. Placing hooks on ZwCreateThread, or 
registering for ObjectManager thread callbacks, allows 
blocking attempts at the point of starting a new control fl ow 
in an OS process, such as to enumerate directories.

However, perhaps due to a lack of sophistication, not all 
ransomware performs suspicious actions such as process 
injection. TeslaCrypt, which executes the required workfl ow 
as part of a freshly spawned copy of itself, could go under the 
HIPS radar.

Generic ransomware tracking
The kernel driver we developed as the PoC is a fi le system 
minifi lter, which has interception points on the following IRP 
requests:

• IRP_MJ_CREATE: to track fi le/directory opening/
creation

• IRP_MJ_DIRECTORY_CONTROL: to track 
directory enumeration

• IRP_MJ_WRITE: to track fi le writes

• IRP_MJ_CLOSE/IRP_MJ_CLEANUP: to track fi le/
directory close.
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Given that directory enumeration is the fi rst critical step 
performed by the ransomware, and it is not a very common, 
high-frequency operation across all processes, the driver starts 
by associating a context when it detects a directory 
enumeration.

During our study, we have observed ransomware optionally 
split the workfl ow over multiple threads. Our TeslaCrypt 
sample (SHA256: a7ad727abfec279fe5ef781a0714ef781dacd
18f6253f443a4677c5a2cf74083, MD5: 41d0cf71eb2c996924
feb0a446d943b2) uses the same thread for enumeration and 
data encryption within its own process space. On the other 
hand, the CTB Locker sample we studied (SHA256: 
fa876bc9cd4ff4574f5bfb52e8959764a4703d25acccccf4d687
23fad05e8c8b, MD5: 8a5fb8b49ed88d093177786c8111736a) 
uses separate threads spawned from injected code in svchost-
process-space for enumeration and encryption. The CTB 
Locker case implies that tracking context merely at thread 
level, or at process level would not be suffi cient to accurately 
establish intent. Therefore the kernel driver tracks the context 
at allocated code-block level within a process. 

Once a code-block is fl agged for monitoring, all fi le I/Os 
emanating from that block that can possibly change a fi le are 
tracked, e.g. renames/moves, writes, etc. A small journal of 
change-activities is stored for the purpose of reverting any 
operation once a ransomware-like operation is detected. Note 
that the journal is expected to remain small since the 
ransomware is expected to be terminated very early in its 
encryption loop.

At the fi le-data-write interception point, i.e. before any data is 
actually overwritten, the existing fi le type is detected based 
on its content. If the fi le types are recognized via magic 
values at fi xed offsets in the headers (e.g. big-endian magic 
‘JFIF’@0x6 for JPG; ‘PK’@0x0 for ZIP/DOCX/XLSX; 
0xD0CF@0x0 for DOC, etc.), then an attempt to overwrite 
the headers with unrecognized content is an instant indicator 
of a potential encryption attempt. If the target fi le type is 
unrecognized, or if it has text-like content, then a signifi cant 
rise in the fi le data entropy is enough to fl ag the encryption 
operation. It is interesting to note at this stage that the 
ransomware itself makes no attempt whatsoever to establish 
target fi le type but is content to trust the fi le extension. This 
fact provides an opportunity to determine the target fi le type 
merely by extension, and to present shadow targets to the 
ransomware, if so required.

After detecting the attempted encryption operation, we are 
presented with the best opportunity to block ransomware 
without allowing the malware to do any real damage. 
However, the driver is required to distinguish between 
legitimate encryption programs and ransomware. It currently 
uses various heuristics to distinguish between them:

• The source of the encryption process, if from an OS 
process, is a dead giveaway of its malicious nature.

• The aggressiveness with which the enumeration and 
encryption occur is also a strong indicator. A slow 
encryptor (similar to a slow-infecting virus) is yet to 
appear and we may not see one due to the short life 
expectancy of any particular C&C server involved.

In order to reduce the amount of fi le-data-write tracking, 
which could have an impact on system performance, we 
considered limiting monitoring via the detection of magic 
values used in encryption/hash algorithms such as AES, 

SHA256, etc. in code-blocks where directory enumeration 
has been initiated. This is effective when the malware is 
linked statically to an encryption library such as OpenSSL.

Use of MS Crypto APIs can be detected via hooks on Crypto 
APIs, or by scanning for Crypto API names within the code-
block. However, we resorted to the use of entropy detection 
and known-data-overwrite to detect an encryption attempt. Of 
course, entropy is also raised when fi le content is compressed; 
however, most compression programs work on newly created 
fi les rather than existing fi les, thus escaping false detections.

Mitigating the risk

The detection framework described above entails the usual 
risks associated with detecting malware, i.e. performance 
degradation and false positives, e.g. if a user genuinely wishes 
to encrypt his/her fi les. Fortunately, both of these risks can be 
mitigated against by tightening the process context for 
interception, monitoring and detection.

Within an end-point environment, the sources of infection can 
be classifi ed by their probability, allowing us to narrow down 
the processes that require contextual tracking, even merely for 
directory enumeration.

Files from external sources such as the Internet, optical 
media, and removable devices are primary candidates for 
closer observation. Specifi c processes that act as network 
services that may be remotely exploitable are also candidates 
for closer observation. On the other hand, legitimate 
encryption software is likely to be installed in the Program 
Files area, and may well be signed or excluded in some way, 
thus engendering a trust level which obviates the need for 
prying eyes.

Sector-level monitoring

If future ransomware were to adopt kernel rootkit-like 
components it may be possible for them to bypass the 
interception points discussed above. In order to complicate 
this type of bypass strategy we considered the use of 
disk-level interception for monitoring ransomware activities.

However, unlike a fi le system minifi lter driver, a disk fi lter 
driver that can intercept disk sector reads and writes lacks 
contextual information about the caller fi le or process from 
which the I/O is initiated. This makes contextual optimal 
interception at disk level infeasible, leading to potential 
system performance degradation and increasing the 
susceptibility to false positives, and therefore this approach 
was promptly shelved.

IN A FAR AWAY LAND…

Ransomware also infects mobile devices, the most well-
known family being Simplocker [9] for Android. Although 
considerably less sophisticated than its Windows counterparts, 
Simplocker does exhibit some advanced functionality such as 
using AES encryption with changing keys [10], and 
communicating with a C&C via .onion domains.

The anti-ransomware strategies described above for the 
Windows platform could also work for Android and other 
mobile platforms. However, there is one major stumbling 
block. Security software on mobile operating systems such as 
Android are accorded the same privilege as any other app 
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[11], including the ransomware itself. This means that the 
extent of monitoring and control from a security software 
perspective is limited, and the ransomware could even execute 
fi rst, as in the case of the Koler malware family [11]. Security 
software is unable to intercept API calls, but may only 
subscribe to broadcast notifi cations which may well be far too 
late to minimize the damage.

DEAD AND BURIED IN THEIR CRYPTS
Ignoring the screen-locking species for the present, modern 
ransomware is indeed complex, utilizing sophisticated 
techniques to bypass current security measures with ease, and 
holding data hostage with a vice-like grip.

However, it is possible to fi ght back very effectively against 
ransomware, as has been described in this paper. Contextual 
interception, on Windows operating systems, of attempts to 
encrypt target fi les can be used to generically detect and 
terminate ransomware before any major damage is done.

This anti-ransomware strategy, if deployed widely across 
security software, should sound the death knell for modern 
ransomware. R.I.P.
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