
ROSCO: REPOSITORY OF SIGNED CODE PAPP ET AL.

258 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

ROSCO: REPOSITORY OF
SIGNED CODE

Dorottya Papp, Balázs Kócsó, Tamás Holczer,
Levente Buttyán & Boldizsár Bencsáth

Laboratory of Cryptography and System Security
(CrySyS Lab), Budapest University of Technology

and Economics, Hungary

Email {dpapp, buttyan, bencsath}@crysys.hu

ABSTRACT
Recent targeted malware attacks, e.g. Stuxnet, Duqu and Flame,
have used digitally signed components that appeared to
originate from legitimate software makers. These attacks were
possible because the standard signature verifi cation procedures
do not allow for detecting key compromise and fake certifi cates.
In this paper, we propose a solution to this problem. More
specifi cally, we introduce ROSCO, a Repository Of Signed
COde, which provides services that can increase trust in
digitally signed code. ROSCO provides reputation information
for signed objects (code and certifi cates), such as when a given
signed object was fi rst seen, how often it has been looked up by
users, and what else the signer of this object has signed before.
ROSCO also provides alert services for private key owners that
help them detect when their signing keys have been used
illegitimately, and hence, probably compromised. We
demonstrate in the paper how ROSCO could have been used to
detect the misuse of signatures and certifi cates in the cases of
Duqu and Flame. ROSCO does not aim to replace the entire
code signing infrastructure; rather, it tries to complement it with
new mechanisms. There is no requirement whatsoever to change
the operating principles of participants that do not want to use
our system. This allows for the possibility of gradual
deployment. We expect that as the size of our repository grows,
the services that we can provide will become more useful, and
this will attract more participants to use our system.

INTRODUCTION
Recent targeted malware attacks, e.g. Stuxnet, Duqu and
Flame, have used digitally signed components that appeared to
originate from legitimate software makers. In case of Stuxnet
and Duqu, the private code-signing keys of legitimate
companies were suspected to be compromised and used by the
attackers. In case of Flame, the attackers generated a fake
certifi cate that appeared to be a valid code-signing certifi cate
issued by Microsoft, and used the corresponding private key to
sign their malware [1]. This actually allowed Flame to
masquerade as a Windows Update proxy, and to infect
computers on a local network by exploiting the automatic
update procedure of Windows.

The purpose of code signing is to ensure the authenticity and
integrity of software packages; however, ultimately the
effectiveness of code signing as a security mechanism also
depends on the security of the underlying Public Key
Infrastructure (PKI). As the examples above show, attackers
have already started to exploit weaknesses in the PKI system
supporting code signing, and we expect that this trend will
become stronger. The reason is that new versions of Windows
(and other platforms) require software to be signed, otherwise

they ask for a confi rmation from the user before the software
is installed. Hence, attackers can benefi t from signing their
malware, as it allows for stealthy infection of victim systems.

Consequently, there is an urgent need to strengthen the PKI
upon which code signing relies. The diffi culty is that this
infrastructure is global, involving many participants in
different countries (e.g. different CAs and software makers),
and a multitude of procedures and practices. It is diffi cult to
enforce common rules in such an environment and meet the
same standards across the entire system. Also, the evolution of
the system is uncontrolled, often governed by major, powerful
stakeholders, and this can lead to sub optimal solutions (e.g.
hundreds of root certifi cates that are all implicitly trusted by
the users). Changing the entire system overnight is not
feasible, and thus one needs a solution that can be deployed
gradually. In addition, given its size and complexity, making
the entire PKI system 100% secure is illusionary, and one
should rather adopt a best effort approach that raises the bar
for the attackers even if attacks cannot completely be
eliminated.

Motivated by the Stuxnet, Duqu and Flame cases, the specifi c
problem that we address in our project is that standard
signature verifi cation procedures used in today’s PKI systems
do not allow for detecting key compromise and fake
certifi cates. Therefore, the objective of the project is to
augment the standard signature verifi cation workfl ow with
checking of reputation information on signers and signed
objects.

For this purpose, we decided:

• to build a data collection framework for signed software
and code-signing certifi cates

• to build a data repository that can handle large numbers of
signed objects effi ciently, and that supports a fl exible
query interface

• to use the repository to provide reputation information for
signed objects, such as when a given signed object was
fi rst seen and how often it has been looked up by users

• to provide alert services for private key owners that help
them detect when their signing keys have been used
illegitimately, and hence, probably compromised.

Our system, called Repository Of Signed COde (ROSCO),
does not aim to replace the entire code signing infrastructure.
Rather, in accordance with the best effort principle and the
requirement of gradual deployment, ROSCO complements
existing PKI functions with useful services that can be used by
different participants to increase their confi dence in the
legitimacy of signed code. In particular, ROSCO provides the
following advantages to the different participants:

• For software makers, the weaknesses of the code-signing
procedure undermine the trust in their code. An
independent repository of signed code and accompanying
certifi cates enables software makers to maintain trust in
their code. More importantly, such a repository can be
used to detect the malicious use of a software maker’s
signing key. This early detection capability is a unique
property of such a global repository and cannot be
achieved using the traditional PKI.

• For software platform operators, such as operating system
providers and global software service providers, the
repository is an indispensable source of information about

ROSCO: REPOSITORY OF SIGNED CODE PAPP ET AL.

259VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

the trustworthiness of installed code. As mentioned earlier,
recent versions of Microsoft Windows, for example,
require valid signatures for seamless installation of
software packages. Cross-checking the code-signing
certifi cate, and thus the integrity of the software code in
our certifi cate repository is a major step ahead in
protecting the integrity of the Windows operating system.

• For end-users, the benefi ts are obvious: our repository
serves them when they have to make a decision about the
trustworthiness of a to-be-installed code.

• The code-signing repository could be an invaluable
source of information for security companies too. Based
on the collected information, they can detect malicious
campaigns and trends in signing malicious code. This
repository could integrate nicely with many of the
security offerings available on the market.

• Finally, regulators and other authorities fi nd an inherent
value in making software more trustworthy. Similar to
security companies, authorities can derive longitudinal
statistics about malicious code and use them as an input
when defi ning global defence strategies and coordination
mechanisms.

We should mention again that the repository complements the
existing code-signing infrastructure, and that there is no
requirement whatsoever to change the operating principles of
participants that do not want to use it. This opt-in approach
allows for the possibility of gradual deployment. We expect,
however, that as the size of our repository grows, the services
that we can provide will become more useful, and this will
attract more participants to use our system. So potentially, the
adoption cycle will be fast, and many participants will benefi t
from the strengthened code-signing infrastructure in a short
time.

The organization of this paper is as follows: fi rst, we will give
a short review of some related work that aims at solving the
problems with and increasing the trust in today’s public key
infrastructure. Then we will discuss the architecture of
ROSCO. To demonstrate the strength of our approach, we
include two examples that show how our system would have
helped in the detection of cyber espionage malware. Finally,
we conclude and suggest some possible future work.

RELATED WORK
In this section, we give a short overview of previous projects
that had similar goals to those of our own. For each of the
reviewed prior projects, we also point out how our project is
different.

EFF SSL Observatory

The SSL Observatory project [2] was launched to observe CA
behaviour and search for vulnerabilities related to digital
certifi cates. The project collected a large number of SSL
certifi cates by crawling the web, connecting to port 443 on
randomly chosen IP addresses, and if successful, running the
SSL handshake up to the point where the server certifi cate
could be obtained. The collected certifi cates were stored in a
MySQL database and they were analysed thoroughly for
inconsistencies. The built data set was also made publicly
available on the EFF website. While the links pointing to
torrents are still functioning at the time of writing this paper,

the available torrents can no longer connect to any peers to
get the data.

While both SSL Observatory and ROSCO work with digital
certifi cates, ROSCO not only focuses on certifi cates involved in
SSL communications, but we also collect and store certifi cates
used for code signing as well as the signed code itself. One of
the goals of SSL Observatory was to analyse the collected data.
ROSCO has no such primary goal, but it can provide similar
analysis capabilities for researchers in the future.

ICSI Certifi cate Notary
The ICSI Certifi cate Notary project [3] aims to help clients to
identify malicious certifi cates by providing a third-party
perspective on what they should expect. The ICSI Certifi cate
Notary service collects certifi cates passively from live
upstream traffi c. Using the collected certifi cates, ICSI built a
‘tree of trust’ to visualize connections between root and
intermediate Certifi cation Authorities.

The ICSI Certifi cate Notary and ROSCO are very similar in
the sense that they both provide notary services. However,
while the ICSI Certifi cate Notary provides reputation
information about certifi cates only, ROSCO augments this
concept with reputation information on signed code. Just like
the ICSI Certifi cate Notary, ROSCO implements a tree of
trust through signature verifi cation, but this is extended with
signatures on program code too.

EFF Sovereign Keys
The EFF Sovereign Keys project [4] is a proposal to fi x
structural insecurities in today’s web-authentication
mechanisms. The proposal provides an optional and a secure
way of associating domain names with public keys. This is
achieved by requiring domain owners to write to a
semi-centralized, verifi ably append-only data structure. The
requesting party must prove control of the domain either via a
CA-signed certifi cate or a DNSSEC-signed key. Master copies
of the append-only data structure are kept on machines called
timeline servers. For scalability, verifi cation and privacy
purposes, lots of copies of the entire append-only timeline
structure are stored on mirrors. Clients learn about Sovereign
Keys by sending (encrypted) queries to mirrors. Once a client
knows a Sovereign Key for a domain, that fact can be cached
for some time, with only occasional queries to check for
revocations.

Sovereign Keys and ROSCO are fundamentally different.
While the former aims towards a structural change in web
authentication, the goal of the latter is to aggregate information
about signed code and speed up the detection of misuse.

Perspectives and Convergence
The Perspectives project [5] promotes a new approach to
secure communications on the Internet by giving users the
ability to choose a group they trust and by improving on the
basic Trust-on-fi rst-use (Tofu) authentication. The fi rst
requirement of Perspectives is to have public notary servers
that regularly monitor SSL certifi cates. Each network notary
server is connected to the Internet and builds a public history
of SSL certifi cates used by each website. The design has a
decentralized model so anyone can run one or more network
notary servers. Notaries exist independently of both clients and
servers. Notary Authorities have to determine which machines

ROSCO: REPOSITORY OF SIGNED CODE PAPP ET AL.

260 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

are legitimate notary servers and publish the public keys of
these notaries via out-of-band communication channels.
Notary Authorities must also distribute a list about legitimate
notary servers. Users can then choose which group(s) of
network notaries they trust. Instead of using the CA system to
validate a certifi cate, the browser checks the consistency of
certifi cates observed by network notaries over time. If network
notaries are spread around the world, this approach gives the
’network perspective’ of a server, making the execution of
man-in-the-middle attacks signifi cantly harder.

The Convergence project [6] further improves Perspectives
with trust agility: not only can individual users decide where
to anchor their trust, they can also revise their trust decision at
any time. Compared to Perspectives, Convergence relies on a
new protocol and a new client-server implementation.

Perspectives (and Convergence) and ROSCO have few
things in common because they differ in both goals and
solutions. Perspectives (and Convergence) builds a history
of public keys and relates them to a website. This enables
the elimination of self-signed certifi cate warnings and
mitigation of man-in-the-middle attacks while improving
Tofu authentication. ROSCO does not relate certifi cates and
public keys to websites but to signed code. The meta-data
provided for each piece of code may help users to determine
the trustworthiness of previously unseen applications, and
help organizations keep track of signatures produced with
their keys.

Google Certifi cate Transparency

Google’s Certifi cate Transparency initiative [7] provides an
open framework for monitoring and auditing SSL certifi cates
in almost real time. The framework has two main goals: the
fi rst is to detect SSL certifi cates that have been mistakenly
issued by a CA or maliciously acquired from an otherwise
unimpeachable CA. The second is to identify CAs that have
gone rogue and are maliciously issuing certifi cates.

Certifi cate Transparency has three main components:

• Certifi cate logs are simple network services which
maintain cryptographically assured, publicly auditable
and append-only records. There records can be submitted

and queried by anyone and consist of certifi cate chains
rooted in a known CA certifi cate.

• Monitors are publicly run servers that periodically fetch
data from all log servers and watch for suspicious
certifi cates. A monitor needs to, at least, inspect every
new entry in each log it watches.

• Auditors are lightweight software components that
typically perform two functions: verifi cation of log
behaviour and cryptographic consistency, and
verifi cation of the inclusion of a particular certifi cate in a
log. They take partial information about a log as input
and verify that this information is consistent with other
partial information they have.

The goals of Certifi cate Transparency are very similar to
those of ROSCO, as both projects aim to identify accidentally
issued or stolen certifi cates. ROSCO extends this aim to
signed code as well. The proposed solutions differ in that
Certifi cate Transparency provides a decentralized open
framework to scan untrustworthy SSL certifi cates, while
ROSCO uses a centralized model.

ROSCO ARCHITECTURE
Conceptually, the relationships between public keys and
signed objects can be represented by a graph. In the graph,
public keys and signed objects are represented as nodes and
relationships between them are represented as directed edges.
There are two types of edges: there is a ‘contained_in’ edge
between a certifi cate and a public key if the certifi cate
contains the public key, and there is a ‘verifi ed_by’ edge
between a public key and a certifi cate or any other type of
signed object (e.g. a signed program code) if the signed object
can be verifi ed by the public key. The following rules and
constraints can be defi ned for this graph:

1. A self-signed certifi cate is represented as a loop
between a certifi cate and a public key (i.e. the
certifi cate contains the public key, which is also the
key that can be used to verify the certifi cate).

2. A certifi cate chain is represented as a directed path in
the graph with alternating types of nodes (public key,
certifi cate, public key, certifi cate, …).

Figure 1: High level outline of ROSCO.

ROSCO: REPOSITORY OF SIGNED CODE PAPP ET AL.

261VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

3. There cannot be two ‘verifi ed_by’ edges pointing to
the same certifi cate node, because two different
public keys cannot verify the same signature (this
would mean that the signature scheme is broken).

4. There can be two or more ‘contained_in’ edges
pointing to the same public key node, because
different certifi cates may contain the same public
key.

Essentially, our ROSCO system stores information in such a
way that the above described conceptual graph can always be
reconstructed. The system architecture is shown in Figure 1.

Signed objects may arrive at the system from two sources.
They can be uploaded by users or they may arrive from
third-party feeds. Uploaded signed objects originate from
users and arrive through the web-based upload interface.
Feeds include objects which have been found by third parties
or by our own crawlers in various software repositories (e.g.
freeware sharing sites, app market places) and in available
collections of certifi cates (e.g. SSL Observatory and [8]).

It is the job of the preprocessing modules to extract
information about signed objects and identify relationships
between them so that the above-mentioned conceptual
relationship graph can be constructed.

The information collected in the repository is useful not only
for end-users checking only a small number of signed objects,
but also for large companies and researchers. However, their
use-case is different: they wish to be notifi ed about all objects
meeting a specifi ed requirement. For this reason, the Alert
Def Interface was created. Users can defi ne what attributes
uploaded signed objects must have in order for the system to
notify them. Whenever the alert subsystem encounters such
an object, it sends a notifi cation to the user.

Users may interact with the repository via the search
interface, which is also web-based. It can be used to acquire
detailed information about signed objects and to explore a
specifi c part of the relationship graph.

NoSQL database

Due to the sheer size of signed applications and digital
certifi cates, our ROSCO repository faces the Big Data
problem for which the solution is a distributed database
system. A distributed system makes the execution of a certain
task possible on multiple machines, thus increasing speed,
capacity and availability. Despite their obvious advantages,
real-life implementations of such distributed databases have
serious problems. [9] stated that it is impossible for a
distributed database system to provide the following three
guarantees:

• Consistency: any data written to the database must be
valid according to all defi ned rules, including constraints,
cascades, triggers, and any combination thereof.

• Availability: the system always answers to a query.

• Partition-tolerance: the system is able to tolerate the
scenario in which it disintegrates.

Information extracted by the preprocessing modules are
stored in a NoSQL database, including attributes, meta-data
and relationships. The database also holds references to the
fi les from which the object originates. The fi les themselves
are stored in the Hadoop Distributed File System (HDFS)

[10]. The system uses MapFiles to store various fi les in the
cluster. For this reason, Hadoop defi nes the MapFile Writer
and Reader which require a key and a record value to create
the specifi c fi le. To process the value, it is read into the
memory. As a result, clusters with low amounts of memory
will fail to upload/retrieve large fi les. In our case, where the
uploading process is assigned a low amount of memory, a fi le
may arrive which is too large to be stored in memory. To
overcome this problem, an extra interface was developed to
work between the preprocessing modules and the fi le system.
Our interface does not read the entire fi le into memory but
instead acts as a stream buffer between Hadoop and the
preprocessing modules.

Our choice of NoSQL database is HBase [11], a Google
BigTable clone with read-optimization and consistency. It is
consistent, distributed, multidimensional and sorted. It is
column-oriented which can be interpreted like it stores
key-value pairs. In each row, at least one column must be
given a value, but not all columns are required to have one.
Rows are accessible through their keys, there is no indexing.

Machines using HBase are assigned roles. One such role is
the region server, which manages a part of the key space in a
sorted manner. The machine with the HBase role of master
keeps track of which region server manages which keys.
Because keys are sorted on a region server, searching by keys
takes logarithmic time and only one region server is needed to
perform the task. On the other hand, if we wished to search
by other columns, the whole data set on all region servers
would need to be searched in linear time. Considering that the
data set is large, a linear-time search can take a very long
time. As a result, in order to work with HBase, the queries
must be defi ned before creating any tables, and anything
worthy of search should be made a key.

As mentioned before, there is no indexing in HBase. Still,
some kind of indexing would help reduce the complexity of
the backend. For this reason, we have created so-called
inverse tables. These tables act as indices: in the naïve
approach, the key for each table is the attribute users would
like to search for, and value is the key of the object with the
attribute. However, this would result in key collision in the
database as multiple objects may have the same attribute. As
a result, complex keys are needed.

Key-value pairs are stored in the following form:

key:column-family:column:timestamp:value

There is no bound on the length of each member of the form,
so whether the fi rst or the fi rst three members represent the
key is only a matter of perspective. However, all members
must be present. If all columns of a table are part of the key,
then a dummy column must be created. We use this feature to
create complex keys for tables.

Another challenge in the use of HBase is the lack of a JOIN
operation. Therefore, this operation must be implemented by
the system. Because of the Big Data problem, intersection
must be optimized with respect to the expected amount of
data HBase returns. In traditional databases, this is done by
the query optimizer, which is not part of HBase. It must also
be mentioned that the intersection can be done by the cluster
as well. However, there is a serious drawback: the set-up for
such an operation takes around 30–60 seconds, and this may
cause a timeout on the client side. As a result, all data is
collected from HBase and the intersection is performed in

ROSCO: REPOSITORY OF SIGNED CODE PAPP ET AL.

262 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

memory by a module implemented by us. The developers of
HBase are planning to include the JOIN operation in the next
update of MapReduce, but for now, we must be satisfi ed with
this set-up.

Preprocessing modules

As mentioned before, preprocessing modules extract data
from signed objects and identify relationships between them
to create the extended tree of trust. There are four kinds of
signed objects handled by the modules: Portable Executables
[12, 13], Android packages [14], Java archives [15] and
digital certifi cates [16, 17]. The modules read saved fi les and
process headers, meta-information and digital signatures.

• From digital certifi cates, all fi elds and extensions are
parsed including issuer and subject names, validity dates,
the public key, and the type and value of the extension.
Of all public key types, RSA [18], DSA [19] and
ECDSA [20] are processed.

• From Portable Executables, the following header
information is parsed: characteristics, the target CPU,
date and time of compilation, version of the linker used,
and the minimum operating system requirement.

• From Java archives, the archive members’ ZIP-specifi c
[21] attributes are extracted, as well as the manifest and
signature fi les from the META-INF folder.

• From Android packages, the same attributes are stored as
from Java archives. The AndroidManifest.xml fi le is also
parsed for permissions and other information.

The extracted attributes of signed objects are then stored in
the NoSQL database along with relationships and a reference
to the object.

To identify relationships between signed object,
preprocessing modules also run verifi cation on objects. The
validity of a given signature can be checked using the PKI
and we do not wish to change this practice. Verifi cation relies
heavily on OpenSSL and, in the case of Java archives, the
jarsigner tool. OpenSSL implements all cryptographic
algorithms needed, there is no point in re-implementing them.
The preprocessing modules supply to OpenSSL the possible

CA public key and the data on which the signing process was
performed. The jarsigner tool not only carries out verifi cation
according to the PKI but also performs security checks on
archive members.

One of the main challenges of implementing verifi cation was
fi nding the possible CA certifi cates. Unfortunately, there is no
standardized way to construct a certifi cate chain. [22] contains
optimization best practices, but the recommendations only
show how to exclude certifi cates from the candidate pool. Our
database holds millions of certifi cates so exclusion would still
yield such a large candidate set that validating each member of
the set would likely take several months. What we needed was
a straightforward way to fi nd the pool of possible matches
with the least cardinality. After much consideration, we settled
for searching for the CA certifi cate by the Common Name
fi eld: the Common Name fi eld in the name of the issuer in the
currently processed certifi cate must match the Common Name
fi elds in the name of the subject in the candidate CA
certifi cate. This will not give us the complete list of CA
certifi cates connected to the currently processed certifi cate, but
the relationships we found were always correct.

Alert system
The alert system is responsible for notifying users when
objects of their interest arrive in the system. Clients may
defi ne their fi lters via the Alert Def Interface which stores this
data in the SQL database (alert info). The system runs every
fi lter for each new object. When the requirements of a fi lter
are satisfi ed by a signed object, the alert engine notifi es the
client in the form of an alert. The alert may be sent in an
email or be published in a private RSS feed, the method of
notifi cation is decided by the client.

There are two types of alerts defi ned in the system:

• Simple alerts enable users to defi ne criteria for attributes
of signed objects. If the system encounters a signed
object whose attribute matches the defi ned criteria, it
sends a notifi cation. It is useful for users who wish to
acquire information about certain companies or
organizations and their signed products. It can also be
used to track signed code of a specifi c environment such
as operating system.

Figure 2: Partial reconstruction of the extended tree of trust.

ROSCO: REPOSITORY OF SIGNED CODE PAPP ET AL.

263VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

• Signing key usage alerts provide a way for companies
and organizations to keep track of code signed with their
keys. Organizations are required to supply their public
key and the system notifi es them if a signed application
can be verifi ed by that key. This feature makes it possible
to quickly detect if a signature key has been
compromised, assuming that an object signed with the
compromised key is uploaded to our repository.

Interaction with the repository

Clients can request data about signed objects by sending
queries to the search interface. This interface is contacted
through the web and transmits queries to the NoSQL
database. The returned data is sent back to clients in the form
of HTTP responses.

Figure 2 shows a partial reconstruction of the extended tree of
trust (relationship graph). The public key (node 8 in the
graph) contained in the currently selected certifi cate (node 10
in the graph) verifi es 12 Portable Executable fi les. The
certifi cate has two ’siblings’: the public key (node 11 in the
graph), which verifi es this certifi cate also verifi es two other
certifi cates. If the cursor is moved over a node in the graph, a
tootltip is shown with basic information about the object. On
the right is a list of all displayed objects.

EXAMPLES
In this section, we show how our ROSCO system can help
increase trust in digitally signed objects. We present the cases
of Duqu and Flame to see some real scenarios where the
repository could have helped users avoid becoming victims of
malicious code. In both cases, the alert system plays a
signifi cant role as it signals the misuse of certifi cates to
trusted companies.

Duqu

Duqu is a pieces of cyber espionage malware that shows
striking similarity to Stuxnet and was discovered during an
incident response investigation by CrySyS Lab researchers.
One of its fi les is a digitally signed driver, and verifi cation of
the signature states that it was signed by C-Media Electronics
Inc.. The certifi cate of C-Media was issued by VeriSign Inc.,
a well-known and widely trusted certifi cation authority. As a
result, infected computers accepted and trusted Duqu. The
compromised key was revoked shortly after the discovery of
Duqu, but the detection of key compromise would have been
faster with the help of our repository.

If C-Media had been a client of our ROSCO system, it would
have had a signing key usage alert for its own private key.
Someone who encountered parts of Duqu, especially the
signed kernel driver, could have uploaded it to our ROSCO
system to check its reputation. The system would have
detected that this driver was signed by C-Media, which
requested to be notifi ed when an object signed with its key
appeared in ROSCO. So, the company would have received a
notifi cation either by email or RSS-feed about the fi le. In the
wake of this notifi cation, the company would have contacted
the system and would have checked the signed driver in
question. Knowing that it had not, in fact, performed the
signing operation for the fi le, the logical conclusion would
have been that the private key was compromised and the
company would have requested the revocation of its

certifi cate. This, in turn, would have prevented Duqu from
infecting other victims.

In addition, our system could have been used to fi nd other
pieces of code signed by the same revoked key. Should there
be other pieces of malware created with the help of the
compromised private key, researchers would have found them
earlier.

Flame
Flame provided a fake Microsoft certifi cate for verifi cation,
signed by the Microsoft LSRA PA certifi cation authority. The
creators were able to fi nd an MD5 collision and use it to their
advantage: the resulting certifi cate could be trusted by all
major browsers and could fool the Windows Update system.
When a machine tried to connect to the updating system,
Flame redirected the connection through an infected machine
and sent a fake, malicious Windows Update to the client. The
fake update proceeded to download the main body of the
malware and infect the computer. After the incident,
Microsoft LSRA PA was replaced and the message digest
algorithm was changed to SHA-1.

Our ROSCO system could have alerted Microsoft to the
existence of the fake certifi cate. If the company had had a
simple alert for its certifi cates, the system would have notifi ed
it of the fake one as well. Suppose the company had defi ned a
simple alert with the keyword ‘Microsoft LSRA PA’ for the
common name of the issuer. Each time a signed object arrived
at the repository, Microsoft would have been notifi ed of the
code-signing certifi cate. In the case of Flame, and any other
pieces of code, Microsoft could have checked whether the
company had been the true issuer. Finding no evidence of
signing the fake certifi cate, Microsoft could have realized the
problem with the Microsoft LSRA PA and could have revoked
the certifi cate sooner. As the operating system would not have
accepted the fake certifi cate, Flame could have been rendered
nearly useless.

CONCLUSION AND FUTURE WORK
Motivated by recent targeted malware, which used digitally
signed components that appeared to originate from legitimate
software makers, we developed a repository of signed code
and some related services with the objective of augmenting
the standard signature verifi cation workfl ow with the
checking of reputation information on signers and signed
objects and allowing for the detection of key compromise and
fake certifi cates.

Our ROSCO system provides:

• A data collection framework for signed software and
code-signing certifi cates.

• A data repository that can handle large numbers of
signed objects effi ciently, and that supports a fl exible
query interface.

• Reputation information for signed objects, such as when
a given signed object was fi rst seen and how often it has
been looked up by users.

• Alert services for private key owners that help them
detect when their signing keys were illegitimately used,
and hence, probably compromised.

ROSCO is not intended to replace the entire code-signing
infrastructure; rather, it tries to complement it with new

ROSCO: REPOSITORY OF SIGNED CODE PAPP ET AL.

264 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

mechanisms. There is no requirement whatsoever to change
the operating principles of participants that do not want to use
our system. This opt-in approach allows for the possibility of
gradual deployment. The services offered by ROSCO will
become more useful with the expected increase of the size of
our repository. We hope that this will attract more participants
to use our system who can benefi t from our services when
determining the trustworthiness of a signed application.

In this paper, we have given a detailed description of the
design and implementation of ROSCO. We started by
introducing its overall architecture, and then described its
components such as the data collection and processing
subsystems, the SQL-based data used for storing meta-data
and the NoSQL database used for storing the actual signed
objects and their relationships, the alert subsystem, and web
based user interface. We also discussed how ROSCO could
have been used to detect the misuse of signatures and
certifi cates in the high-profi le targeted attacks of Stuxnet,
Duqu and Flame.

The development of ROSCO is still on-going and there are
many possibilities for future work. We plan to extend the set
of supported signed objects with certifi cate revocation lists
and timestamps, and the set of supported fi le types with
signed MS offi ce documents. We also plan to give access to
our system to a selected set of signing and relying parties for
testing purposes, and to open it to the general public later.
Finally, from a scientifi c point of view, the huge number of
signed objects that we collected is a very valuable resource,
on which we intend to perform different analysis tasks with
the aim of better understanding code-signing practices.

ACKNOWLEDGEMENT
The work of the authors was partially supported by IT-SEC
Expert, which received a NICOP Research Grant from the
Offi ce of Naval Research Global (ONRG) under award
number N62909-13-1-N243.

REFERENCES
[1] Bencsáth, B. et al. (2012). The Cousins of Stuxnet:

Duqu, Flame, and Gauss. Future Internet 2012,
971–1003.

[2] Electronic Frontier Foundation. SSL Observatory.
https://www.eff.org/observatory.

[3] The International Computer Science Institute (ICSI)
of University of California, Berkeley (2012). ICSI
Certifi cate Notary. http://notary.icsi.berkeley.edu/.

[4] Eckersley, P. (2011). Sovereign Keys: A Proposal to
Make HTTPS and Email More Secure.
https://www.eff.org/deeplinks/2011/11/sovereign-
keys-proposal-make-https-and-email-more-secure.

[5] Wendlandt, D. et al. (2008). Perspectives: improving
SSH-style host authentication with multi-path
probing. In: ATC’08 USENIX 2008 Annual
Technical Conference on Annual Technical
Conference.

[6] Marlinspike, M. (2011). Convergence.
http://convergence.io/.

[7] Laurie, B. et al. (2013). Google Certifi cate
Transparency. http://datatracker.ietf.org/doc/rfc6962/.

[8] Schlosser, M. et al. (2014). Internet-Wide Scan Data
Repository. https://scans.io/study/sonar.ssl.

[9] Brewer, E. A. (2000). Toward robust distributed
systems. Proceedings of the 19th Annual ACM
Symposium on Principles of Distributed Computing.

[10] White, T. (2012). Hadoop: The Defi nitive Guide.
Yahoo Press.

[11] The Apache Software Foundation (2014). Apache
HBase. https://hbase.apache.org/.

[12] Microsoft Corporation (2013). Microsoft Portable
Executable and Common Object File Format
Specifi cation.

[13] Microsoft Corporation (2008). Windows
Authenticode Portable Executable Signature Format.

[14] Google Inc. Introduction to Android. http://developer.
android.com/guide/index.html.

[15] Oracle Inc. JAR File Specifi cation. http://docs.oracle.
com/javase/7/docs/technotes/guides/jar/jar.html.

[16] Kohnfelder, L. M. (1978). Towards a Practical
Public-key Cryptosystem. Ph.D. thesis.
Massachusetts Institute of Technology.

[17] Cooper, D. et al. (2008). Internet X.509 Public Key
Infrastructure Certifi cate and Certifi cate Revocation
List (CRL) Profi le. https://datatracker.ietf.org/doc/
rfc5280/.

[18] Rivest, R. L. et al. (1978). A Method for Obtaining
Signatures and Public-Key Cryptosystems. In:
Communications of the ACM, Vol. 21 Issue 2, pp.
120–126.

[19] National Institute of Standards and Technology
(2013). Digital Signature Standard (DSS).
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.186-4.pdf.

[20] Johnson, D. and A. Menezes (1999). The Elliptic
Curve Digital Signature Algorithm. Technical
Report. University of Waterloo, Canada.

[21] PKWARE Inc. (2012). ZIP File Format Specifi cation.
http://www.pkware.com/documents /casestudies/
APPNOTE.TXT.

[22] Cooper, M. et al. (2005). Internet X.509 Public Key
Infrastructure: Certifi cation Path Building.
http://tools.ietf.org/html/rfc4158.

[23] Bencsáth, B. et al. (2011). Duqu: A Stuxnet-like
malware found in the wind. Technical Report.
Laboratory of Cryptography and System Security.

[24] sKyWIper Analysis Team (2012). sKyWIper (a.k.a.
Flame a.k.a. Flamer): A complex malware for
targeted attacks. Technical Report. Laboratory of
Cryptography and System Security.

