
ATTACK ON THE DRONES PETROVSKY

16 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

ATTACK ON THE DRONES
Oleg Petrovsky

HP Security Research, USA

Email oleg.petrovsky@hp.com

ABSTRACT
In this paper we will analyse various popular multi-rotor
unmanned aerial vehicle (UAV) confi gurations and controllers
for susceptibility to known and proof-of-concept security
attacks.

The study will include analysis of existing malicious attack
claims and their validity when applied to the world’s leading
open-source UAV controllers, such as 3D Robotics’
ArduPilotMega (APM), the joint project of 3D Robotics’ and
PX4 groups’ Pixhawk, and similar popular fl ight controllers
recognized in the UAV industry.

The paper will examine the attack surface of existing UAV
platforms as exhibited by a UAV’s different functional
modules – software, fi rmware, hardware and controls – as well
as those stemming from the environment.

Possible future attack scenarios as well as possible ways of
hardening against such attacks are considered.

INTRODUCTION
The explosive growth in popularity of multi-rotor unmanned
aerial vehicles (UAVs) can be attributed to advances in
inertial-measurement sensors, microcontrollers and battery
technologies, all of which stem from research spent on
development of personal devices such as mobile phones and
laptops. It is not a secret that the helicopter and multi-rotor
technology, as well as fi xed-wing unmanned aerial vehicle
technology, exists and has been in development for some time,
albeit at a somewhat slow pace. The complexity of controlling
an aerial vehicle and the expense of development and
manufacturing kept this technology away from a mass market
for a time.

The situation changed when the technology for manufacturing
and simplifying the operation of UAVs became accessible and
inexpensive enough to become ubiquitous. The industry is
estimated to grow to $11 billion a year by 2024 [1].

SCOPE AND APPLICATIONS
There are already a number of ambitious projects that aim to
tap into the emerging UAV market. The most famous of these
are known as Amazon Prime Air [2] and the recently
abandoned Google X’s Project Wing [3]. These efforts are both
aimed at shortening the delivery time for receiving goods.
Beyond these well-publicized research cases (which haven’t
made it out of the lab environment just yet), it is probably less
well known that multi-rotors are already becoming
mainstream, and being used to deliver goods to remote areas –
and, in some cases, making pizza available fast and fresh to a
neighbour near you [4].

What does it mean for the rest of us? Chances are, it means
that in the next few years multi-rotor UAVs might occupy
airspace over our heads and important infrastructures. With
this in mind, we want to assess the security levels of multi-
rotors and examine possible UAV attack surfaces from the
prospective of an attacker.

BASICS OF MULTI-ROTOR DESIGN
The majority of multi-rotor drones adhere to the same design
frame. Its basic blocks, shown in Figure 1, are as follows:

A fl ight controller (FC) consists of a number of sensors and an
embedded processing unit, normally an 8- or 32-bit system on
a chip (SoC) that can be coupled with an external fl ash
memory.

The block of sensors consists of a variety of inertial
measurement unit (IMU) devices, which are responsible for a
six degrees of freedom (DoF) aerial vehicle in spatial
orientation, plus a magnetic orientation sensor, a pressure
sensor, and a GPS unit, which contribute another fi ve DoF. In
total, a fl ight controller can rely on a 11 DoF sensor unit. The
IMU sensors group usually includes two three-directional
micro-electro-mechanical systems (MEMS) – an

Figure 1: Basic components of a multi-rotor aerial vehicle.

ATTACK ON THE DRONES PETROVSKY

17VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

accelerometer and a gyroscope. Often, the IMU group is
housed in the same chip, which reduces electrical noise and
raises its sensitivity. The sensors interface with the embedded
CPU using a low-bandwidth serial protocol such as I2C, SPI,
or UART.

The convenience of daisy-chaining the sensors and using only
two lines for communications highlights the I2C protocol as
one of the preferable choices.

The fl ight controller is in turn connected to the radio receiver,
the electronic speed controller (ESC) units, and the power
distribution board. The ESC units are each connected to an
electric motor and the power distribution board. The fl ight
controller can be also connected to a telemetry radio unit as
well as to an on-screen display unit (OSD). The low-speed
serial protocols, such as UART, SPI and CAN, are used. The
ESC units are controlled by means of pulse width modulation
and translate the control signal from the embedded CPU to
the speed of an electric motor. The electric motors provide
thrust to an aerial vehicle.

The entire system is controlled via a feedback loop,
parameters of which include sensor modules, GPS, the radio
receiver, and the telemetry data link inputs. This control loop
conforms to a proportional-integral-derivative mechanism
(PID) [5]. The PID method of automation is often found in
industrial control systems and is aimed at reducing error
between measured and set point values. The entire mechanics
of automated control and stable fl ight is quite complex and
well beyond the scope of this paper.

Instead, we intend to examine possible points of attack on
such systems within existing multi-rotor fl ight controller
models. Many such confi gurations are used in consumer-
grade multi-rotors and fi xed-wing remote UAVs; the
underlying technology differs little from board to board and
even from manufacturer to manufacturer. This interoperability
is a boon for development, but provides a homogenous
surface (and a potentially great return on effort invested) for
would-be attackers.

POPULAR FLIGHT CONTROLLERS

The range of popular fl ight controllers includes the following.
The list is by no means complete, but the market being as it
is, one could reasonably expect potential malware writers to
be keenly aware of these commonly used components.

KK

The initial version of the KK fl ight controller was designed by
Rolf R. Bakke, who is also known as KapteinKuk throughout
the numerous UAV forums [6]. The controller began as a
robust, no-frills controller with basic features – one that didn’t
require the use of a personal computer to confi gure the fl ight
controller board. (Normally, one would connect the fl ight
controller board and run special software to set and store
parameters on it.) It relied on Atmel’s ATmega48/88/168-AU
chip, which could be programmed through the In System
Programming (ISP) header with an AVR-capable programmer
such as AVRISP mkII or STK500, both also from Atmel
Corporation.

The basic sensor set-up would include ENC-03RC
piezoelectric gyroscopes by Murata. The analog signal
proportional to the angle rate would be read and processed by

a microcontroller, which would be internally clocked at
8MHz, and the proportional (P) and integral (I) settings for
automated control could be tuned by adjusting potentiometers
on the board, as can be seen in Figure 2. The board did
evolve: the latest hardware version, KK2.1, has a more
powerful microcontroller (the ATmega644PA by Atmel), and
the sensor block has been replaced by the single-chip digital
micro electro mechanical system (MEMS) inertial
measurement unit (IMU) 6050 by InvenSense. The added
LCD screen and control buttons allow more programmatic
control and setup of the board without the use of a PC. The
fi rmware can still be compiled and updated over the ISP
header. The board, due to its in-fi eld set-up simplicity, is still
quite popular and is actively supported throughout the UAV
community. The controller is open-source and open hardware.
The fi rmware updates can be downloaded online [7] and
fl ashed to the board through the ISP header using the ISP
protocol by Atmel [8].

Figure 2: One of the numerous early KK clones.

MultiWii

MultiWii is yet another popular fl ight controller utilizing open
source under GNU GPL v3 and open hardware. Its popularity
can be attributed to its relative simplicity and the ability of the
fi rmware to support a multitude of sensors and core CPUs [9].
The fi rmware is versatile enough to include an optional global
positioning system (GPS) unit and an LCD for in-fi eld tuning
when away from a PC. The name of the initial versions of the
fi rmware and hardware pays homage to the Nintendo Wii
game console; earlier versions of the fi rmware relied on
sensors found in the Nintendo Wii Nunchuck, the prevalence
of which made the sensors cheap and easily obtainable. The
MultiWii fi rmware was originally written for 8-bit Atmel
microcontrollers using the processing language in the Arduino
framework [10], but since then has successfully been forked
and ported to support 32-bit processors such as the STM32
CortexM3 series by STMicroelectronics. The 32-bit port of
MultiWii is called ‘BaseFlight’ [11].

Currently, popular 8-bit versions of the MultiWii capable
hardware include the MultiWii Pro, MultiWii Pro V2 and
CRIUS Pro V2. Theses boards rely on the very capable
ATmega2560 8-bit processor clocked at 16MHz with 256K of

ATTACK ON THE DRONES PETROVSKY

18 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Flash, 4K of EEPROM and 8K of RAM. On the 32-bit side
are Naze32 and its clones such as Flip32, AfroFlight32 and
others based on the STM32F103CxT6 CortexM3 Core ARM
processor by STMicroelectronics (clocked at 72MHz, with
Flash up to 128K and static RAM up to 20K). There is also a
fork of the original ‘BaseFlight’ called ‘CleanFlight’, which
is aimed at supporting an even greater number of existing
32-bit boards, such as CC3D by OpenPilot and Sparky by
TauLabs. The ‘CleanFlight’ fork [12] also supports
STMicroelectronics’ STM32F3 and STM32F1 processor
targets.

In a sensor block, most of the 8- or 32-bit fl ight controller
boards rely on the MPU6050 by InvenSense, which houses a
three-axis accelerometer, a three-axis gyroscope, Honeywell’s
HMC5883L multi-chip module as a 3D magnetometer, and
MEAS Specialties’ MS5611 or Bosch’s BMP085 as a
barometric pressure sensor, all as shown on the MultiWii Pro
V2 board in Figure 3. The sensor block chipset interfaces are
digital and use I2C or SPI protocols, and all the analog-to-
digital conversion and processing happens inside the sensor
chips. This greatly reduces the signal noise caused by
interferences and increases the quality and the speed of
measurements.

Figure 3: MultiWii Pro V2 fl ight controller.

The MultiWii-supported boards can be confi gured and
controlled through changes in the fi rmware source header fi les,
as well as through a number of GUI confi guration programs
running on a PC and interfacing with the FC board through the
COM interface. The most popular confi guration program is
MultiWiiGui_conf, which is written in Java [13], and MultiWii
WinGUI [14]. The 32-bit ‘BaseFlight’ builds use the cross-
platform Chrome Basefl ight confi gurator tool [15] and the
‘CleanFlight’ fork uses Cleanfl ight Confi gurator [16]. The GUI
confi guration programs communicate with the boards through
a COM port interface using the MultiWii lightweight protocol
[17]. The confi guration programs are capable of making critical
changes to the stable fl ight parameters as well as upgrading
fi rmware using onboard boot-loader protocols.

OpenPilot
OpenPilot is yet another community effort aimed at developing
hardware and software for multi-rotor UAV and fi xed-wing
planes [18]. The project was founded by David Ankers, Angus
Peart and Vassilis Varveropoulos in late 2009. The hardware
developments were concentrated around STMicroelectronics’

STM32F1 and recently moved to that company’s STM32F4
series of microcontrollers. Two popular fl ight controllers by
OpenPilot are the CC3D and the Revolution (sometimes called
the Revo) [19]. In 2010, the project was forked to support a
wider variety of STM32F3- and STM32F4-based platforms as
well as the different IMU selections. The fork is currently
maintained independently by TauLabs [20]. There are build
targets that include Discovery-series development boards from
STMicroelectronics, such as Discovery F3 and Discovery F4.

As part of this research and my UAV platform experiments, I
designed and built a shield for the Discovery F3 board
conforming to the specifi cations of the TauLabs project, as
shown in Figure 4.

Figure 4: The Discovery F3 board and the Flying F3 shield.

Figures 5 and 6: Discovery F3-based quadcopter with
TauLabs fi rmware; the varied propeller colours help the

operator to discern the front and back of the UAV while it is
aloft and moving in the line of sight.

ATTACK ON THE DRONES PETROVSKY

19VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

This project allowed me to study the build process of the
fi rmware and the upload process of the fi rmware to the target
board, and to become familiar with the use of the OpenPilot
telemetry protocol and the OpenPilot ground control station
software. The board was successfully wired as shown in
Figures 5 and 6, and tested in fl ight.

APM

This fl ight controller’s history began in 2007, when it was
envisioned by Chris Anderson over a weekend in an attempt
to make an autopilot for a plane made out of the Lego
Mindstorm set. In 2009, Chris Anderson and Jordi Munoz
founded 3DRobotics. Later the same year, Jordi Munoz
created the ArduPilot code repository. In 2010, ArduPilot
merged with AeroQuads to extend ArduPilot to support multi-
rotor platforms. ArduCopter was born.

Since then the ArduCopter code and hardware have had a
steady stream of development and advances. 3DRobotics, a
leading manufacturer of the ArduCopter boards, managed to
fi nd a good balance between commercializing a product and
keeping the hardware designs and code open, while
sponsoring a large DIYDrones community [21] and
welcoming its cooperation and innovation [22]. (In this
writer’s opinion they are UAV open-source industry leaders
and can be compared in the UAV world to Linux in the world
of operating systems.) Currently, there are two fl agship
models: the APM 2.6, an 8-bit fl ight controller based on
Atmel’s ATmega2560, and Pixhawk, based on the PX4 open-
hardware project and the STMicroelectronics STM32F4 and
STM32F1 dual, 32-bit-based processor boards. The 8-bit
controller relies on the Arduino framework and the fi rmware
code is written in the Processing language. The fi rmware is
uploaded using the STK500 bootloader protocol over a serial
interface.

The sensors module relies on the InvenSense MPU6050
three-axis accelerometer and gyroscope as well as the
previously mentioned three-axis HMC5883L magnetometer
and MS5611 barometer. Optionally, the board can make use
of a GPS module such as NEO-6, LEA-6, NEO-7 or NEO-M8,
all manufactured by u-blox. U-blox NEO-7 and NEO-M8 are
Glonass-capable and particularly useful in Europe. The GPS
is connected to the board over a serial link and the data
exchange is carried over using the UBX [23] protocol. UBX
is a protocol proprietary to u-blox; it is designed to transmit
GPS data to a host over an asynchronous serial link. The
protocol is more compact than others, using 8-bit binary data
as opposed to NMEA (which is ASCII-based and thus larger).
It also uses a checksum algorithm that is two bytes lower in
overhead, and a modular two-stage (Class and Message ID)
message identifi er. (Those readers familiar with RFC 1145
will recognize the checksum algorithm as the 8-bit Fletcher
algorithm [24].)

Because of steady development and improvements in the
fl ight controller features, the complexity of the fi rmware
started testing the boundaries of the 8-bit board. According to
DIYDrones [25], the 3DRobotics team reached the maximum
potential for the 8-bit fl ight controller and it looks like the
newer versions of ArduCopter will not be running on the 8-bit
APM 2.6.

The 32-bit Pixhawk board [26] is derived from the PX4
project, which is further developed and supported by the

Computer Vision and Geometry Lab, the Autonomous System
Lab, and the Automatic Control Laboratory, all of ETH
Zurich (Eidgenössische Technische Hochschule Zürich), the
Swiss Federal Institute of Technology.

The Pixhawk was developed in collaboration with 3DR with
the PX4 group and is aimed at reducing the cost of production
and increasing the board’s availability. The hardware design is
open and several clones already exist on the market. The
Pixhawk board is quite an improvement over the APM 8-bit
fl ight controller; it is based on the STM32F4 Cortex M4 series
CPU and has a second STM32F1 CPU as a failsafe option. In
a sensor module, the Pixhawk fl ight controller can optionally
rely on a combination of the MPU6000 three-axis
accelerometer and three-axis gyroscope by InvenSense, the
14-bit STM LSM303D accelerometer and magnetometer, the
STM L3GD20 three-axis 16-bit gyroscope [27], and the
MS5611 barometer. All of the above-mentioned options were
present on the Pixhawk board clone with which the author
was experimenting, as shown in Figure 7.

Figure 7: A Pixhawk board clone.

The board also can use an external three-axis magnetometer
such as HMC5883L, and connects to a u-blox series GPS over
a serial link.

The Pixhawk runs a multi-threaded real-time operating
system (RTOS) called NuttX [28], which provides a
POSIX-like environment. The software can be updated
through a USB bootloader. ArduCopter has successfully been
ported to run on NuttX as a multi-threaded application
according to Andrew Tridgell, who is a lead developer of
ArduPilot [29]. It runs in four threads and uses ‘soft interrupt
tasks’ for sensor drivers. The fi rmware uses a hardware
abstraction layer (HAL), which further simplifi es porting
ArduCopter to other platforms such as those based on Linux.

The confi guration and fi rmware updates, as well as the
handling of fl ight data by the Pixhawk and APM2.6 boards,
can be done through a number of GUI front ends, sometimes
referred to as ground control stations (GCS) – for instance, an
APM Planner [30] or Mission Planner [31].

The latest versions of ArduCopter fi rmware can be found on
the DIYDrones site [32].

Linux-based UAV microcontrollers
In recent years, a number of cheap yet powerful ARM-based
microcontrollers have appeared on the market, driven by the
mobile devices industry. This led to production of inexpensive
but quite computationally effi cient embedded systems such as
RaspberryPI, RaspberryPI 2, Beaglebone and others. These

ATTACK ON THE DRONES PETROVSKY

20 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

boards are capable of running Linux and have enough raw
input/output pins to control and acquire information from
embedded electronic devices and sensors. These features, and
the fact that Linux is well-established and rich with
development tools for the platform, made it appealing to use
such boards as fl ight controller main processing modules.
What’s left is to add the sensor block and port an open-source
fl ight controller fi rmware. The NavIO+ project has done just
that [33]. It runs APM software, uses MavLink for
communications, and supports a wide variety of ground
control stations. The platform is open and can be used for
development and research.

DJI Naza-M
The Naza by DJI, shown in Figure 8, is an example of a
closed-source and hardware fl ight controller system. The
sensor module is tightly housed and is not accessible for
detailed viewing, the markings on the chips are not readable,
and the CPU is in ball grid array (BGA) packaging with no
protruding legs, which makes it diffi cult to connect to for
reverse-engineering purposes.

Figure 8: The closed-source DJI Naza fl ight controller.

The DJI Innovations Science and Technology Company
started in 2006 and has its headquarters in Shenzhen, China
[34]. DJI Innovations positions itself as a leader in
manufacturing commercial and recreational unmanned air
vehicles. Among other products, it is known as the company
behind the Phantom and Inspire lines of quadcopters [35].
The company enjoyed a good run as virtually the only
established manufacturer of recreational UAVs in the
beginning, but currently it must compete with other
companies as well as with the open-source and hardware
community. At the lower price range in its production
portfolio, DJI has a number of fl ight controllers such as the
Naza-M Lite and Naza-M V2. According to various sources,
the controllers seem to be based on the same or very similar
hardware platforms, but are locked to particular fi rmware
updates and assistant (confi guration) software [36].

Most of the additional modules necessary for UAV building,
such as GPS, LED status indicators, USB ports, power
management units, and so forth, have to be bought from DJI.
These modules are specifi c to a particular line of fl ight
controllers. These restrictions are not really welcomed in the
hobbyist community, and there have been numerous attempts
to reverse-engineer protocols and use other commonly
available modules with the DJI fl ight controllers [37–39].

There’s also an unoffi cial way to upgrade fi rmware in
Naza-M Lite to make it comparable in performance to
Naza-M V2 [40].

SimonK ESC

As discussed earlier, electronic speed controllers (ESCs) are
the multi-rotor components necessary to control the speed of
a three-phase electric motor. Essentially, after computing the
control loop solution, the fl ight controller has to pass the
results to a multi-rotor motor to ensure the UAV is stable and
on course. Because all the control-loop dampening and
directional predictions are already included in the control
loop algorithm, the fl exibility of the multi-rotor frame and the
motor reaction to the control signals has to be minimized.

The fl ight controller is connected to an ESC by three wires:
ground, power, and controlling signal. The ESCs are
controlled by means of pulse width modulation over a signal
wire. The ESCs were originally used in RC helicopters in
which the motor would be connected to a rotor through a
number of gears. To protect these gears from becoming
damaged during rapid speed changes, the ESC would
compensate and ramp up to the desired speed over some
period of time. Also, many ESCs have in-built under-voltage
and overheating protection, which switches them off once
these extreme conditions are reached. Such ESC behaviour is
undesirable for a multi-rotor with a direct rotor drive; the
ESC behaviour has to be reliable, regardless of extreme
conditions, and simple in operation. Many of the modern
ESCs contain an 8-bit microcontroller and can be
programmed to react to the controller signal as necessary.

Recognizing these issues with common ESCs, Simon Kirby
developed fi rmware for ATmega-based ESCs with superior
characteristics for multi-rotor designs. Among the benefi ts of
the ESC, it improves reliability, decreases response time, and
increases resolution up to 16-bit output power width
modulation with full clock rate. Recent versions of SimonK
fi rmware contain a bootloader and can be updated infi eld
through a servo cable. More SimonK ESC features can be
found on Github [41].

MavLink

There are a number of protocols that were designed to handle
communication of the fl ight controller with a ground station.
Such protocols are necessary to provide various telemetry and
parameter information to and from a ground control station.
One of the popular protocols is MavLink, fi rst released in
2009 under the Lesser General Public licence by Lorenz
Meier from the Department of Computer Vision and
Geometry ETH Zurich, the Swiss Federal Institute of
Technology. The protocol is bidirectional and, apart from
UAV telemetry such as orientation and position, also carries
commands and responses from the drone, essentially allowing
total control over the UAV including waypoint navigation.
MavLink was designed as a lightweight protocol for
serializing C structures and sending them over the serial wire.
Subsets of MavLink are well defi ned and quite extensive.

From a security perspective, what we are interested in is the
MavLink Mission Interface, a data format for storing
missions to be carried out by an aerial vehicle. The values of
the mission interface can be transmitted as waypoints using
the MavLink Waypoints Protocol, as well as by individual

ATTACK ON THE DRONES PETROVSKY

21VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

actions using a MavLink command message. Among the most
interesting of these are MAV_CMD messages allowing
execution by the aerial vehicle of commands sent from the
ground control station to the UAV. The commands might
include MAV_CMD_COMPONENT_ARM_DISARM,
which arms or disarms vehicle components such as motors, or
MAV_CMD_NAV_WAYPOINT, which is a navigation
command directing the UAV to latitude, longitude and
altitude (specifi ed as the command parameters). For further
detailed analysis, the MavLink specifi cation can be found on
the Pixhawk site [42].

MavLink has evolved to become very nearly an industry
standard among open hardware and software UAV projects. It
is currently supported by ArduPilotMega, Pixhawk, pxIMU,
SmartAP and more [43]. Some of the software packages
supporting MavLink include iDroneCtrl (iOS),
QGroundControl (Windows/Mac/Linux), HK Ground Control
Station (Windows), APM Planner (Windows/Mac) and Copter
GCS (Android) [44]. Most interesting are MavLink Python
bindings, which allows scripting and sending MavLink
messages using Python as well as MAVProxy (a plug-in-
extendable command-line UAV ground control station).
MAVProxy, which is written entirely in Python, is lightweight
and allows networking and connecting over multiple
computers. It has many useful plug-ins, such as a minimalistic
GUI, moving maps, joysticks and antennae trackers [45].

UAVTalk

UAVTalk is yet another lightweight UAV communication
protocol [46]. The protocol was originally designed to
facilitate UAV communications in the OpenPilot project. The
protocol is not as actively supported and extensible as
MavLink, and at the moment is only used in a small number
of UAV projects, namely the CC3D [47] and Revolution [48]
platforms by OpenPilot and Quanton; and the FlyingF3,
FlyingF4 and Sparky by TauLabs [49]. There are other
STM32F1-, F3-, and F4-based platforms that could be ported
to run TauLabs fi rmware based on OpenPilot. Currently,
UAVTalk is bound to the OpenPilot ground control station
and is not as popular as MavLink.

MultiWii serial protocol

A telemetry and command protocol designed as an alternative
to MavLink and for use with MultiWii fl ight controllers. The
original goal was to design an even lighter and more compact
message exchange protocol than MavLink, one that would be
easier to implement in 8-bit embedded systems. The aim of
the protocol was to abstract fl ight controller components from
each other, to make it easier to add new modules and to
design software for handling communication data.

The protocol messages are binary and header-specifi c, which
essentially should allow for the mixing of various header-
specifi c protocols on the same wire. There’s a checksum for
each message to make sure the message is not corrupted. The
protocol allows the issuing of commands to the fl ight
controller; for instance, MSP_SET_RAW_RC, which
essentially allows one to control the UAV over a serial link
instead of a radio transmitter. Other interesting commands
are: MSP_SET_RAW_GPS, which allows the injection of
GPS data into the MultiWii control loop; the MSP_SET_PID,
which sets PID parameters to defi ned in the arguments values,

and MSP_EEPROM_WRITE, which writes current
parameters to EEPROM. The protocol is not currently as
popular as MavLink and is predominantly used with MultiWii
series fl ight controllers and the accompanying ground control
confi guration software. The full specifi cation of the MultiWii
serial protocol can be found on the MultiWii site [50].

As the reader can see from this overview, the rise of UAVs
can be credited in part to a high level of interoperability
among available componentry, fi rmware, software and
architectures. However, the situation presents signifi cant
opportunities for malicious parties to cause a great deal of
disruption without requiring them to greatly customize
individual attacks. In the next section, we’ll examine potential
attack surfaces; this paper avoids going into a level of detail
that might enable malicious actors to benefi t from this work.

ATTACK SURFACES

Bootloaders

After examining a number of fl ight controller confi gurations,
the possible surfaces of malicious attacks become more
apparent. Many fl ight controllers expose a well-documented
bootloader that is not locked to signed fi rmware. As an
example, fl ight controllers based on Arduino 2560 implement
a subset of the stk500v2 [51] bootloader protocol. The
fi rmware is uploaded over a serial connection to a
microcontroller. Systems based on the STM32F series, such
as PX4, use a PX4 bootloader [52]; meanwhile, OpenPilot
and TauLabs projects rely on a custom bootloader, which can
be pushed to the board in rescue mode using the factory ROM
bootloader [53]. The OpenPilot custom bootloader is
responsible for loading fi rmware, for USB-to-ground-station
communications, and for initial set-up of the fl ight controller
hardware [54]. The protocols of the bootloaders are either
defi ned by the chip manufacturers or documented by the
developer community. Also, the protocols can be reversed-
engineered by looking at the serial communication using any
of the serial port sniffers, such as PortMon by Sysinternals
[55] or Serial Port Monitor [56]. For protocol analysis one
could also look at bootloader source fi les available in
open-source projects.

Firmware

In many cases, fi rmware can be modifi ed and uploaded to a
fl ight controller to alter its behaviour. There are number of
areas in which modifi ed fi rmware can be made to act
maliciously. In the absence of fi rmware sources, such as in
the case of closed-source or hardware systems, the most
noticeable impact would be seen when altering the sensor
block data stream. Much fl ight controller hardware tends to
use industry-proven and well-documented IMUs such as
InvenSense’s MPU6000/6050, MEAS’s MS5611 or Bosch’s
BMP085 barometric sensors (mentioned previously), and
Honeywell’s three-axis HMC5883L magnetometer. Many of
these sensors are connected using I2C or SPI protocols.

In order to pinpoint a location in fi rmware where the sensor
block communication occurs we could use SPI or I2C sniffers
and protocol analysers to record the sensor’s byte stream.
There are a number of inexpensive solutions for doing so; for
instance, the ‘Bus Pirate’ from Dangerous Prototypes [57] or
a simple implementation based on an Atmel ATTiny2313-

ATTACK ON THE DRONES PETROVSKY

22 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

20PU chip [58]. The author personally likes the solution built
with the use of the Discovery F4 board from
STMicroelectronics. It is open-source, it can handle
communications up to 20MHz, and it communicates using the
SUMP protocol [59], which allows the use of many open-
source software clients.

There are normally a limited number of I2C and SPI ports
available on the core CPU of a fl ight controller. The sensor
block connection can be traced to one of the available CPU
ports. Once the byte streams and the communication CPU
ports of the sensor block are established, the code serving
these ports with the specifi ed byte sequences can be searched
for inside the fi rmware disassembly. Of course, it makes it
much easier if the source code of the fi rmware is available.

Hardware testbed

Sometimes the sensor block or its connections are not easily
accessible in the hardware, which makes it diffi cult to attach a
logic analyser probe to the sensors. There are cases where
specifi ed fl ight controller hardware cannot be sourced or is
tamper-resistant. In many instances, the specialized hardware
can be substituted with readily available development boards.
For instance, many Arduino-based fl ight controllers and their
fi rmware can be simulated on a standard Arduino board. A
number of STM32-based fl ight controller projects such as
FlyingF3, FlyingF4 and PX4 allow installation of their
fi rmware on Discovery series development boards by
STMicroelectronics [60–62]. Popular sensor chips such as
InvenSense’s MPU6050 and MPU9150, MEAS’s MS5611,
Bosch’s BMP085 and Honeywell’s HMC5883L are also
available on breakout boards, as shown in Figure 9, providing
a convenient way to connect the sensors to development
boards and conduct tests and experiments.

Figure 9: Breakout boards for sensor integrated circuits.

By connecting a breakout sensor board to any of the
developer boards mentioned above loaded with the specifi ed
fl ight controller fi rmware, we could observe the
communication protocol using a protocol analyser such as the
Saleae Logic series [63] or its cheaper available alternatives
mentioned above. Having such a confi guration makes it much
easier to connect to the sensor pins than it would be to do so
with the original fl ight controller boards.

GPS unit

The potential of the GPS unit as an attack surface on UAVs
deserves close attention. GPS is one of the most important
components of the fl ight controller system, providing
navigational data and stability of the vehicle’s position in
various fl ight modes.

There are number of ways in which the GPS operation can be
affected or altered. One of the methods is modifying the data

inside the fi rmware programmatically. The GPS is normally
connected to the CPU through the UART interface. Most GPS
units are well documented and comply with standard
protocols of communication, such as NMEA [64] or a binary
protocol such as the previously discussed UBX for u-blox
devices [65]. In some cases, the GPS module contains a
network processor that wraps the GPS data in an obscure
proprietary protocol. This allows a vendor to maintain
hardware exclusivity and charge higher prices for otherwise
commonly available modules. In this case, the same
methodology applies as it would with any other closed-end
sensors. The data can be studied through the serial interface
analyser and compared to a similar GPS unit without the
additional protocol processor [66].

The other method of altering GPS data involves broadcasting
on the frequency of the satellites simulating the GPS signal.
This technique either alters the data received by the GPS unit
or jams signal reception, making it entirely inaccessible. This
method is technically challenging but one of the most
effective. The attacker doesn’t have to infi ltrate a fl ight
controller, the attack can be carried out from a substantial
distance and is universal regardless of the fl ight controller
type or the GPS unit. Despite the technical diffi culties
inherent to the approach, a number of proof-of-concept
scenarios have already been demonstrated. These involve the
use of software-defi ned radios and specialized software to
simulate the Global Navigational Satellite System (GNSS)
signal [67–69].

Telemetry and command feed

The fl ight controller can be connected to a ground control
station over a telemetry and command control link. In many
cases, UAV telemetry and command protocol
implementations are not inherently secure. The protocols
allow UAVs to be reconfi gured and controlled remotely using
any third-party software, without any special authentication.

There are a few ways an attacker can tap into a telemetry link.
One of the methods is to capture, modify and inject back a
data stream into a telemetry link connection over a serial port.
This data is processed by a ground control station client.
Another method is to completely take control of the interface
while spoofi ng the connection for the GCS. All these attacks
are carried out at a client site and require access to the ground
control station computer. The telemetry feed can be
transmitted over the air using any of the available
technologies such as Bluetooth, ZigBee, Wi-Fi, or a
proprietary radio link.

Two transmission methods that are currently very popular are
Bluetooth, for short range communications up to 30 metres,
and a radio module, developed by 3DRobotics [70] and based
on the SiLabs Si1000 chip working on one of the industrial
scientifi c and medical (ISM) bands, for links up to a
kilometre. The Bluetooth modules used with the fl ight
controllers are often left confi gured with their default pairing
code. Both of the radio links can be tapped into using a
software-defi ned radio (SDR), such as HackRF [71].

Middleware and background processes

With the advent of more powerful and cheaper CPUs, there
are a number of fl ight controller projects that have started to
rely on RTOSes such as NuttX or even Linux as middleware.

ATTACK ON THE DRONES PETROVSKY

23VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

This opens the possibility for applications running in the
background to essentially gain access to all the sensor drivers,
on a par with a fl ight control application.

Other tactics

Some of the MPUs offered by InvenSense, such as the MPU6
000/6050/6500/9150/9255 series, have a unique hardware
feature called the Digital Motion Processor (DPM). This is
essentially a processing module inside the sensor that can be
programmed to perform computations on the data from sensor
readings. The DPM fi rmware is stored in the volatile memory
of the MPU and needs to be uploaded to the DPM module on
every power-up. This fi rmware can be modifi ed to alter the
chip readings, affecting the fl ight controller performance.
Such modifi cations are diffi cult to detect once the fi rmware is
uploaded to the DPM module.

As discussed earlier, SimonK ESC fi rmware can be upgraded
over a PWM servo cable. Modifying SimonK fi rmware to, for
instance, alter functionality of the ESC once it receives a
predefi ned PWM control signal, could have disastrous
consequences.

Because most of the modern controllers are connected over
the USB interface, implementing some sort of USB device
within its fi rmware, such a device is susceptible to a
BADUSB [72] attack and could carry it out on a client system
once the controller is plugged in.

CONCLUSION

In the last few years, we have experienced a shift toward more
powerful hardware platforms in embedded designs, and UAVs
are no exception. Fuelled by media popularity and the recent
advances in sensors, microcontrollers and lithium-polymer
batteries, multi-rotors have become more affordable and
easier to control. We are witnessing an increase in drone
research and development across various types of industries,
including agriculture, entertainment, law enforcement and
delivery services. On the technical side, the fl ight controllers,
while enjoying healthy competition, are becoming more
advanced and powerful. The controllers have begun to rely on
popular operating systems as middleware. These include
various RTOSs as well as Linux and Android.

Legislation around UAV use is wildly uneven around the
world, with researchers in some countries feeling compelled
to do their testing in nations that are currently less restrictive
about the public use of UAVs. In the US, faced with the
inevitability of UAV omnipresence, the Federal Aviation
Administration is the federal entity that will regulate the
commercial and amateur drone industry. To that end, early in
2015 the agency issued its long-awaited ‘Notice 8900.291 –
Inspection and Maintenance Program Requirements for
Airworthiness Certifi cation of Unmanned Aircraft Systems
Operating Under 55 Pounds’ [73]. In the two-page notice,
released in March 2015, the FAA states its intent to take an
incremental approach to gaining ‘a better understanding of
operational issues such as training requirements, operational
specifi cations, airworthiness, and technology’ where UAVs
are concerned, while pledging to work toward integrating
UAVs into the nation’s airspace. The proposed regulations
themselves cover such matters as commercial operator
licensing, top altitude and speed, and fl ight paths [74]. While
this appears to point to an eventual relaxing of the US’s

current airspace restrictions on UAVs, it is by no means clear
that ‘technology’ in this context includes potential security
concerns.

With the increase in availability of such devices and their
presence in various areas of our life comes a responsibility to
harden and secure these platforms from malicious attacks and
rogue software. Special consideration must be given to
securing fi rmware on embedded UAV modules. Best practices
must be followed in securing such fi rmware, starting from its
architectural design, implementation, and software
development processes. The use of secure boot loaders and
mechanisms of fi rmware authentication and encryption must
become ubiquitous. Attention must be paid to the uses of
encryption for wireless control and telemetry protocols.
Above all, we have to realize that paying the cost for securing
fi rmware and embedded devices upfront can prove much
cheaper than trying to mitigate a disaster resulting from
inadequate security measures – especially in the case of UAV.

REFERENCES
[1] http://www.tealgroup.com/index.php/about-teal-

group-corporation/press-releases/118-2014-uav-
press-release.

[2] http://www.extremetech.com/extreme/171879-
amazon-unveils-30-minute-prime-air-quadcopter-
delivery-service-but-its-completely-impractical.

[3] http://readwrite.com/2015/03/17/google-x-astro-
teller-sxsw-drone.

[4] http://www.wired.co.uk/magazine/archive/2015/03/
start/where-the-drones-roam.

[5] http://en.wikipedia.org/wiki/PID_controller.

[6] http://www.kkmulticopter.kr/index.
html?modea=credits_kk.

[7] http://www.rcgroups.com/forums/showthread.
php?t=1675613.

[8] http://www.atmel.com/images/doc0943.pdf.

[9] http://www.multiwii.com/wiki/index.
php?title=Hardware.

[10] https://code.google.com/p/multiwii/.

[11] http://www.multiwii.com/wiki/index.
php?title=Mods#STM32_32-bit.

[12] https://github.com/cleanfl ight/cleanfl ight.

[13] https://code.google.com/p/multiwii/source/browse/
#svn%2Ftags.

[14] https://code.google.com/p/mw-wingui/.

[15] https://chrome.google.com/webstore/detail/
basefl ight-confi gurator/mppkgnedeapfejgfi mkdoninn
ofofi gk?hl=en.

[16] https://chrome.google.com/webstore/detail/
cleanfl ight-confi gurator/
enacoimjcgeinfnnnpajinjgmkahmfgb.

[17] http://www.multiwii.com/forum/viewtopic.
php?f=8&t=1516.

[18] https://www.openpilot.org/.

[19] https://www.openpilot.org/products/openpilot-
Revolution-platform/.

ATTACK ON THE DRONES PETROVSKY

24 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

[20] http://taulabs.org/.

[21] http://diydrones.com/.

[22] http://makezine.com/2014/10/13/dronecode-linux-
corporation-3d-robotics-create-open-source-uav-
software-endeavor/.

[23] http://www.u-blox.com/images/downloads/Product_
Docs/u-blox6_ReceiverDescriptionProtocolSpec_
(GPS.G6-SW-10018).pdf.

[24] https://tools.ietf.org/html/rfc1145.

[25] http://copter.ardupilot.com/wiki/common-autopilots/
common-apm25-and-26-overview/.

[26] https://pixhawk.org/modules/pixhawk.

[27] http://www.st.com/web/catalog/sense_power/FM89/
SC1288/PF254039.

[28] http://nuttx.org/.

[29] http://hackaday.com/2014/06/06/droning-on-fl ight-
controller-round-up/#comment-1555458.

[30] http://fi rmware.diydrones.com/Tools/APMPlanner/.

[31] http://fi rmware.diydrones.com/Tools/
MissionPlanner/.

[32] http://fi rmware.diydrones.com/.

[33] http://www.emlid.com/.

[34] http://en.wikipedia.org/wiki/DJI_%28company%29.

[35] http://www.dji.com/products.

[36] http://www.dji.com/info/spotlight/whats-difference-
of-naza-m-litenaza-m-v1naza-m-v2.

[37] http://www.rcgroups.com/forums/showthread.
php?t=2071772.

[38] http://www.rcgroups.com/forums/showthread.
php?t=1995704.

[39] http://www.rcgroups.com/forums/showthread.
php?t=2331009.

[40] http://naza-upgrade.com/.

[41] https://github.com/sim-/tgy.

[42] https://pixhawk.ethz.ch/mavlink/.

[43] http://www.qgroundcontrol.org/mavlink/start.

[44] http://www.qgroundcontrol.org/mavlink/start.

[45] http://tridge.github.io/MAVProxy/.

[46] https://wiki.openpilot.org/display/WIKI/UAVTalk.

[47] http://www.openpilot.org/products/openpilot-
coptercontrol-platform/.

[48] http://www.openpilot.org/products/openpilot-
Revolution-platform/.

[49] https://github.com/TauLabs/TauLabs/wiki.

[50] http://www.multiwii.com/wiki/index.
php?title=Multiwii_Serial_Protocol.

[51] http://www.atmel.com/images/doc2591.pdf.

[52] https://pixhawk.org/dev/px4_bootloader.

[53] http://www.st.com/web/en/resource/technical/
document/application_note/CD00167594.pdf.

[54] https://wiki.openpilot.org/display/WIKI/
Bootloader+Update.

[55] https://technet.microsoft.com/en-us/sysinternals/
bb896644.aspx.

[56] http://www.serial-port-monitor.com/.

[57] http://dangerousprototypes.com/bus-pirate-manual/.

[58] http://en.radzio.dxp.pl/i2c-sniffer/.

[59] http://www.sump.org/projects/analyser/protocol/.

[60] https://github.com/TauLabs/TauLabs/wiki/Creating-
a-FlyingF3-from-scratch.

[61] https://github.com/TauLabs/TauLabs/wiki/Creating-
a-FlyingF4-from-scratch.

[62] https://pixhawk.org/modules/stm32f4discovery.

[63] https://www.saleae.com/logic/.

[64] http://www.gpsinformation.org/dale/nmea.htm.

[65] https://www.u-blox.com/images/downloads/Product_
Docs/u-bloxM8_ReceiverDescriptionProtocolSpec_
%28UBX-13003221%29_Public.pdf.

[66] http://www.rcgroups.com/forums/showthread.
php?t=1995704.

[67] http://www.navsys.com/Papers/13-09-001_Open_
Source_SDR_Platform_for_GNSS_Recording_and_
Simulation.pdf.

[68] http://gpsworld.com/defensesecurity-
surveillanceassessing-spoofi ng-threat-3171/.

[69] http://gpsworld.com/drone-hack/.

[70] https://store.3drobotics.com/products/3dr-radio-915_
MHz.

[71] https://greatscottgadgets.com/hackrf/.

[72] https://srlabs.de/badusb/.

[73] https://www.faa.gov/regulations_policies/orders_
notices/index.cfm/go/document.information/
documentID/1027090.

[74] FAA Releases Proposed Drone Regulations. Drone
360 (magazine), Special Issue 2015 (Vol. 1 Issue 1).

