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ABSTRACT
Recent targeted malware attacks, e.g. Stuxnet, Duqu and Flame, 
have used digitally signed components that appeared to 
originate from legitimate software makers. These attacks were 
possible because the standard signature verifi cation procedures 
do not allow for detecting key compromise and fake certifi cates. 
In this paper, we propose a solution to this problem. More 
specifi cally, we introduce ROSCO, a Repository Of Signed 
COde, which provides services that can increase trust in 
digitally signed code. ROSCO provides reputation information 
for signed objects (code and certifi cates), such as when a given 
signed object was fi rst seen, how often it has been looked up by 
users, and what else the signer of this object has signed before. 
ROSCO also provides alert services for private key owners that 
help them detect when their signing keys have been used 
illegitimately, and hence, probably compromised. We 
demonstrate in the paper how ROSCO could have been used to 
detect the misuse of signatures and certifi cates in the cases of 
Duqu and Flame. ROSCO does not aim to replace the entire 
code signing infrastructure; rather, it tries to complement it with 
new mechanisms. There is no requirement whatsoever to change 
the operating principles of participants that do not want to use 
our system. This allows for the possibility of gradual 
deployment. We expect that as the size of our repository grows, 
the services that we can provide will become more useful, and 
this will attract more participants to use our system.

INTRODUCTION
Recent targeted malware attacks, e.g. Stuxnet, Duqu and 
Flame, have used digitally signed components that appeared to 
originate from legitimate software makers. In case of Stuxnet 
and Duqu, the private code-signing keys of legitimate 
companies were suspected to be compromised and used by the 
attackers. In case of Flame, the attackers generated a fake 
certifi cate that appeared to be a valid code-signing certifi cate 
issued by Microsoft, and used the corresponding private key to 
sign their malware [1]. This actually allowed Flame to 
masquerade as a Windows Update proxy, and to infect 
computers on a local network by exploiting the automatic 
update procedure of Windows.

The purpose of code signing is to ensure the authenticity and 
integrity of software packages; however, ultimately the 
effectiveness of code signing as a security mechanism also 
depends on the security of the underlying Public Key 
Infrastructure (PKI). As the examples above show, attackers 
have already started to exploit weaknesses in the PKI system 
supporting code signing, and we expect that this trend will 
become stronger. The reason is that new versions of Windows 
(and other platforms) require software to be signed, otherwise 

they ask for a confi rmation from the user before the software 
is installed. Hence, attackers can benefi t from signing their 
malware, as it allows for stealthy infection of victim systems. 

Consequently, there is an urgent need to strengthen the PKI 
upon which code signing relies. The diffi culty is that this 
infrastructure is global, involving many participants in 
different countries (e.g. different CAs and software makers), 
and a multitude of procedures and practices. It is diffi cult to 
enforce common rules in such an environment and meet the 
same standards across the entire system. Also, the evolution of 
the system is uncontrolled, often governed by major, powerful 
stakeholders, and this can lead to sub optimal solutions (e.g. 
hundreds of root certifi cates that are all implicitly trusted by 
the users). Changing the entire system overnight is not 
feasible, and thus one needs a solution that can be deployed 
gradually. In addition, given its size and complexity, making 
the entire PKI system 100% secure is illusionary, and one 
should rather adopt a best effort approach that raises the bar 
for the attackers even if attacks cannot completely be 
eliminated. 

Motivated by the Stuxnet, Duqu and Flame cases, the specifi c 
problem that we address in our project is that standard 
signature verifi cation procedures used in today’s PKI systems 
do not allow for detecting key compromise and fake 
certifi cates. Therefore, the objective of the project is to 
augment the standard signature verifi cation workfl ow with 
checking of reputation information on signers and signed 
objects. 

For this purpose, we decided:

• to build a data collection framework for signed software 
and code-signing certifi cates

• to build a data repository that can handle large numbers of 
signed objects effi ciently, and that supports a fl exible 
query interface

• to use the repository to provide reputation information for 
signed objects, such as when a given signed object was 
fi rst seen and how often it has been looked up by users

• to provide alert services for private key owners that help 
them detect when their signing keys have been used 
illegitimately, and hence, probably compromised.

Our system, called Repository Of Signed COde (ROSCO), 
does not aim to replace the entire code signing infrastructure. 
Rather, in accordance with the best effort principle and the 
requirement of gradual deployment, ROSCO complements 
existing PKI functions with useful services that can be used by 
different participants to increase their confi dence in the 
legitimacy of signed code. In particular, ROSCO provides the 
following advantages to the different participants:

• For software makers, the weaknesses of the code-signing 
procedure undermine the trust in their code. An 
independent repository of signed code and accompanying 
certifi cates enables software makers to maintain trust in 
their code. More importantly, such a repository can be 
used to detect the malicious use of a software maker’s 
signing key. This early detection capability is a unique 
property of such a global repository and cannot be 
achieved using the traditional PKI.

• For software platform operators, such as operating system 
providers and global software service providers, the 
repository is an indispensable source of information about 
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the trustworthiness of installed code. As mentioned earlier, 
recent versions of Microsoft Windows, for example, 
require valid signatures for seamless installation of 
software packages. Cross-checking the code-signing 
certifi cate, and thus the integrity of the software code in 
our certifi cate repository is a major step ahead in 
protecting the integrity of the Windows operating system.

• For end-users, the benefi ts are obvious: our repository 
serves them when they have to make a decision about the 
trustworthiness of a to-be-installed code.

• The code-signing repository could be an invaluable 
source of information for security companies too. Based 
on the collected information, they can detect malicious 
campaigns and trends in signing malicious code. This 
repository could integrate nicely with many of the 
security offerings available on the market.

• Finally, regulators and other authorities fi nd an inherent 
value in making software more trustworthy. Similar to 
security companies, authorities can derive longitudinal 
statistics about malicious code and use them as an input 
when defi ning global defence strategies and coordination 
mechanisms.

We should mention again that the repository complements the 
existing code-signing infrastructure, and that there is no 
requirement whatsoever to change the operating principles of 
participants that do not want to use it. This opt-in approach 
allows for the possibility of gradual deployment. We expect, 
however, that as the size of our repository grows, the services 
that we can provide will become more useful, and this will 
attract more participants to use our system. So potentially, the 
adoption cycle will be fast, and many participants will benefi t 
from the strengthened code-signing infrastructure in a short 
time.

The organization of this paper is as follows: fi rst, we will give 
a short review of some related work that aims at solving the 
problems with and increasing the trust in today’s public key 
infrastructure. Then we will discuss the architecture of 
ROSCO. To demonstrate the strength of our approach, we 
include two examples that show how our system would have 
helped in the detection of cyber espionage malware. Finally, 
we conclude and suggest some possible future work.

RELATED WORK
In this section, we give a short overview of previous projects 
that had similar goals to those of our own. For each of the 
reviewed prior projects, we also point out how our project is 
different.

EFF SSL Observatory

The SSL Observatory project [2] was launched to observe CA 
behaviour and search for vulnerabilities related to digital 
certifi cates. The project collected a large number of SSL 
certifi cates by crawling the web, connecting to port 443 on 
randomly chosen IP addresses, and if successful, running the 
SSL handshake up to the point where the server certifi cate 
could be obtained. The collected certifi cates were stored in a 
MySQL database and they were analysed thoroughly for 
inconsistencies. The built data set was also made publicly 
available on the EFF website. While the links pointing to 
torrents are still functioning at the time of writing this paper, 

the available torrents can no longer connect to any peers to 
get the data.

While both SSL Observatory and ROSCO work with digital 
certifi cates, ROSCO not only focuses on certifi cates involved in 
SSL communications, but we also collect and store certifi cates 
used for code signing as well as the signed code itself. One of 
the goals of SSL Observatory was to analyse the collected data. 
ROSCO has no such primary goal, but it can provide similar 
analysis capabilities for researchers in the future.

ICSI Certifi cate Notary
The ICSI Certifi cate Notary project [3] aims to help clients to 
identify malicious certifi cates by providing a third-party 
perspective on what they should expect. The ICSI Certifi cate 
Notary service collects certifi cates passively from live 
upstream traffi c. Using the collected certifi cates, ICSI built a 
‘tree of trust’ to visualize connections between root and 
intermediate Certifi cation Authorities.

The ICSI Certifi cate Notary and ROSCO are very similar in 
the sense that they both provide notary services. However, 
while the ICSI Certifi cate Notary provides reputation 
information about certifi cates only, ROSCO augments this 
concept with reputation information on signed code. Just like 
the ICSI Certifi cate Notary, ROSCO implements a tree of 
trust through signature verifi cation, but this is extended with 
signatures on program code too. 

EFF Sovereign Keys
The EFF Sovereign Keys project [4] is a proposal to fi x 
structural insecurities in today’s web-authentication 
mechanisms. The proposal provides an optional and a secure 
way of associating domain names with public keys. This is 
achieved by requiring domain owners to write to a 
semi-centralized, verifi ably append-only data structure. The 
requesting party must prove control of the domain either via a 
CA-signed certifi cate or a DNSSEC-signed key. Master copies 
of the append-only data structure are kept on machines called 
timeline servers. For scalability, verifi cation and privacy 
purposes, lots of copies of the entire append-only timeline 
structure are stored on mirrors. Clients learn about Sovereign 
Keys by sending (encrypted) queries to mirrors. Once a client 
knows a Sovereign Key for a domain, that fact can be cached 
for some time, with only occasional queries to check for 
revocations.

Sovereign Keys and ROSCO are fundamentally different. 
While the former aims towards a structural change in web 
authentication, the goal of the latter is to aggregate information 
about signed code and speed up the detection of misuse.

Perspectives and Convergence
The Perspectives project [5] promotes a new approach to 
secure communications on the Internet by giving users the 
ability to choose a group they trust and by improving on the 
basic Trust-on-fi rst-use (Tofu) authentication. The fi rst 
requirement of Perspectives is to have public notary servers 
that regularly monitor SSL certifi cates. Each network notary 
server is connected to the Internet and builds a public history 
of SSL certifi cates used by each website. The design has a 
decentralized model so anyone can run one or more network 
notary servers. Notaries exist independently of both clients and 
servers. Notary Authorities have to determine which machines 
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are legitimate notary servers and publish the public keys of 
these notaries via out-of-band communication channels. 
Notary Authorities must also distribute a list about legitimate 
notary servers. Users can then choose which group(s) of 
network notaries they trust. Instead of using the CA system to 
validate a certifi cate, the browser checks the consistency of 
certifi cates observed by network notaries over time. If network 
notaries are spread around the world, this approach gives the 
’network perspective’ of a server, making the execution of 
man-in-the-middle attacks signifi cantly harder.

The Convergence project [6] further improves Perspectives 
with trust agility: not only can individual users decide where 
to anchor their trust, they can also revise their trust decision at 
any time. Compared to Perspectives, Convergence relies on a 
new protocol and a new client-server implementation. 

Perspectives (and Convergence) and ROSCO have few 
things in common because they differ in both goals and 
solutions. Perspectives (and Convergence) builds a history 
of public keys and relates them to a website. This enables 
the elimination of self-signed certifi cate warnings and 
mitigation of man-in-the-middle attacks while improving 
Tofu authentication. ROSCO does not relate certifi cates and 
public keys to websites but to signed code. The meta-data 
provided for each piece of code may help users to determine 
the trustworthiness of previously unseen applications, and 
help organizations keep track of signatures produced with 
their keys.

Google Certifi cate Transparency

Google’s Certifi cate Transparency initiative [7] provides an 
open framework for monitoring and auditing SSL certifi cates 
in almost real time. The framework has two main goals: the 
fi rst is to detect SSL certifi cates that have been mistakenly 
issued by a CA or maliciously acquired from an otherwise 
unimpeachable CA. The second is to identify CAs that have 
gone rogue and are maliciously issuing certifi cates. 

Certifi cate Transparency has three main components: 

• Certifi cate logs are simple network services which 
maintain cryptographically assured, publicly auditable 
and append-only records. There records can be submitted 

and queried by anyone and consist of certifi cate chains 
rooted in a known CA certifi cate.

• Monitors are publicly run servers that periodically fetch 
data from all log servers and watch for suspicious 
certifi cates. A monitor needs to, at least, inspect every 
new entry in each log it watches.

• Auditors are lightweight software components that 
typically perform two functions: verifi cation of log 
behaviour and cryptographic consistency, and 
verifi cation of the inclusion of a particular certifi cate in a 
log. They take partial information about a log as input 
and verify that this information is consistent with other 
partial information they have.

The goals of Certifi cate Transparency are very similar to 
those of ROSCO, as both projects aim to identify accidentally 
issued or stolen certifi cates. ROSCO extends this aim to 
signed code as well. The proposed solutions differ in that 
Certifi cate Transparency provides a decentralized open 
framework to scan untrustworthy SSL certifi cates, while 
ROSCO uses a centralized model. 

ROSCO ARCHITECTURE
Conceptually, the relationships between public keys and 
signed objects can be represented by a graph. In the graph, 
public keys and signed objects are represented as nodes and 
relationships between them are represented as directed edges. 
There are two types of edges: there is a ‘contained_in’ edge 
between a certifi cate and a public key if the certifi cate 
contains the public key, and there is a ‘verifi ed_by’ edge 
between a public key and a certifi cate or any other type of 
signed object (e.g. a signed program code) if the signed object 
can be verifi ed by the public key. The following rules and 
constraints can be defi ned for this graph:

1. A self-signed certifi cate is represented as a loop 
between a certifi cate and a public key (i.e. the 
certifi cate contains the public key, which is also the 
key that can be used to verify the certifi cate).

2. A certifi cate chain is represented as a directed path in 
the graph with alternating types of nodes (public key, 
certifi cate, public key, certifi cate, …). 

Figure 1: High level outline of ROSCO.
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3. There cannot be two ‘verifi ed_by’ edges pointing to 
the same certifi cate node, because two different 
public keys cannot verify the same signature (this 
would mean that the signature scheme is broken).

4. There can be two or more ‘contained_in’ edges 
pointing to the same public key node, because 
different certifi cates may contain the same public 
key.

Essentially, our ROSCO system stores information in such a 
way that the above described conceptual graph can always be 
reconstructed. The system architecture is shown in Figure 1.

Signed objects may arrive at the system from two sources. 
They can be uploaded by users or they may arrive from 
third-party feeds. Uploaded signed objects originate from 
users and arrive through the web-based upload interface. 
Feeds include objects which have been found by third parties 
or by our own crawlers in various software repositories (e.g. 
freeware sharing sites, app market places) and in available 
collections of certifi cates (e.g. SSL Observatory and [8]).

It is the job of the preprocessing modules to extract 
information about signed objects and identify relationships 
between them so that the above-mentioned conceptual 
relationship graph can be constructed.

The information collected in the repository is useful not only 
for end-users checking only a small number of signed objects, 
but also for large companies and researchers. However, their 
use-case is different: they wish to be notifi ed about all objects 
meeting a specifi ed requirement. For this reason, the Alert 
Def Interface was created. Users can defi ne what attributes 
uploaded signed objects must have in order for the system to 
notify them. Whenever the alert subsystem encounters such 
an object, it sends a notifi cation to the user.

Users may interact with the repository via the search 
interface, which is also web-based. It can be used to acquire 
detailed information about signed objects and to explore a 
specifi c part of the relationship graph.

NoSQL database

Due to the sheer size of signed applications and digital 
certifi cates, our ROSCO repository faces the Big Data 
problem for which the solution is a distributed database 
system. A distributed system makes the execution of a certain 
task possible on multiple machines, thus increasing speed, 
capacity and availability. Despite their obvious advantages, 
real-life implementations of such distributed databases have 
serious problems. [9] stated that it is impossible for a 
distributed database system to provide the following three 
guarantees:

• Consistency: any data written to the database must be 
valid according to all defi ned rules, including constraints, 
cascades, triggers, and any combination thereof.

• Availability: the system always answers to a query.

• Partition-tolerance: the system is able to tolerate the 
scenario in which it disintegrates.

Information extracted by the preprocessing modules are 
stored in a NoSQL database, including attributes, meta-data 
and relationships. The database also holds references to the 
fi les from which the object originates. The fi les themselves 
are stored in the Hadoop Distributed File System (HDFS) 

[10]. The system uses MapFiles to store various fi les in the 
cluster. For this reason, Hadoop defi nes the MapFile Writer 
and Reader which require a key and a record value to create 
the specifi c fi le. To process the value, it is read into the 
memory. As a result, clusters with low amounts of memory 
will fail to upload/retrieve large fi les. In our case, where the 
uploading process is assigned a low amount of memory, a fi le 
may arrive which is too large to be stored in memory. To 
overcome this problem, an extra interface was developed to 
work between the preprocessing modules and the fi le system. 
Our interface does not read the entire fi le into memory but 
instead acts as a stream buffer between Hadoop and the 
preprocessing modules.

Our choice of NoSQL database is HBase [11], a Google 
BigTable clone with read-optimization and consistency. It is 
consistent, distributed, multidimensional and sorted. It is 
column-oriented which can be interpreted like it stores 
key-value pairs. In each row, at least one column must be 
given a value, but not all columns are required to have one. 
Rows are accessible through their keys, there is no indexing.

Machines using HBase are assigned roles. One such role is 
the region server, which manages a part of the key space in a 
sorted manner. The machine with the HBase role of master 
keeps track of which region server manages which keys. 
Because keys are sorted on a region server, searching by keys 
takes logarithmic time and only one region server is needed to 
perform the task. On the other hand, if we wished to search 
by other columns, the whole data set on all region servers 
would need to be searched in linear time. Considering that the 
data set is large, a linear-time search can take a very long 
time. As a result, in order to work with HBase, the queries 
must be defi ned before creating any tables, and anything 
worthy of search should be made a key.

As mentioned before, there is no indexing in HBase. Still, 
some kind of indexing would help reduce the complexity of 
the backend. For this reason, we have created so-called 
inverse tables. These tables act as indices: in the naïve 
approach, the key for each table is the attribute users would 
like to search for, and value is the key of the object with the 
attribute. However, this would result in key collision in the 
database as multiple objects may have the same attribute. As 
a result, complex keys are needed.

Key-value pairs are stored in the following form:

key:column-family:column:timestamp:value

There is no bound on the length of each member of the form, 
so whether the fi rst or the fi rst three members represent the 
key is only a matter of perspective. However, all members 
must be present. If all columns of a table are part of the key, 
then a dummy column must be created. We use this feature to 
create complex keys for tables.

Another challenge in the use of HBase is the lack of a JOIN 
operation. Therefore, this operation must be implemented by 
the system. Because of the Big Data problem, intersection 
must be optimized with respect to the expected amount of 
data HBase returns. In traditional databases, this is done by 
the query optimizer, which is not part of HBase. It must also 
be mentioned that the intersection can be done by the cluster 
as well. However, there is a serious drawback: the set-up for 
such an operation takes around 30–60 seconds, and this may 
cause a timeout on the client side. As a result, all data is 
collected from HBase and the intersection is performed in 
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memory by a module implemented by us. The developers of 
HBase are planning to include the JOIN operation in the next 
update of MapReduce, but for now, we must be satisfi ed with 
this set-up.

Preprocessing modules

As mentioned before, preprocessing modules extract data 
from signed objects and identify relationships between them 
to create the extended tree of trust. There are four kinds of 
signed objects handled by the modules: Portable Executables 
[12, 13], Android packages [14], Java archives [15] and 
digital certifi cates [16, 17]. The modules read saved fi les and 
process headers, meta-information and digital signatures.

• From digital certifi cates, all fi elds and extensions are 
parsed including issuer and subject names, validity dates, 
the public key, and the type and value of the extension. 
Of all public key types, RSA [18], DSA [19] and 
ECDSA [20] are processed.

• From Portable Executables, the following header 
information is parsed: characteristics, the target CPU, 
date and time of compilation, version of the linker used, 
and the minimum operating system requirement.

• From Java archives, the archive members’ ZIP-specifi c 
[21] attributes are extracted, as well as the manifest and 
signature fi les from the META-INF folder.

• From Android packages, the same attributes are stored as 
from Java archives. The AndroidManifest.xml fi le is also 
parsed for permissions and other information.

The extracted attributes of signed objects are then stored in 
the NoSQL database along with relationships and a reference 
to the object.

To identify relationships between signed object, 
preprocessing modules also run verifi cation on objects. The 
validity of a given signature can be checked using the PKI 
and we do not wish to change this practice. Verifi cation relies 
heavily on OpenSSL and, in the case of Java archives, the 
jarsigner tool. OpenSSL implements all cryptographic 
algorithms needed, there is no point in re-implementing them. 
The preprocessing modules supply to OpenSSL the possible 

CA public key and the data on which the signing process was 
performed. The jarsigner tool not only carries out verifi cation 
according to the PKI but also performs security checks on 
archive members.

One of the main challenges of implementing verifi cation was 
fi nding the possible CA certifi cates. Unfortunately, there is no 
standardized way to construct a certifi cate chain. [22] contains 
optimization best practices, but the recommendations only 
show how to exclude certifi cates from the candidate pool. Our 
database holds millions of certifi cates so exclusion would still 
yield such a large candidate set that validating each member of 
the set would likely take several months. What we needed was 
a straightforward way to fi nd the pool of possible matches 
with the least cardinality. After much consideration, we settled 
for searching for the CA certifi cate by the Common Name 
fi eld: the Common Name fi eld in the name of the issuer in the 
currently processed certifi cate must match the Common Name 
fi elds in the name of the subject in the candidate CA 
certifi cate. This will not give us the complete list of CA 
certifi cates connected to the currently processed certifi cate, but 
the relationships we found were always correct.

Alert system
The alert system is responsible for notifying users when 
objects of their interest arrive in the system. Clients may 
defi ne their fi lters via the Alert Def Interface which stores this 
data in the SQL database (alert info). The system runs every 
fi lter for each new object. When the requirements of a fi lter 
are satisfi ed by a signed object, the alert engine notifi es the 
client in the form of an alert. The alert may be sent in an 
email or be published in a private RSS feed, the method of 
notifi cation is decided by the client.

There are two types of alerts defi ned in the system:

• Simple alerts enable users to defi ne criteria for attributes 
of signed objects. If the system encounters a signed 
object whose attribute matches the defi ned criteria, it 
sends a notifi cation. It is useful for users who wish to 
acquire information about certain companies or 
organizations and their signed products. It can also be 
used to track signed code of a specifi c environment such 
as operating system.

Figure 2: Partial reconstruction of the extended tree of trust.
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• Signing key usage alerts provide a way for companies 
and organizations to keep track of code signed with their 
keys. Organizations are required to supply their public 
key and the system notifi es them if a signed application 
can be verifi ed by that key. This feature makes it possible 
to quickly detect if a signature key has been 
compromised, assuming that an object signed with the 
compromised key is uploaded to our repository.

Interaction with the repository

Clients can request data about signed objects by sending 
queries to the search interface. This interface is contacted 
through the web and transmits queries to the NoSQL 
database. The returned data is sent back to clients in the form 
of HTTP responses.

Figure 2 shows a partial reconstruction of the extended tree of 
trust (relationship graph). The public key (node 8 in the 
graph) contained in the currently selected certifi cate (node 10 
in the graph) verifi es 12 Portable Executable fi les. The 
certifi cate has two ’siblings’: the public key (node 11 in the 
graph), which verifi es this certifi cate also verifi es two other 
certifi cates. If the cursor is moved over a node in the graph, a 
tootltip is shown with basic information about the object. On 
the right is a list of all displayed objects.

EXAMPLES
In this section, we show how our ROSCO system can help 
increase trust in digitally signed objects. We present the cases 
of Duqu and Flame to see some real scenarios where the 
repository could have helped users avoid becoming victims of 
malicious code. In both cases, the alert system plays a 
signifi cant role as it signals the misuse of certifi cates to 
trusted companies.

Duqu

Duqu is a pieces of cyber espionage malware that shows 
striking similarity to Stuxnet and was discovered during an 
incident response investigation by CrySyS Lab researchers. 
One of its fi les is a digitally signed driver, and verifi cation of 
the signature states that it was signed by C-Media Electronics 
Inc.. The certifi cate of C-Media was issued by VeriSign Inc., 
a well-known and widely trusted certifi cation authority. As a 
result, infected computers accepted and trusted Duqu. The 
compromised key was revoked shortly after the discovery of 
Duqu, but the detection of key compromise would have been 
faster with the help of our repository.

If C-Media had been a client of our ROSCO system, it would 
have had a signing key usage alert for its own private key. 
Someone who encountered parts of Duqu, especially the 
signed kernel driver, could have uploaded it to our ROSCO 
system to check its reputation. The system would have 
detected that this driver was signed by C-Media, which 
requested to be notifi ed when an object signed with its key 
appeared in ROSCO. So, the company would have received a 
notifi cation either by email or RSS-feed about the fi le. In the 
wake of this notifi cation, the company would have contacted 
the system and would have checked the signed driver in 
question. Knowing that it had not, in fact, performed the 
signing operation for the fi le, the logical conclusion would 
have been that the private key was compromised and the 
company would have requested the revocation of its 

certifi cate. This, in turn, would have prevented Duqu from 
infecting other victims. 

In addition, our system could have been used to fi nd other 
pieces of code signed by the same revoked key. Should there 
be other pieces of malware created with the help of the 
compromised private key, researchers would have found them 
earlier.

Flame
Flame provided a fake Microsoft certifi cate for verifi cation, 
signed by the Microsoft LSRA PA certifi cation authority. The 
creators were able to fi nd an MD5 collision and use it to their 
advantage: the resulting certifi cate could be trusted by all 
major browsers and could fool the Windows Update system. 
When a machine tried to connect to the updating system, 
Flame redirected the connection through an infected machine 
and sent a fake, malicious Windows Update to the client. The 
fake update proceeded to download the main body of the 
malware and infect the computer. After the incident, 
Microsoft LSRA PA was replaced and the message digest 
algorithm was changed to SHA-1.

Our ROSCO system could have alerted Microsoft to the 
existence of the fake certifi cate. If the company had had a 
simple alert for its certifi cates, the system would have notifi ed 
it of the fake one as well. Suppose the company had defi ned a 
simple alert with the keyword ‘Microsoft LSRA PA’ for the 
common name of the issuer. Each time a signed object arrived 
at the repository, Microsoft would have been notifi ed of the 
code-signing certifi cate. In the case of Flame, and any other 
pieces of code, Microsoft could have checked whether the 
company had been the true issuer. Finding no evidence of 
signing the fake certifi cate, Microsoft could have realized the 
problem with the Microsoft LSRA PA and could have revoked 
the certifi cate sooner. As the operating system would not have 
accepted the fake certifi cate, Flame could have been rendered 
nearly useless.

CONCLUSION AND FUTURE WORK
Motivated by recent targeted malware, which used digitally 
signed components that appeared to originate from legitimate 
software makers, we developed a repository of signed code 
and some related services with the objective of augmenting 
the standard signature verifi cation workfl ow with the 
checking of reputation information on signers and signed 
objects and allowing for the detection of key compromise and 
fake certifi cates. 

Our ROSCO system provides:

• A data collection framework for signed software and 
code-signing certifi cates.

• A data repository that can handle large numbers of 
signed objects effi ciently, and that supports a fl exible 
query interface.

• Reputation information for signed objects, such as when 
a given signed object was fi rst seen and how often it has 
been looked up by users.

• Alert services for private key owners that help them 
detect when their signing keys were illegitimately used, 
and hence, probably compromised.

ROSCO is not intended to replace the entire code-signing 
infrastructure; rather, it tries to complement it with new 
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mechanisms. There is no requirement whatsoever to change 
the operating principles of participants that do not want to use 
our system. This opt-in approach allows for the possibility of 
gradual deployment. The services offered by ROSCO will 
become more useful with the expected increase of the size of 
our repository. We hope that this will attract more participants 
to use our system who can benefi t from our services when 
determining the trustworthiness of a signed application.

In this paper, we have given a detailed description of the 
design and implementation of ROSCO. We started by 
introducing its overall architecture, and then described its 
components such as the data collection and processing 
subsystems, the SQL-based data used for storing meta-data 
and the NoSQL database used for storing the actual signed 
objects and their relationships, the alert subsystem, and web 
based user interface. We also discussed how ROSCO could 
have been used to detect the misuse of signatures and 
certifi cates in the high-profi le targeted attacks of Stuxnet, 
Duqu and Flame. 

The development of ROSCO is still on-going and there are 
many possibilities for future work. We plan to extend the set 
of supported signed objects with certifi cate revocation lists 
and timestamps, and the set of supported fi le types with 
signed MS offi ce documents. We also plan to give access to 
our system to a selected set of signing and relying parties for 
testing purposes, and to open it to the general public later. 
Finally, from a scientifi c point of view, the huge number of 
signed objects that we collected is a very valuable resource, 
on which we intend to perform different analysis tasks with 
the aim of better understanding code-signing practices.
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