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ABSTRACT
In this paper we will analyse various popular multi-rotor 
unmanned aerial vehicle (UAV) confi gurations and controllers 
for susceptibility to known and proof-of-concept security 
attacks.

The study will include analysis of existing malicious attack 
claims and their validity when applied to the world’s leading 
open-source UAV controllers, such as 3D Robotics’ 
ArduPilotMega (APM), the joint project of 3D Robotics’ and 
PX4 groups’ Pixhawk, and similar popular fl ight controllers 
recognized in the UAV industry.

The paper will examine the attack surface of existing UAV 
platforms as exhibited by a UAV’s different functional 
modules – software, fi rmware, hardware and controls – as well 
as those stemming from the environment.

Possible future attack scenarios as well as possible ways of 
hardening against such attacks are considered. 

INTRODUCTION
The explosive growth in popularity of multi-rotor unmanned 
aerial vehicles (UAVs) can be attributed to advances in 
inertial-measurement sensors, microcontrollers and battery 
technologies, all of which stem from research spent on 
development of personal devices such as mobile phones and 
laptops. It is not a secret that the helicopter and multi-rotor 
technology, as well as fi xed-wing unmanned aerial vehicle 
technology, exists and has been in development for some time, 
albeit at a somewhat slow pace. The complexity of controlling 
an aerial vehicle and the expense of development and 
manufacturing kept this technology away from a mass market 
for a time. 

The situation changed when the technology for manufacturing 
and simplifying the operation of UAVs became accessible and 
inexpensive enough to become ubiquitous. The industry is 
estimated to grow to $11 billion a year by 2024 [1].

SCOPE AND APPLICATIONS
There are already a number of ambitious projects that aim to 
tap into the emerging UAV market. The most famous of these 
are known as Amazon Prime Air [2] and the recently 
abandoned Google X’s Project Wing [3]. These efforts are both 
aimed at shortening the delivery time for receiving goods. 
Beyond these well-publicized research cases (which haven’t 
made it out of the lab environment just yet), it is probably less 
well known that multi-rotors are already becoming 
mainstream, and being used to deliver goods to remote areas – 
and, in some cases, making pizza available fast and fresh to a 
neighbour near you [4].

What does it mean for the rest of us? Chances are, it means 
that in the next few years multi-rotor UAVs might occupy 
airspace over our heads and important infrastructures. With 
this in mind, we want to assess the security levels of multi-
rotors and examine possible UAV attack surfaces from the 
prospective of an attacker.

BASICS OF MULTI-ROTOR DESIGN
The majority of multi-rotor drones adhere to the same design 
frame. Its basic blocks, shown in Figure 1, are as follows: 

A fl ight controller (FC) consists of a number of sensors and an 
embedded processing unit, normally an 8- or 32-bit system on 
a chip (SoC) that can be coupled with an external fl ash 
memory.

The block of sensors consists of a variety of inertial 
measurement unit (IMU) devices, which are responsible for a 
six degrees of freedom (DoF) aerial vehicle in spatial 
orientation, plus a magnetic orientation sensor, a pressure 
sensor, and a GPS unit, which contribute another fi ve DoF. In 
total, a fl ight controller can rely on a 11 DoF sensor unit. The 
IMU sensors group usually includes two three-directional 
micro-electro-mechanical systems (MEMS) – an 

Figure 1: Basic components of a multi-rotor aerial vehicle. 



ATTACK ON THE DRONES  PETROVSKY

17VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

accelerometer and a gyroscope. Often, the IMU group is 
housed in the same chip, which reduces electrical noise and 
raises its sensitivity. The sensors interface with the embedded 
CPU using a low-bandwidth serial protocol such as I2C, SPI, 
or UART. 

The convenience of daisy-chaining the sensors and using only 
two lines for communications highlights the I2C protocol as 
one of the preferable choices.

The fl ight controller is in turn connected to the radio receiver, 
the electronic speed controller (ESC) units, and the power 
distribution board. The ESC units are each connected to an 
electric motor and the power distribution board. The fl ight 
controller can be also connected to a telemetry radio unit as 
well as to an on-screen display unit (OSD). The low-speed 
serial protocols, such as UART, SPI and CAN, are used. The 
ESC units are controlled by means of pulse width modulation 
and translate the control signal from the embedded CPU to 
the speed of an electric motor. The electric motors provide 
thrust to an aerial vehicle. 

The entire system is controlled via a feedback loop, 
parameters of which include sensor modules, GPS, the radio 
receiver, and the telemetry data link inputs. This control loop 
conforms to a proportional-integral-derivative mechanism 
(PID) [5]. The PID method of automation is often found in 
industrial control systems and is aimed at reducing error 
between measured and set point values. The entire mechanics 
of automated control and stable fl ight is quite complex and 
well beyond the scope of this paper. 

Instead, we intend to examine possible points of attack on 
such systems within existing multi-rotor fl ight controller 
models. Many such confi gurations are used in consumer-
grade multi-rotors and fi xed-wing remote UAVs; the 
underlying technology differs little from board to board and 
even from manufacturer to manufacturer. This interoperability 
is a boon for development, but provides a homogenous 
surface (and a potentially great return on effort invested) for 
would-be attackers.

POPULAR FLIGHT CONTROLLERS

The range of popular fl ight controllers includes the following. 
The list is by no means complete, but the market being as it 
is, one could reasonably expect potential malware writers to 
be keenly aware of these commonly used components.

KK

The initial version of the KK fl ight controller was designed by 
Rolf R. Bakke, who is also known as KapteinKuk throughout 
the numerous UAV forums [6]. The controller began as a 
robust, no-frills controller with basic features – one that didn’t 
require the use of a personal computer to confi gure the fl ight 
controller board. (Normally, one would connect the fl ight 
controller board and run special software to set and store 
parameters on it.) It relied on Atmel’s ATmega48/88/168-AU 
chip, which could be programmed through the In System 
Programming (ISP) header with an AVR-capable programmer 
such as AVRISP mkII or STK500, both also from Atmel 
Corporation.

The basic sensor set-up would include ENC-03RC 
piezoelectric gyroscopes by Murata. The analog signal 
proportional to the angle rate would be read and processed by 

a microcontroller, which would be internally clocked at 
8MHz, and the proportional (P) and integral (I) settings for 
automated control could be tuned by adjusting potentiometers 
on the board, as can be seen in Figure 2. The board did 
evolve: the latest hardware version, KK2.1, has a more 
powerful microcontroller (the ATmega644PA by Atmel), and 
the sensor block has been replaced by the single-chip digital 
micro electro mechanical system (MEMS) inertial 
measurement unit (IMU) 6050 by InvenSense. The added 
LCD screen and control buttons allow more programmatic 
control and setup of the board without the use of a PC. The 
fi rmware can still be compiled and updated over the ISP 
header. The board, due to its in-fi eld set-up simplicity, is still 
quite popular and is actively supported throughout the UAV 
community. The controller is open-source and open hardware. 
The fi rmware updates can be downloaded online [7] and 
fl ashed to the board through the ISP header using the ISP 
protocol by Atmel [8].

Figure 2: One of the numerous early KK clones. 

MultiWii 

MultiWii is yet another popular fl ight controller utilizing open 
source under GNU GPL v3 and open hardware. Its popularity 
can be attributed to its relative simplicity and the ability of the 
fi rmware to support a multitude of sensors and core CPUs [9]. 
The fi rmware is versatile enough to include an optional global 
positioning system (GPS) unit and an LCD for in-fi eld tuning 
when away from a PC. The name of the initial versions of the 
fi rmware and hardware pays homage to the Nintendo Wii 
game console; earlier versions of the fi rmware relied on 
sensors found in the Nintendo Wii Nunchuck, the prevalence 
of which made the sensors cheap and easily obtainable. The 
MultiWii fi rmware was originally written for 8-bit Atmel 
microcontrollers using the processing language in the Arduino 
framework [10], but since then has successfully been forked 
and ported to support 32-bit processors such as the STM32 
CortexM3 series by STMicroelectronics. The 32-bit port of 
MultiWii is called ‘BaseFlight’ [11]. 

Currently, popular 8-bit versions of the MultiWii capable 
hardware include the MultiWii Pro, MultiWii Pro V2 and 
CRIUS Pro V2. Theses boards rely on the very capable 
ATmega2560 8-bit processor clocked at 16MHz with 256K of 
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Flash, 4K of EEPROM and 8K of RAM. On the 32-bit side 
are Naze32 and its clones such as Flip32, AfroFlight32 and 
others based on the STM32F103CxT6 CortexM3 Core ARM 
processor by STMicroelectronics (clocked at 72MHz, with 
Flash up to 128K and static RAM up to 20K). There is also a 
fork of the original ‘BaseFlight’ called ‘CleanFlight’, which 
is aimed at supporting an even greater number of existing 
32-bit boards, such as CC3D by OpenPilot and Sparky by 
TauLabs. The ‘CleanFlight’ fork [12] also supports 
STMicroelectronics’ STM32F3 and STM32F1 processor 
targets.

In a sensor block, most of the 8- or 32-bit fl ight controller 
boards rely on the MPU6050 by InvenSense, which houses a 
three-axis accelerometer, a three-axis gyroscope, Honeywell’s 
HMC5883L multi-chip module as a 3D magnetometer, and 
MEAS Specialties’ MS5611 or Bosch’s BMP085 as a 
barometric pressure sensor, all as shown on the MultiWii Pro 
V2 board in Figure 3. The sensor block chipset interfaces are 
digital and use I2C or SPI protocols, and all the analog-to-
digital conversion and processing happens inside the sensor 
chips. This greatly reduces the signal noise caused by 
interferences and increases the quality and the speed of 
measurements.

Figure 3: MultiWii Pro V2 fl ight controller. 

The MultiWii-supported boards can be confi gured and 
controlled through changes in the fi rmware source header fi les, 
as well as through a number of GUI confi guration programs 
running on a PC and interfacing with the FC board through the 
COM interface. The most popular confi guration program is 
MultiWiiGui_conf, which is written in Java [13], and MultiWii 
WinGUI [14]. The 32-bit ‘BaseFlight’ builds use the cross-
platform Chrome Basefl ight confi gurator tool [15] and the 
‘CleanFlight’ fork uses Cleanfl ight Confi gurator [16]. The GUI 
confi guration programs communicate with the boards through 
a COM port interface using the MultiWii lightweight protocol 
[17]. The confi guration programs are capable of making critical 
changes to the stable fl ight parameters as well as upgrading 
fi rmware using onboard boot-loader protocols.

OpenPilot
OpenPilot is yet another community effort aimed at developing 
hardware and software for multi-rotor UAV and fi xed-wing 
planes [18]. The project was founded by David Ankers, Angus 
Peart and Vassilis Varveropoulos in late 2009. The hardware 
developments were concentrated around STMicroelectronics’ 

STM32F1 and recently moved to that company’s STM32F4 
series of microcontrollers. Two popular fl ight controllers by 
OpenPilot are the CC3D and the Revolution (sometimes called 
the Revo) [19]. In 2010, the project was forked to support a 
wider variety of STM32F3- and STM32F4-based platforms as 
well as the different IMU selections. The fork is currently 
maintained independently by TauLabs [20]. There are build 
targets that include Discovery-series development boards from 
STMicroelectronics, such as Discovery F3 and Discovery F4. 

As part of this research and my UAV platform experiments, I 
designed and built a shield for the Discovery F3 board 
conforming to the specifi cations of the TauLabs project, as 
shown in Figure 4. 

Figure 4: The Discovery F3 board and the Flying F3 shield. 

Figures 5 and 6: Discovery F3-based quadcopter with 
TauLabs fi rmware; the varied propeller colours help the 

operator to discern the front and back of the UAV while it is 
aloft and moving in the line of sight. 
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This project allowed me to study the build process of the 
fi rmware and the upload process of the fi rmware to the target 
board, and to become familiar with the use of the OpenPilot 
telemetry protocol and the OpenPilot ground control station 
software. The board was successfully wired as shown in 
Figures 5 and 6, and tested in fl ight.

APM

This fl ight controller’s history began in 2007, when it was 
envisioned by Chris Anderson over a weekend in an attempt 
to make an autopilot for a plane made out of the Lego 
Mindstorm set. In 2009, Chris Anderson and Jordi Munoz 
founded 3DRobotics. Later the same year, Jordi Munoz 
created the ArduPilot code repository. In 2010, ArduPilot 
merged with AeroQuads to extend ArduPilot to support multi-
rotor platforms. ArduCopter was born. 

Since then the ArduCopter code and hardware have had a 
steady stream of development and advances. 3DRobotics, a 
leading manufacturer of the ArduCopter boards, managed to 
fi nd a good balance between commercializing a product and 
keeping the hardware designs and code open, while 
sponsoring a large DIYDrones community [21] and 
welcoming its cooperation and innovation [22]. (In this 
writer’s opinion they are UAV open-source industry leaders 
and can be compared in the UAV world to Linux in the world 
of operating systems.) Currently, there are two fl agship 
models: the APM 2.6, an 8-bit fl ight controller based on 
Atmel’s ATmega2560, and Pixhawk, based on the PX4 open-
hardware project and the STMicroelectronics STM32F4 and 
STM32F1 dual, 32-bit-based processor boards. The 8-bit 
controller relies on the Arduino framework and the fi rmware 
code is written in the Processing language. The fi rmware is 
uploaded using the STK500 bootloader protocol over a serial 
interface. 

The sensors module relies on the InvenSense MPU6050 
three-axis accelerometer and gyroscope as well as the 
previously mentioned three-axis HMC5883L magnetometer 
and MS5611 barometer. Optionally, the board can make use 
of a GPS module such as NEO-6, LEA-6, NEO-7 or NEO-M8, 
all manufactured by u-blox. U-blox NEO-7 and NEO-M8 are 
Glonass-capable and particularly useful in Europe. The GPS 
is connected to the board over a serial link and the data 
exchange is carried over using the UBX [23] protocol. UBX 
is a protocol proprietary to u-blox; it is designed to transmit 
GPS data to a host over an asynchronous serial link. The 
protocol is more compact than others, using 8-bit binary data 
as opposed to NMEA (which is ASCII-based and thus larger). 
It also uses a checksum algorithm that is two bytes lower in 
overhead, and a modular two-stage (Class and Message ID) 
message identifi er. (Those readers familiar with RFC 1145 
will recognize the checksum algorithm as the 8-bit Fletcher 
algorithm [24].)

Because of steady development and improvements in the 
fl ight controller features, the complexity of the fi rmware 
started testing the boundaries of the 8-bit board. According to 
DIYDrones [25], the 3DRobotics team reached the maximum 
potential for the 8-bit fl ight controller and it looks like the 
newer versions of ArduCopter will not be running on the 8-bit 
APM 2.6. 

The 32-bit Pixhawk board [26] is derived from the PX4 
project, which is further developed and supported by the 

Computer Vision and Geometry Lab, the Autonomous System 
Lab, and the Automatic Control Laboratory, all of ETH 
Zurich (Eidgenössische Technische Hochschule Zürich), the 
Swiss Federal Institute of Technology. 

The Pixhawk was developed in collaboration with 3DR with 
the PX4 group and is aimed at reducing the cost of production 
and increasing the board’s availability. The hardware design is 
open and several clones already exist on the market. The 
Pixhawk board is quite an improvement over the APM 8-bit 
fl ight controller; it is based on the STM32F4 Cortex M4 series 
CPU and has a second STM32F1 CPU as a failsafe option. In 
a sensor module, the Pixhawk fl ight controller can optionally 
rely on a combination of the MPU6000 three-axis 
accelerometer and three-axis gyroscope by InvenSense, the 
14-bit STM LSM303D accelerometer and magnetometer, the 
STM L3GD20 three-axis 16-bit gyroscope [27], and the 
MS5611 barometer. All of the above-mentioned options were 
present on the Pixhawk board clone with which the author 
was experimenting, as shown in Figure 7.

Figure 7: A Pixhawk board clone. 

The board also can use an external three-axis magnetometer 
such as HMC5883L, and connects to a u-blox series GPS over 
a serial link.

The Pixhawk runs a multi-threaded real-time operating 
system (RTOS) called NuttX [28], which provides a 
POSIX-like environment. The software can be updated 
through a USB bootloader. ArduCopter has successfully been 
ported to run on NuttX as a multi-threaded application 
according to Andrew Tridgell, who is a lead developer of 
ArduPilot [29]. It runs in four threads and uses ‘soft interrupt 
tasks’ for sensor drivers. The fi rmware uses a hardware 
abstraction layer (HAL), which further simplifi es porting 
ArduCopter to other platforms such as those based on Linux.

The confi guration and fi rmware updates, as well as the 
handling of fl ight data by the Pixhawk and APM2.6 boards, 
can be done through a number of GUI front ends, sometimes 
referred to as ground control stations (GCS) – for instance, an 
APM Planner [30] or Mission Planner [31].

The latest versions of ArduCopter fi rmware can be found on 
the DIYDrones site [32].

Linux-based UAV microcontrollers
In recent years, a number of cheap yet powerful ARM-based 
microcontrollers have appeared on the market, driven by the 
mobile devices industry. This led to production of inexpensive 
but quite computationally effi cient embedded systems such as 
RaspberryPI, RaspberryPI 2, Beaglebone and others. These 



ATTACK ON THE DRONES  PETROVSKY

20 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

boards are capable of running Linux and have enough raw 
input/output pins to control and acquire information from 
embedded electronic devices and sensors. These features, and 
the fact that Linux is well-established and rich with 
development tools for the platform, made it appealing to use 
such boards as fl ight controller main processing modules. 
What’s left is to add the sensor block and port an open-source 
fl ight controller fi rmware. The NavIO+ project has done just 
that [33]. It runs APM software, uses MavLink for 
communications, and supports a wide variety of ground 
control stations. The platform is open and can be used for 
development and research. 

DJI Naza-M
The Naza by DJI, shown in Figure 8, is an example of a 
closed-source and hardware fl ight controller system. The 
sensor module is tightly housed and is not accessible for 
detailed viewing, the markings on the chips are not readable, 
and the CPU is in ball grid array (BGA) packaging with no 
protruding legs, which makes it diffi cult to connect to for 
reverse-engineering purposes.

Figure 8: The closed-source DJI Naza fl ight controller.

The DJI Innovations Science and Technology Company 
started in 2006 and has its headquarters in Shenzhen, China 
[34]. DJI Innovations positions itself as a leader in 
manufacturing commercial and recreational unmanned air 
vehicles. Among other products, it is known as the company 
behind the Phantom and Inspire lines of quadcopters [35]. 
The company enjoyed a good run as virtually the only 
established manufacturer of recreational UAVs in the 
beginning, but currently it must compete with other 
companies as well as with the open-source and hardware 
community. At the lower price range in its production 
portfolio, DJI has a number of fl ight controllers such as the 
Naza-M Lite and Naza-M V2. According to various sources, 
the controllers seem to be based on the same or very similar 
hardware platforms, but are locked to particular fi rmware 
updates and assistant (confi guration) software [36]. 

Most of the additional modules necessary for UAV building, 
such as GPS, LED status indicators, USB ports, power 
management units, and so forth, have to be bought from DJI. 
These modules are specifi c to a particular line of fl ight 
controllers. These restrictions are not really welcomed in the 
hobbyist community, and there have been numerous attempts 
to reverse-engineer protocols and use other commonly 
available modules with the DJI fl ight controllers [37–39]. 

There’s also an unoffi cial way to upgrade fi rmware in 
Naza-M Lite to make it comparable in performance to 
Naza-M V2 [40].

SimonK ESC

As discussed earlier, electronic speed controllers (ESCs) are 
the multi-rotor components necessary to control the speed of 
a three-phase electric motor. Essentially, after computing the 
control loop solution, the fl ight controller has to pass the 
results to a multi-rotor motor to ensure the UAV is stable and 
on course. Because all the control-loop dampening and 
directional predictions are already included in the control 
loop algorithm, the fl exibility of the multi-rotor frame and the 
motor reaction to the control signals has to be minimized. 

The fl ight controller is connected to an ESC by three wires: 
ground, power, and controlling signal. The ESCs are 
controlled by means of pulse width modulation over a signal 
wire. The ESCs were originally used in RC helicopters in 
which the motor would be connected to a rotor through a 
number of gears. To protect these gears from becoming 
damaged during rapid speed changes, the ESC would 
compensate and ramp up to the desired speed over some 
period of time. Also, many ESCs have in-built under-voltage 
and overheating protection, which switches them off once 
these extreme conditions are reached. Such ESC behaviour is 
undesirable for a multi-rotor with a direct rotor drive; the 
ESC behaviour has to be reliable, regardless of extreme 
conditions, and simple in operation. Many of the modern 
ESCs contain an 8-bit microcontroller and can be 
programmed to react to the controller signal as necessary. 

Recognizing these issues with common ESCs, Simon Kirby 
developed fi rmware for ATmega-based ESCs with superior 
characteristics for multi-rotor designs. Among the benefi ts of 
the ESC, it improves reliability, decreases response time, and 
increases resolution up to 16-bit output power width 
modulation with full clock rate. Recent versions of SimonK 
fi rmware contain a bootloader and can be updated infi eld 
through a servo cable. More SimonK ESC features can be 
found on Github [41]. 

MavLink

There are a number of protocols that were designed to handle 
communication of the fl ight controller with a ground station. 
Such protocols are necessary to provide various telemetry and 
parameter information to and from a ground control station. 
One of the popular protocols is MavLink, fi rst released in 
2009 under the Lesser General Public licence by Lorenz 
Meier from the Department of Computer Vision and 
Geometry ETH Zurich, the Swiss Federal Institute of 
Technology. The protocol is bidirectional and, apart from 
UAV telemetry such as orientation and position, also carries 
commands and responses from the drone, essentially allowing 
total control over the UAV including waypoint navigation. 
MavLink was designed as a lightweight protocol for 
serializing C structures and sending them over the serial wire. 
Subsets of MavLink are well defi ned and quite extensive. 

From a security perspective, what we are interested in is the 
MavLink Mission Interface, a data format for storing 
missions to be carried out by an aerial vehicle. The values of 
the mission interface can be transmitted as waypoints using 
the MavLink Waypoints Protocol, as well as by individual 
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actions using a MavLink command message. Among the most 
interesting of these are MAV_CMD messages allowing 
execution by the aerial vehicle of commands sent from the 
ground control station to the UAV. The commands might 
include MAV_CMD_COMPONENT_ARM_DISARM, 
which arms or disarms vehicle components such as motors, or 
MAV_CMD_NAV_WAYPOINT, which is a navigation 
command directing the UAV to latitude, longitude and 
altitude (specifi ed as the command parameters). For further 
detailed analysis, the MavLink specifi cation can be found on 
the Pixhawk site [42]. 

MavLink has evolved to become very nearly an industry 
standard among open hardware and software UAV projects. It 
is currently supported by ArduPilotMega, Pixhawk, pxIMU, 
SmartAP and more [43]. Some of the software packages 
supporting MavLink include iDroneCtrl (iOS), 
QGroundControl (Windows/Mac/Linux), HK Ground Control 
Station (Windows), APM Planner (Windows/Mac) and Copter 
GCS (Android) [44]. Most interesting are MavLink Python 
bindings, which allows scripting and sending MavLink 
messages using Python as well as MAVProxy (a plug-in-
extendable command-line UAV ground control station). 
MAVProxy, which is written entirely in Python, is lightweight 
and allows networking and connecting over multiple 
computers. It has many useful plug-ins, such as a minimalistic 
GUI, moving maps, joysticks and antennae trackers [45].

UAVTalk

UAVTalk is yet another lightweight UAV communication 
protocol [46]. The protocol was originally designed to 
facilitate UAV communications in the OpenPilot project. The 
protocol is not as actively supported and extensible as 
MavLink, and at the moment is only used in a small number 
of UAV projects, namely the CC3D [47] and Revolution [48] 
platforms by OpenPilot and Quanton; and the FlyingF3, 
FlyingF4 and Sparky by TauLabs [49]. There are other 
STM32F1-, F3-, and F4-based platforms that could be ported 
to run TauLabs fi rmware based on OpenPilot. Currently, 
UAVTalk is bound to the OpenPilot ground control station 
and is not as popular as MavLink.

MultiWii serial protocol

A telemetry and command protocol designed as an alternative 
to MavLink and for use with MultiWii fl ight controllers. The 
original goal was to design an even lighter and more compact 
message exchange protocol than MavLink, one that would be 
easier to implement in 8-bit embedded systems. The aim of 
the protocol was to abstract fl ight controller components from 
each other, to make it easier to add new modules and to 
design software for handling communication data. 

The protocol messages are binary and header-specifi c, which 
essentially should allow for the mixing of various header-
specifi c protocols on the same wire. There’s a checksum for 
each message to make sure the message is not corrupted. The 
protocol allows the issuing of commands to the fl ight 
controller; for instance, MSP_SET_RAW_RC, which 
essentially allows one to control the UAV over a serial link 
instead of a radio transmitter. Other interesting commands 
are: MSP_SET_RAW_GPS, which allows the injection of 
GPS data into the MultiWii control loop; the MSP_SET_PID, 
which sets PID parameters to defi ned in the arguments values, 

and MSP_EEPROM_WRITE, which writes current 
parameters to EEPROM. The protocol is not currently as 
popular as MavLink and is predominantly used with MultiWii 
series fl ight controllers and the accompanying ground control 
confi guration software. The full specifi cation of the MultiWii 
serial protocol can be found on the MultiWii site [50].

As the reader can see from this overview, the rise of UAVs 
can be credited in part to a high level of interoperability 
among available componentry, fi rmware, software and 
architectures. However, the situation presents signifi cant 
opportunities for malicious parties to cause a great deal of 
disruption without requiring them to greatly customize 
individual attacks. In the next section, we’ll examine potential 
attack surfaces; this paper avoids going into a level of detail 
that might enable malicious actors to benefi t from this work.

ATTACK SURFACES

Bootloaders

After examining a number of fl ight controller confi gurations, 
the possible surfaces of malicious attacks become more 
apparent. Many fl ight controllers expose a well-documented 
bootloader that is not locked to signed fi rmware. As an 
example, fl ight controllers based on Arduino 2560 implement 
a subset of the stk500v2 [51] bootloader protocol. The 
fi rmware is uploaded over a serial connection to a 
microcontroller. Systems based on the STM32F series, such 
as PX4, use a PX4 bootloader [52]; meanwhile, OpenPilot 
and TauLabs projects rely on a custom bootloader, which can 
be pushed to the board in rescue mode using the factory ROM 
bootloader [53]. The OpenPilot custom bootloader is 
responsible for loading fi rmware, for USB-to-ground-station 
communications, and for initial set-up of the fl ight controller 
hardware [54]. The protocols of the bootloaders are either 
defi ned by the chip manufacturers or documented by the 
developer community. Also, the protocols can be reversed-
engineered by looking at the serial communication using any 
of the serial port sniffers, such as PortMon by Sysinternals 
[55] or Serial Port Monitor [56]. For protocol analysis one 
could also look at bootloader source fi les available in 
open-source projects. 

Firmware

In many cases, fi rmware can be modifi ed and uploaded to a 
fl ight controller to alter its behaviour. There are number of 
areas in which modifi ed fi rmware can be made to act 
maliciously. In the absence of fi rmware sources, such as in 
the case of closed-source or hardware systems, the most 
noticeable impact would be seen when altering the sensor 
block data stream. Much fl ight controller hardware tends to 
use industry-proven and well-documented IMUs such as 
InvenSense’s MPU6000/6050, MEAS’s MS5611 or Bosch’s 
BMP085 barometric sensors (mentioned previously), and 
Honeywell’s three-axis HMC5883L magnetometer. Many of 
these sensors are connected using I2C or SPI protocols. 

In order to pinpoint a location in fi rmware where the sensor 
block communication occurs we could use SPI or I2C sniffers 
and protocol analysers to record the sensor’s byte stream. 
There are a number of inexpensive solutions for doing so; for 
instance, the ‘Bus Pirate’ from Dangerous Prototypes [57] or 
a simple implementation based on an Atmel ATTiny2313-
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20PU chip [58]. The author personally likes the solution built 
with the use of the Discovery F4 board from 
STMicroelectronics. It is open-source, it can handle 
communications up to 20MHz, and it communicates using the 
SUMP protocol [59], which allows the use of many open-
source software clients. 

There are normally a limited number of I2C and SPI ports 
available on the core CPU of a fl ight controller. The sensor 
block connection can be traced to one of the available CPU 
ports. Once the byte streams and the communication CPU 
ports of the sensor block are established, the code serving 
these ports with the specifi ed byte sequences can be searched 
for inside the fi rmware disassembly. Of course, it makes it 
much easier if the source code of the fi rmware is available.

Hardware testbed 

Sometimes the sensor block or its connections are not easily 
accessible in the hardware, which makes it diffi cult to attach a 
logic analyser probe to the sensors. There are cases where 
specifi ed fl ight controller hardware cannot be sourced or is 
tamper-resistant. In many instances, the specialized hardware 
can be substituted with readily available development boards. 
For instance, many Arduino-based fl ight controllers and their 
fi rmware can be simulated on a standard Arduino board. A 
number of STM32-based fl ight controller projects such as 
FlyingF3, FlyingF4 and PX4 allow installation of their 
fi rmware on Discovery series development boards by 
STMicroelectronics [60–62]. Popular sensor chips such as 
InvenSense’s MPU6050 and MPU9150, MEAS’s MS5611, 
Bosch’s BMP085 and Honeywell’s HMC5883L are also 
available on breakout boards, as shown in Figure 9, providing 
a convenient way to connect the sensors to development 
boards and conduct tests and experiments.

Figure 9: Breakout boards for sensor integrated circuits. 

By connecting a breakout sensor board to any of the 
developer boards mentioned above loaded with the specifi ed 
fl ight controller fi rmware, we could observe the 
communication protocol using a protocol analyser such as the 
Saleae Logic series [63] or its cheaper available alternatives 
mentioned above. Having such a confi guration makes it much 
easier to connect to the sensor pins than it would be to do so 
with the original fl ight controller boards.

GPS unit

The potential of the GPS unit as an attack surface on UAVs 
deserves close attention. GPS is one of the most important 
components of the fl ight controller system, providing 
navigational data and stability of the vehicle’s position in 
various fl ight modes. 

There are number of ways in which the GPS operation can be 
affected or altered. One of the methods is modifying the data 

inside the fi rmware programmatically. The GPS is normally 
connected to the CPU through the UART interface. Most GPS 
units are well documented and comply with standard 
protocols of communication, such as NMEA [64] or a binary 
protocol such as the previously discussed UBX for u-blox 
devices [65]. In some cases, the GPS module contains a 
network processor that wraps the GPS data in an obscure 
proprietary protocol. This allows a vendor to maintain 
hardware exclusivity and charge higher prices for otherwise 
commonly available modules. In this case, the same 
methodology applies as it would with any other closed-end 
sensors. The data can be studied through the serial interface 
analyser and compared to a similar GPS unit without the 
additional protocol processor [66]. 

The other method of altering GPS data involves broadcasting 
on the frequency of the satellites simulating the GPS signal. 
This technique either alters the data received by the GPS unit 
or jams signal reception, making it entirely inaccessible. This 
method is technically challenging but one of the most 
effective. The attacker doesn’t have to infi ltrate a fl ight 
controller, the attack can be carried out from a substantial 
distance and is universal regardless of the fl ight controller 
type or the GPS unit. Despite the technical diffi culties 
inherent to the approach, a number of proof-of-concept 
scenarios have already been demonstrated. These involve the 
use of software-defi ned radios and specialized software to 
simulate the Global Navigational Satellite System (GNSS) 
signal [67–69].

Telemetry and command feed

The fl ight controller can be connected to a ground control 
station over a telemetry and command control link. In many 
cases, UAV telemetry and command protocol 
implementations are not inherently secure. The protocols 
allow UAVs to be reconfi gured and controlled remotely using 
any third-party software, without any special authentication. 

There are a few ways an attacker can tap into a telemetry link. 
One of the methods is to capture, modify and inject back a 
data stream into a telemetry link connection over a serial port. 
This data is processed by a ground control station client. 
Another method is to completely take control of the interface 
while spoofi ng the connection for the GCS. All these attacks 
are carried out at a client site and require access to the ground 
control station computer. The telemetry feed can be 
transmitted over the air using any of the available 
technologies such as Bluetooth, ZigBee, Wi-Fi, or a 
proprietary radio link. 

Two transmission methods that are currently very popular are 
Bluetooth, for short range communications up to 30 metres, 
and a radio module, developed by 3DRobotics [70] and based 
on the SiLabs Si1000 chip working on one of the industrial 
scientifi c and medical (ISM) bands, for links up to a 
kilometre. The Bluetooth modules used with the fl ight 
controllers are often left confi gured with their default pairing 
code. Both of the radio links can be tapped into using a 
software-defi ned radio (SDR), such as HackRF [71]. 

Middleware and background processes

With the advent of more powerful and cheaper CPUs, there 
are a number of fl ight controller projects that have started to 
rely on RTOSes such as NuttX or even Linux as middleware. 
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This opens the possibility for applications running in the 
background to essentially gain access to all the sensor drivers, 
on a par with a fl ight control application. 

Other tactics

Some of the MPUs offered by InvenSense, such as the MPU6
000/6050/6500/9150/9255 series, have a unique hardware 
feature called the Digital Motion Processor (DPM). This is 
essentially a processing module inside the sensor that can be 
programmed to perform computations on the data from sensor 
readings. The DPM fi rmware is stored in the volatile memory 
of the MPU and needs to be uploaded to the DPM module on 
every power-up. This fi rmware can be modifi ed to alter the 
chip readings, affecting the fl ight controller performance. 
Such modifi cations are diffi cult to detect once the fi rmware is 
uploaded to the DPM module.

As discussed earlier, SimonK ESC fi rmware can be upgraded 
over a PWM servo cable. Modifying SimonK fi rmware to, for 
instance, alter functionality of the ESC once it receives a 
predefi ned PWM control signal, could have disastrous 
consequences.

Because most of the modern controllers are connected over 
the USB interface, implementing some sort of USB device 
within its fi rmware, such a device is susceptible to a 
BADUSB [72] attack and could carry it out on a client system 
once the controller is plugged in.

CONCLUSION

In the last few years, we have experienced a shift toward more 
powerful hardware platforms in embedded designs, and UAVs 
are no exception. Fuelled by media popularity and the recent 
advances in sensors, microcontrollers and lithium-polymer 
batteries, multi-rotors have become more affordable and 
easier to control. We are witnessing an increase in drone 
research and development across various types of industries, 
including agriculture, entertainment, law enforcement and 
delivery services. On the technical side, the fl ight controllers, 
while enjoying healthy competition, are becoming more 
advanced and powerful. The controllers have begun to rely on 
popular operating systems as middleware. These include 
various RTOSs as well as Linux and Android. 

Legislation around UAV use is wildly uneven around the 
world, with researchers in some countries feeling compelled 
to do their testing in nations that are currently less restrictive 
about the public use of UAVs. In the US, faced with the 
inevitability of UAV omnipresence, the Federal Aviation 
Administration is the federal entity that will regulate the 
commercial and amateur drone industry. To that end, early in 
2015 the agency issued its long-awaited ‘Notice 8900.291 – 
Inspection and Maintenance Program Requirements for 
Airworthiness Certifi cation of Unmanned Aircraft Systems 
Operating Under 55 Pounds’ [73]. In the two-page notice, 
released in March 2015, the FAA states its intent to take an 
incremental approach to gaining ‘a better understanding of 
operational issues such as training requirements, operational 
specifi cations, airworthiness, and technology’ where UAVs 
are concerned, while pledging to work toward integrating 
UAVs into the nation’s airspace. The proposed regulations 
themselves cover such matters as commercial operator 
licensing, top altitude and speed, and fl ight paths [74]. While 
this appears to point to an eventual relaxing of the US’s 

current airspace restrictions on UAVs, it is by no means clear 
that ‘technology’ in this context includes potential security 
concerns. 

With the increase in availability of such devices and their 
presence in various areas of our life comes a responsibility to 
harden and secure these platforms from malicious attacks and 
rogue software. Special consideration must be given to 
securing fi rmware on embedded UAV modules. Best practices 
must be followed in securing such fi rmware, starting from its 
architectural design, implementation, and software 
development processes. The use of secure boot loaders and 
mechanisms of fi rmware authentication and encryption must 
become ubiquitous. Attention must be paid to the uses of 
encryption for wireless control and telemetry protocols. 
Above all, we have to realize that paying the cost for securing 
fi rmware and embedded devices upfront can prove much 
cheaper than trying to mitigate a disaster resulting from 
inadequate security measures – especially in the case of UAV.
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