
THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

99VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

THE TAO OF .NET AND
POWERSHELL MALWARE

ANALYSIS
Santiago M. Pontiroli

Kaspersky Lab, Argentina

F. Roberto Martinez
Kaspersky Lab, Mexico

Email {santiago.pontiroli; roberto.martinez}@
kaspersky.com

ABSTRACT
With the ubiquitous adoption of Microsoft’s .NET and
PowerShell frameworks, an ever increasing number of
software development and IT ninjas are joining a nascent
tradition of professionals leveraging these powerful
environments for added effi cacy in their everyday jobs. With a
wide array of libraries and cmdlets at their fi ngertips, the need
to reinvent the wheel is long forgotten.

Of course, malware writers are not far behind – they too have
seen the light and are eager to use these convenient tools against
us. Whether it’s for everyday ransomware or state-sponsored
targeted campaigns, cybercriminals are now emboldened by a
new arsenal that enables them to adapt with ease and agility.
Are you ready to defend yourself against this emerging threat?

It’s time to understand our adversaries’ capabilities. In this
paper, we’ll analyse select in-the-wild malware samples,
picking apart the inner workings of these dastardly creations.
We’ll introduce the cloaking mechanisms adopted by
cybercriminals, moving beyond managed code in execution
environments to the devious packers, obfuscators and crypters
leveraged in conjunction with these powerful frameworks in
order to baffl e malware analysts and forensic investigators.

Knowing is not enough; we must apply. Willing is not enough;
we must do. With a plethora of post exploitation and lateral
movement tools created and customized every day in rapid
application development environments and high-level
programming languages, defending against this kind of
pervasive opponent is a full-time job.

THE RISE OF .NET AND POWERSHELL
MALWARE
Gone are the days when a programming-savvy malware writer
would lock him/herself up in a dark basement, looking at a
glaring screen fi lled with assembly code. A challenge to the
status quo has succeeded and now the self-titled cybercrime
industry has become a booming business, with criminals all
around the world wanting to jump on the bandwagon and get a
piece of the action. With a greater availability of high-level
programming languages each day, some of which are even
taught in high-school- and university-level courses thanks to
their simplicity, lots of curious ‘wannabe criminals’ with
dubious intentions fi nd themselves surprisingly well equipped
to reach into the depths of the Internet and pull out examples
of source code and step-by-step tutorials to create their next
malicious campaign. Instead of wanting to showcase their
technical expertise or intellectual capacity, criminals have

adopted proven practices from agile software development and
business administration that focus on maximizing profi ts while
minimizing the development time and maintenance cost of
these dreadful concoctions.

In 2002, Microsoft released a game-changing framework that
revolutionized the software development industry and
unwittingly provided malware writers with an unimaginable
arsenal of weapons. While ‘script kiddies’ resorted to builders
and automated environments to cobble together variations of
already-available malware samples, seasoned malware writers
now had access to forums with approachable lessons on how
to write fresh pieces of malicious code, all with an eye to the
most desirable feature of all: avoiding anti-virus detection for
as long as possible. Intended to compete directly with Oracle’s
JAVA platform, the .NET framework provided not only a
comprehensive library of built-in functions but also an
accompanying development environment capable of
supporting several high-level programming languages
including Microsoft’s soon-to-be-fl agship C# and the evolution
of Visual Basic, dubbed VB .NET.

Available by default in most Windows installations, the .NET
framework has become the de facto standard for software
development in Microsoft’s family of operating systems.
Moreover, with the 2006 addition of the increasingly powerful
PowerShell scripting framework, the interaction between .NET’s
supported programming languages and scripting automation has
given software developers and system administrators an easy
way to interface not only with the operating system but nearly
all Microsoft software, ranging from the Offi ce suite to the
crown jewel, the SQL Server database engine.

Vast amounts of ready-to-use functionality make the
combination of .NET and PowerShell a deadly tool in the hands
of cybercriminals. The straightforward value is immediate:
developing simple yet effective applications to send spam, brute
forcing credentials for virtually any service, or creating the next
global malicious campaign. The added benefi t: PowerShell
being ubiquitously whitelisted due to its importance in everyday
Windows system administration and other recurring
management activities makes it harder to prevent attacks that are
reliant on these deeply ingrained operating system components.

With access to a powerful integrated development environment
(IDE) such as the newly free Visual Studio, even application
lifecycle management and rapid application development
practices have become easier and are increasingly adopted by
today’s cybercriminals with aspirations of forming part of an
organized industry. Clearly defi ned separations between
programmers, designers, testers, command-and-control server
administrators, and everyone involved in cybercriminal
operations translates into maximum effi ciency and, in turn,
maximum profi ts. Computer-enabled crime and fraud have
become a faithful refl ection of their ‘real-life’ counterparts. With
cybercrime gangs stealing millions of dollars from institutions
(examples include Carbanak and gangs like the recently
apprehended Svpeng), we are witnessing a paradigm shift in
computer crime away from the ‘one-man show’ to that of an
earnest team effort. On the other side of the table, we fi nd
cooperation between private security research companies and
law enforcement agencies proving paramount in combating these
borderless threats. The evolution in the complexity and quantity
of .NET and PowerShell malware is becoming a reality, and as
security researchers we need to be ready to fi ght back against
these types of threats with the proper tools and knowledge.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

100 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Whereas normal PE samples are better analysed using a
debugger such as Olly or a disassembler such as IDA Pro,
understanding .NET malware samples requires a specifi c set
of tools that will make the malware analyst’s life much
easier. The availability of free and open-source decompilers
and a plethora of tools to help in our analysis tasks means
that not only can cybercriminals benefi t from the use of
high-level programming languages, but we can benefi t as
well. As with any endeavour, building the right toolset
means getting prebuilt tools but also being ready to develop
our own when needed. What better than to fi ght fi re with
fi re, by using Visual Studio, PowerShell and C# in our daily
fi ght against malware? Integrating PowerShell with several
.NET libraries and DLLs from currently available
decompilers such as ILSpy will allow any analyst to create a
standardized process that fi ts his needs, enabling quick
determination both of the sample’s behaviour and whether it
warrants further research.

To understand the differences in the analysis of .NET
assemblies we’ll need fi rst to briefl y review how the
framework works and how a .NET PE is built. We have
already seen that cybercriminals have changed their habits to
adopt new malware development practices, and as defendants
we should adapt our analysis environments too in order to
counteract this evolving threat in an effi cient manner.

.NET FRAMEWORK INTERNALS
It was within Microsoft’s original plans to build the .NET
Framework with the ambitious goal of providing developers a
single platform on which they could build all kinds of
applications. In theory, this revolutionary framework was to
be supported by a wide range of operating systems outside the
Microsoft ecosystem, having an ECMA specifi cation in place
so as to aid the development of open-source implementations
(e.g. the Mono Project). Even though Microsoft has only
recently shared parts of the .NET Framework with the
community via the GitHub repository, it’s certainly a step in
the right direction when it comes to interoperability and
multi-platform support. It’s worth noting that the .NET
Framework family also includes two versions for mobile or

embedded device use. A reduced version of the framework,
.NET Compact Framework, is available on Windows CE
platforms, including Windows Mobile devices such as
smartphones. Additionally, .NET Micro Framework is
targeted at severely resource-constrained devices.

Amidst the number of open-sourced .NET related projects,
we can fi nd the compiler platform code-named ‘Roslyn’,
which provides open-source C# and Visual Basic compilers
with rich code analysis APIs. Moreover, the .NET Core
platform is made up of several components, including the
aforementioned managed compilers, the runtime, the BCL
and the application model, such as ASP.NET. The majority of
.NET Core platform projects typically use either the MIT or
Apache 2 code licences. Some projects license their
documentation and other forms of content under Creative
Commons Attribution 4.0.

The Mono Project is a software platform designed to allow
developers to easily create cross-platform applications
(Figure 1). It is an open-source implementation of Microsoft’s
.NET Framework based on the ECMA standards for C# and
the Common Language Runtime. Along with the
implementation of the CLR we can also fi nd a cross-platform
IDE named MonoDevelop, making a perfect companionship
for cross-platform .NET developers.

As of Windows XP SP2 (and Windows 2003 server editions),
the .NET Framework is included by default in Microsoft
operating systems. The inclusion of version 2.0 in Windows
XP SP2 paved the way for the availability of newer versions
in editions of Windows to follow. Windows Vista already
included versions 2.0 and 3.0, nearly reaching the ever
popular Windows 7, which included version 3.5.1 of the .NET
Framework (in addition to previous framework versions with
their corresponding service packs). The development path
suggested by Microsoft is clear; making .NET an essential
component of the company’s fl agship operating system
represents good news for everyday developers… and
cybercriminals as well.

According to the international standards (ECMA-335 and
ISO/IEC 23271:2003), a common and baseline set of

Figure 1: Mono is an open-source implementation of Microsoft’s .NET Framework based on the ECMA standards for C# and the
Common Language Runtime [1].

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

101VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

functions should be implemented by the BCL (base class
library) in order to comply with the Common Language
Infrastructure (CLI) specifi cation. The efforts made in the
name of standardization have yielded outstanding results,
allowing projects such as Mono.NET and derivatives to
become a reality, even prior to Microsoft’s recent release of
the source code for the framework’s core components.

We can view the essential components of the framework as
three different parts or modules: a set of supported
programming languages, a base class library which
implements all basic operations involved in software
development, and the CLR (Common Language Runtime),
which is the core of the .NET framework and has been
designed to comply with a CLI or Common Language
Infrastructure. This acronym is not to be confused with CIL,
which stands for Common Intermediate Language, an
equivalent to JAVA’s bytecode. CIL code, previously known
as MSIL (Microsoft Intermediate language), represents
compiler-generated code which will be translated to
machine-readable code via JIT (just in time) compilation
done by the CLR (Figure 2). This convenient runtime
compilation allows the framework to perform code
optimizations according to the system’s resources and
application execution context, all while performing crucial
maintenance functions such as dynamic memory allocation
and garbage collection.

Managed code is code written in one of the many high-level
programming languages that are available for use with the
Microsoft .NET Framework. All of these languages share a
unifi ed set of class libraries and can be encoded into an
Intermediate Language (IL). A runtime-aware compiler turns
the IL into native executable code within a managed
execution environment that ensures type safety, array bounds
and index checking, exception handling, and garbage
collection.

By using managed code and compiling in this managed
execution environment, many typical programming mistakes
that lead to security holes and unstable applications can be
avoided. Everything from safety checking, to memory
management and destruction of unneeded objects is taken
care of by the framework, leaving the developer free to focus
on more productive tasks.

Among the many namespaces available for .NET developers,
cybercriminals seem to be especially fond of the following:
‘System.Net’, which provides access to network protocols
including SSL, HTTP, SMTP and FTP; ‘System.Refl ection’
(and refl ective programming techniques in general), which
gives the programmer the ability to read, create, and invoke
class information; and fi nally, this list wouldn’t be complete
without ‘System.Security’, which contains classes that
represent the .NET Framework security system and
permissions – everything ranging from access control to
cryptographic services is conveniently included within this
single namespace.

.NET assemblies are built on top of the PE (Portable
Executable) fi le format used for all Windows executables and
libraries (DLLs). The PE format is a data structure that
encapsulates the information necessary for the Windows loader
to manage wrapped executable code (see Figure 3). With regard
to .NET assemblies, there is only one distinction, a single extra
dependency is needed: mscoree.dll. Recognizing a .NET
assembly should be an easy task with proper tools such as
‘CFF Explorer’, ‘PEiD’ or ‘RDG Packer Detector’. However,
even without resorting to special third-party utilities, a quick
glance at the fi le’s PE header via commonly available hex-
editors will reveal the true nature of the executable. A graphical
representation of this distinction would involve a ‘CLR Data’
section below the ‘CLR Header’ section. ‘CLR Data’ would in
turn contain other two sections used by the CLR, a metadata
section and an intermediate language one.

Figure 2: More than 20 Common Type Specifi cation (CTS) available programming languages such as C# will produce IL code
that will be compiled JIT by the CLR [2].

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

102 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Figure 3: The format of a .NET PE fi le [3].

In addition to everything we have already discussed about
.NET, in 2006 Microsoft provided a command-line interface
for writing and executing scripts called PowerShell. The real
potential behind PowerShell is that it employs the .NET
framework to work. With its console interface designed to
interact seamlessly with .NET and all other Microsoft
products, PowerShell gives system administrators the ability
to automate tasks and perform management activities in a
more controlled manner. PowerShell is an object-oriented
command interpreter, providing greater fl exibility for writing
scripts and using the BCL provided by the .NET framework.

From a malware analyst’s perspective, having IL code
compiled ‘just in time’ means that .NET executables are
easier to disassemble and reverse engineer (although as we’ll
see in later sections, several protection mechanisms are
available). Even if .NET is installed by default in many
Windows boxes, the specifi c version required by an
application might be a newer one, creating the problem of
distributing the framework with the executable fi le.
Furthermore, conventional analysis techniques and tools
might delay our research efforts instead of helping us as .NET
malware analysis always requires the right toolset.

RANSOMWARE – AN EMERGING TREND

During the last couple of years, a noticeable trend has emerged
in the malware ecosystem. Commonly referred to as
‘ransomware’, these malicious pieces of computer code will
infect a system (usually Windows), taking the user’s fi les
hostage by encrypting them and ultimately demanding a
monetary ransom. As with all threats in the malware world,
ransomware has evolved not only in its technical aspects but
also in its business management practices. On the one hand,
current ransomware made with .NET uses military-grade
encryption already available within the framework (class
libraries), making the involvement of cryptography a trivial
task and avoiding developer implementation errors altogether.
On the other hand, the usage of Tor network websites to pay for
the ransom and the availability of several cryptocurrencies as
the preferred victim payment option make the illegal operation
devised by these criminals not only hard to trace but also easy
for victims to comply with. We have seen, for example, that as
the bitcoin value fl uctuates, cybercriminals adjust the ransom
price demanded for the decryption key, always aiming at

getting a high number of victims paying by making the price
accessible when compared to losing all of one’s fi les.

Anyone involved in the security industry will give victims the
same advice when asked about ransomware: never pay the
ransom. It’s understandable that paying victims perpetuate this
criminal scheme, but when a user weighs the cost of the
ransom against losing all their fi les, that advice goes out the
window. With more and more cybercriminals having access to
builders and source code for ready-made ransomware, the
whole process already resembles a malware-as-a-service
scheme. This means the criminal buys an entire package, easy
to deploy even by people with relatively little technical
knowledge. The corollary being that the number of samples
and variants within malware families keep increasing, while the
techniques used by cybercriminals continue to adapt in order to
reach a massive number of potential victims. It’s a numbers
game and cybercriminals know this – thus reducing the time it
takes to modify the malicious code is paramount in a business
that is not only dependent on technical implementation but also
on how long the threat remains undetected, thus keeping the
cash fl owing while the next malicious campaign is devised.

In addition, cybercriminals have shown that thieves do keep
their word, usually releasing the decryption key after a victim
makes the payment. After all, it’s a business and they want to
take care of their customers. Some malware samples go as far
as checking that the system hasn’t been infected before by the
same sample in order to protect an already ‘loyal’ customer.
Since the release of CryptoLocker in September 2013, the
ransomware scene has shown a steady growth and the latest
campaigns demonstrate the effectiveness and interest shown
by cybercriminals in this type of campaign.

When it comes to the .NET world, a recent piece of malware
named CoinVault once again demonstrated the good will of
cybercriminals by offering a limited decryption feature on
some of the fi les locked by the malware. Showing that the
malware actually worked, the bad guys intended to convince
their victims that they could recover their fi les and that the
only way to recover all of them was by paying the ransom. Of
course, this assumes that the infected user doesn’t have a
proper backup in place – something that most victims
remember only when they are hit with a catastrophe such as
this. Furthermore, within the set of people that do perform
backup procedures, only a small number verify that they
actually work before is too late.

Your fi les are in the vault – CoinVault analysis
[4]

Technically, the malware writers have taken a lot of measures
to slow down the analysis of this sample. Even though it was
made with Microsoft’s .NET framework, it takes a while to
reach the core of the malicious application. Upon opening the
initial sample in ILSpy, we fi nd that the program starts by
using a string key which is passed to a decryption method,
which will ultimately get the executable code (Figure 4).

A byte array is also passed as a parameter to the
‘EncryptOrDecrypt’ method, which in conjunction with the
key will output a fi nal byte array with the malware’s much
needed code (Figure 5).

Implementing these functions in Visual Studio is as easy as
copy/paste, so we execute the methods obtained from the
source code and set a breakpoint to check what the decryption

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

103VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Figure 4: Upon opening the initial sample in ILSpy, we fi nd that the program starts by using a string key which is passed to a
decryption method, which will ultimately get the executable code.

Figure 5: A byte array is also passed as a parameter to the ‘EncryptOrDecrypt’ method.

Figure 6: A ‘77’, ‘90’ in decimal tells us we are on the right track.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

104 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

method is doing. A ‘77’, ‘90’ in decimal tells us we are on the
right track (Figure 6), since when converting these numbers to
hexadecimal we get ‘4D’, ‘5A’, which is the magic number
for DOS executable fi les identifi ed by the ASCII string ‘MZ’.
We dump all the bytes to an executable fi le on disk for further
analysis.

We get a fi le called ‘SHIELD runner’, serving as a RunPE
helper application. A RunPE application serves to execute
fi les on the fl y, meaning that a memory stream is created from

an input and executed directly without fi rst storing the fi le to
disk (Figure 7). This is useful for malware writers that want
to avoid leaving traces behind, and as we’ll soon see, it’s not
all this fi le has to offer.

In the same way as before, a string key and a byte array are
used to generate yet another executable fi le (Figure 8).
Undoubtedly, the masterminds behind this threat have gone to
great lengths in order to slow down the analysis and hide the
malicious payload for as long as possible.

Figure 7: A ‘RunPE’ application serves to execute fi les on the fl y.

Figure 8: In the same way as before, a string key and a byte array are used to generate yet another executable fi le.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

105VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Not only do we have the usual ‘RunPE’ functions but also a
nice additional set of methods that will help the malware
detect analysis tools and virtualized environments. It checks
for ‘Sandboxie’, ‘Wireshark’, ‘Winsock Packet Editor’ and

even checks whether the machine’s name is ‘MALTEST’
(Figure 9). Fortunately, none of these conditions are met in
our environment so we are good to go.

Additionally, detection of a virtualized environment will
cause the execution to stop and the malicious payload to be
hidden (Figure 10).

We use PowerShell to check if the malware can actually
detect our environment (Figure 11). Apparently it can, so
we’ll need to carry out some simple modifi cations in order to
continue the analysis process. We can fi x this easily from
VMware’s confi guration VMX fi le, setting the option
‘SMBIOS.refl ectHost = TRUE’. Running our PowerShell
checks again, we receive good news and are ready to delve
further (Figure 12).

Repeating the process of string key and byte array decryption
and dumping the memory at just the right time pays off and
we fi nally end up with the set of fi les that will be used during
the infection (Figure 13).

Figure 9: The malware checks for ‘Sandboxie’, ‘Wireshark’, ‘Winsock Packet Editor’, and even checks whether the machine’s
name is ‘MALTEST’.

Figure 10: Detection of a virtualized environment causes the execution to stop.

Figure 11: Using PowerShell to check whether the malware
can detect our environment.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

106 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

The CoinVault Locker has two main Windows forms: the
main one telling us to pay in order to recover the victim’s fi les
and ‘frmGetFreeDecrypt’, which is used to decrypt one of the
victim’s fi les as a way to demonstrate that we can in fact
recover our precious information if we comply in a timely
manner (Figure 14).

However, before beginning with the Locker analysis we’ll
need to de-obfuscate it (at least a little bit). The malware

Figure 15: In this case we are dealing with the ever popular Confuser, version 1.9.0.0.

Figure 16: From something that resembles a Chinese manuscript to humanly readable source code.

Figure 14: The CoinVault Locker has two main Windows
forms.

Figure 12: After setting the option ‘SMBIOS.refl ectHost =
TRUE’ and running our PowerShell checks again, we receive

good news.

Figure 13: The set of fi les that will be used during the
infection.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

107VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

writers display some sense of humour here: if the analyst has
gone to this much trouble to reach this point it seems he’s
welcomed, as suggested by the phrase, ‘Your worst
nightmare’. Moreover, they are keen enough to leave a banner
signalling the obfuscation utility they used. In this case we
are dealing with the ever popular Confuser, in its version
1.9.0.0 (Figure 15).

It is certainly confusing, but we can make it better: going
from something that resembles a Chinese manuscript to
humanly readable source code (Figure 16).

We now can see, amongst the many (many) methods and
delegates inside the assembly, some relevant code regarding
the fi le encryption functionality. .NET’s ‘System.Security.
Cryptography.RijndaelManaged’ [5] namespace is used
(amongst others), revealing a symmetric encryption scheme
(Figure 17).

We can even get a glance at how the PRNG was implemented
and some other interesting internal details about our studied
malicious application (Figure 18).

When we are fi nally shown the Locker executable, a
connection is made to a dynamic domain. During the analysis,
two addresses were present: ‘cvredirect.no-ip.net’ and
‘cvredirect.ddns.net’ (Figure 19). They are currently offl ine,
which hampers the Locker functionality, since upon traffi c

analysis inspection we were able to see that a hardware ID is
sent to the C&C in order to use a dynamic fi le encryption
password. I guess now we can understand why the malware
checks for Wireshark in the system. After all, cybercriminals
wouldn’t want you to take a peek at how their business is
done.

Figure 19: During the analysis, two addresses were present:
‘cvredirect.no-ip.net’ and ‘cvredirect.ddns.net’.

Figure 17: .NET’s ‘System.Security.Cryptography.RijndaelManaged’ [5] namespace is used (amongst others). revealing a
symmetric encryption scheme.

Figure 18: We can even get a glance at how the PRNG was implemented.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

108 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Figure 20: Your personal documents and fi les have been encrypted.

Figure 21: Encryption scheme used by newer variants of CoinVault ransomware [6].

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

109VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

At this point, if everything has gone according to plan (for the
cybercriminals), the victim’s personal documents and fi les
have been encrypted and a payment is demanded in less than
24 hours or the price will rise (Figure 20). The bitcoin address
used is dynamic too, making the tracing of the funds a lot
more complex than usual.

After the initial analysis of CoinVault, a joint effort between
Kaspersky Lab and the National High Tech Crime Unit
(NHTCU) of the Netherlands’ police and the Netherlands’
National Prosecutors Offi ce, resulted in obtaining a database
from a CoinVault C&C server (containing IVs, keys and private
bitcoin wallets). With this information, a last resort decryption
tool was developed in order to be used and shared with those
that were affected by CoinVault. Even though this convenient
utility depends on the recovered key set for an effective
decryption, it is a step forward in the fi ght against cybercrime
and offers users much needed help in times of need. Original
samples of CoinVault such as that shown in the aforementioned
analysis used AES with a 128-bit block size in CBC mode but,
again displaying a knack for adaptability, the cybercriminals
behind the latest campaign have since switched to an AES
256-bit block size encryption in CFB mode (Figure 21).

Not all ransomware is created equal, and as has been shown
by the analysis published by Victor Alyshin [7], a bad
implementation of an encryption algorithm can give security
researchers a chance to build a decryption utility without the
need for original decryption keys. In this case, the Scraper
malware, despite being protected by KazyLoader and
KazyRootkit (both written using the .NET framework),
revealed a manually crafted payload for achieving the
ransomware infection. Some minor errors in the
implementation proved useful in defeating this threat
altogether. We’ll go into detail about .NET-specifi c protection
mechanisms in later sections of this text.

POWERSHELL – SCRIPTING GONE WILD
.NET is listed as a requirement for installing PowerShell in a
Windows system, making clear the close ties between the two.
It wasn’t until last year that a wave of ransomware created in
PowerShell started to be seen in the wild. It makes sense,
since utilizing an already whitelisted executable such as
PowerShell (which usually has administrative privileges)
provides the attacker with a good chance of bypassing many
security measures. PowerShell uses a C#-like syntax, offering
an object-oriented programming environment for developers
to go wild and access the .NET’s base class libraries (crypto,
networking, fi le access and many more). Not to mention that
it’s great for interfacing the Windows APIs (Component
Object Model and Windows Management Instrumentation).

By supporting code signing and different execution policies
(see Figure 22) as a measure to prevent the execution of

unwanted code, PowerShell tries to fi ght illegitimate usage of
the framework, but these measures are clearly not enough.

Even though the default execution policy is ‘Restricted’, we
have the option to bypass it right from PowerShell, and many
times just encoding the malicious payload with base64 will
yield an effective result against these ineffective protection
mechanisms. There are just too many ways to bypass
PowerShell execution policies, and cybercriminals know them
all [9]. If we add to this the availability of hundreds if not
thousands of ‘cmdlets’ (modular and reusable scripts),
cybercriminals don’t need to be extremely well versed in
either programming or malware development.

Ransomware in your email – analysis of
Ransom-NY

Starting with the Ransom-NY trojan, the world saw the
appearance of widely distributed PowerShell ransomware. By
using a peculiar HTA [10] fi le in combination with a Visual
Basic script (or JavaScript depending on the malware variant),
this malicious campaign ultimately delivered a base64-
encoded payload that would depend on PowerShell to encrypt
the fi les present in the system by using the RSA asymmetric
public key cryptographic algorithm with a 1024-bit block size
key (Figure 23). Even if the system didn’t have PowerShell
installed, the dropper stage in charge of the Visual Basic
script would download a standalone executable from Dropbox
in order to have access to the much needed environment. A
noteworthy difference in this case is that the campaign relied
on an I2P website instead of Tor, showing that cybercriminals
are always testing the water for more effi cient ways to collect
their hard-earned ransom from their victims.

After the initial script is decoded and executed, we can view
that the list of processes refl ects ‘mshta.exe’ spawning a
‘powershell.exe’ child process with several command-line
arguments (among which we can fi nd the base64-encoded
PowerShell script payload) (Figure 24). Sometimes,
bypassing PowerShell’s execution policies can be as simple as
encoding the payload, proving that the preventative measures
fall somewhat short of what’s expected for such a powerful
environment.

The PowerShell script uses ‘System.Refl ection’ namespace,
which contains types that retrieve information about
assemblies, modules, members, parameters and other entities
in managed code by examining their metadata [11]. Accessing
and executing assemblies from memory allows the attacker to
hide any traces of the infection even further while at the same
time providing a basic layer of obfuscation for analysts to
break during initial reconnaissance of the sample.

Upon retrieving the deobfuscated script delivered by the
malware, we are able to fi nd not only the message that will be

Figure 22: Available PowerShell script execution policies [8].

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

110 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

shown to the user after infection, but basically the entire
source code used for the fi le encryption functionality
(Figure 25). The ransom message, written in Russian, reveals
the intended target of this campaign fairly quickly. Even
though we have the full source code, the encryption
algorithms implemented by the engineers at Microsoft for the
BCL are more than enough to hold these fi les to ransom.

Cybercriminals stand on the shoulders of giants, leaving the
decryption of the fi les possible only by fi nding the bad guy’s
private key.

As noted previously, the initial dropper even has the ability to
check for the presence of PowerShell in the targeted system
and to download a standalone executable for running the

Figure 23: This malicious campaign ultimately delivered a base64-encoded payload.

Figure 24: We can view that the list of processes refl ects ‘mshta.exe’ spawning a ‘powershell.exe’ child process with several
command-line arguments.

Figure 25: We are able to fi nd not only the message that will be shown to the user after infection, but basically the entire source
code used for the fi le encryption functionality.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

111VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

malicious payload if the environment is not found
(Figure 26).

Although relying on an I2P website for hosting the ransom
payment system instead of the usual Tor’s .onion domain, the
process of infection and payment collection follows the usual
TTPs witnessed for many other ransomware campaigns
(Figure 27). Organized cybercrime is not a myth, and once a
group has displayed success in their endeavours, no doubt
other groups will follow their lead.

Macro-enabled ransomware – analysis of
Power Worm
Another interesting piece of ransomware created in
PowerShell used a slightly different delivery method to infect
its victims. After luring unsuspecting users into opening what
seemed to be an innocent Excel spreadsheet, a
password-protected macro would then decode and execute the
fi nal PowerShell payload, effectively bypassing the execution
policy in place (Figure 28). To communicate with the C&C,

this sample would download a standalone Tor browser and
Polipo, a lightweight caching and forwarding web proxy
server.

While a fake spreadsheet with information is presented to the
user, ‘powershell.exe’ is launched with the decoded script,
beginning the encryption of the targeted system fi les in the
background (Figure 29).

The sophistication of some ransomware samples may be
lacking, but still they are proven effective once again,
showing the simplicity of creating a new variant of an already
available malware in the wild. Moreover, having the complete
source code in the form of a PowerShell script allows a
complete dissection of the behaviour of the sample, not only
for security researchers but for script kiddies too (Figure 30).

In this case, invoking ‘powershell.exe’ with the parameters
‘-noexit’ and ‘-encodedcommand’ is enough to achieve the
execution of the malicious script without raising any
suspicion (Figure 31).

Figure 26: The initial dropper even has the ability to check for the presence of PowerShell in the targeted system and to download
a standalone executable for running the malicious payload if the environment is not found.

Figure 27: The process of infection and payment collection follows the usual TTPs witnessed for many other ransomware
campaigns.

Figure 28: Unsuspecting users are lured into opening an Excel spreadsheet.

Figure 29: While an Excel spreadsheet is shown to the user, powershell.exe is launched with the decoded script.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

112 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Figure 30: Having the complete source code in the form of a PowerShell script allows a complete dissection of the behaviour of
the sample.

Figure 31: Invoking ‘powershell.exe’ with the parameters ‘-noexit’ and ‘-encodedcommand’ is enough to achieve the execution of
the malicious script without raising any suspicion.

Figure 32: PoshCoder.

Figure 33: Humanly readable source code, listing the fi le extensions for the fi les targeted by this ransomware.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

113VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Ransom-everywhere – analysis of PoshCoder

There are just too many samples to choose from, either made
with pure .NET languages or scripted with PowerShell.
Malware developers choose to avoid reinventing the wheel
whenever possible, and samples such as PoshCoder, where they
resort to the usage of DLLs stolen from legitimate applications
such as a popular PowerShell IDE, show just how far they will
go to avoid working too much on one of their creations.
Resembling a Matryoshka doll, and using several layers of
protection with a mix of base64 encoding and custom encoding,
the actual payload at the centre is named ‘crypter1.ps1’.

After opening each of the ‘Matryoshka doll’ layers of
obfuscation, we reach a humanly readable source code, listing
the fi le extensions for the fi les targeted by this ransomware
and how the logic for the encryption scheme is implemented
(Figure 33). Initially, it seemed that we were dealing with a
regular PE fi le, but it seems that modifying and packing a
PowerShell script has yielded better results for this campaign
while maintaining a low detection rate.

On loading the received sample in ILSpy for analysis, we can
fi nd some interesting sections in the source code, for example
checking if PowerShell is present in the system and what
version is available (Figure 34). This should give us a clue as
to how to conduct our research and what to focus on.

Naming this sample ‘PoshCoder’ now makes sense after we
fi nd how its confi guration fi le ‘Posh2.confi g’ is loaded
(Figure 35).

The resources included in the assembly are certainly
interesting, and after checking the MD5 hash for the DLL
‘ScriptRunner.dll’, we confi rm our initial suspicion that this is
a library ‘borrowed’ from another application commonly used
to load and run PowerShell scripts with several additional
options to those offered by the default installation of the
framework (Figure 36).

Once again, we are shown how easy is to bypass a PowerShell
execution policy. In this case, merely invoking the script with
the parameter ‘bypass’ will do the trick (Figure 37).

Apparently, malware developers are quite fond of base64
encoding and after extracting the resource fi le and decoding it
we are presented with the original script fi le shown in
Figure 38. .NET and PowerShell malware usually relies on
several layers of obfuscation and encoding to slow down the
analysis process – bad guys know it’s extremely diffi cult to
protect their intellectual property, but all they care about is

Figure 34: Some interesting sections in the source code are revealed in ILSpy.

Figure 35: Confi guration fi le ‘Posh2.confi g’ is loaded.

Figure 36: ScriptRunner.dll.

Figure 37: Merely invoking the script with the parameter
‘bypass’ allows us to bypass the PowerShell execution policy.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

114 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

infection rates, and slowing down the analysis process can
reward them with a few more paying victims in the meantime.

To load the script runner DLL, an ‘Assembly.Load’ method is
used, allowing the developers to retrieve a raw assembly from
the resource fi le directly into memory. As we saw in the case
of CoinVault, the usage of a byte[] array is a common
denominator in .NET malware when it comes to loading an
embedded or obfuscated assembly (Figure 39). The addition
of extra layers and dynamic loading postpone exposure of the
malicious code until it’s really necessary.

In addition to the malware samples that we have analysed,
cybercriminals have a plethora of privilege-escalation and
lateral movement tools available to choose from, all created in
or for PowerShell. Each of the kill-chain stages can be
automated with the use of scripting, and gaining access to a
Windows box by relying on PowerShell and .NET technologies
supposes less risk and more feasible options for attaining the
desired results. Unfortunately, this knowledge can be used by a
red-team in a legitimate penetration testing engagement, as
well as by a relentless attacker profi ling our systems.

CODE PROTECTION, THE MARKET OF THE
‘FUD’ SOLUTIONS
With terms such as ‘packer’, ‘obfuscator’ and ‘crypter’, the
line between these popular code protection mechanisms is
becoming blurred, giving users an alternative way to preserve
the intellectual property of their .NET pièce de résistance. In
the same manner, malware developers know that they need to
hide their code from anti-virus engines, or at least modify it
enough so as not to be easily detected. From commercial
obfuscators to underground forums’ accessible crypters, the
offer of making your .NET application diffi cult to reverse
engineer or fully undetectable (FUD) by anti-virus engines is
a claim made by many but backed by few.

Open-source obfuscators such as Confuser, now reborn as
ConfuserEx, provide .NET developers a simple way to
perform symbol renaming, control fl ow obfuscation and
method reference hiding in addition to protecting against
debuggers, profi lers, memory dumping and code tampering
(among many other features such as encryption and
compression). By being widely available, free and open

Figure 38: After extracting the resource fi le and decoding it we are presented with the original script fi le.

Figure 39: The use of a byte[] array is a common denominator in .NET malware when it comes to loading an embedded or
obfuscated assembly.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

115VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

sourced, the samples adopting Confuser range from
ransomware such as CoinVault to carefully crafted .NET
assemblies belonging to targeted campaigns such as the
reported ‘Syrian Malware’ threat. Fortunately, tools to remove
the most common types of obfuscation such as garbage code
insertion, block shuffl ing and instruction substitution can be
utilized or at least automated with the aid of PowerShell. A
commonly known utility for this scenario is the also open-
source ‘de4dot’, a .NET deobfuscator and unpacker [12].

A commendable side benefi t of the Mono Project has been the
availability of several DLLs that can be used to perform static
.NET assembly analysis. With ‘Mono.Cecil’ [13] accessible
to generate and inspect programs and libraries in the ECMA
CIL format, you can load existing managed assemblies,
browse all the contained types, modify them on the fl y and
save the modifi ed assembly back to the disk. Code inspection
tools such as Gendarme [14] have been built on top of the
aforementioned library, allowing in principle checking the
quality of the code written by a group of developers (static IL
code analysis). However, Gendarme has also allowed a nice
set of features that, as security researchers, we can use to
learn about how to properly parse and dissect samples that we
have received in our lab.

Underground forums and so-called ‘hacking communities’ are
fi lled with crypter bundles, some even explicitly targeted to
protect .NET assemblies. The ‘fully undetectable’ claim is
diffi cult to achieve due to the way crypters work. Usually, we
have two fundamental components, a ‘builder’ or the crypter
itself, and a ‘stub’. The crypter is in charge of encrypting the
assembly, creating the unwanted need of a stub in order to
convert that encrypted blob again into something that a
computer can understand. The stub is a crucial piece of a
crypter, and given that it needs to avoid detection while
carrying out some suspicious low-level operations, creating
one is an art form and highly valued in underground
communities.

Figure 40: The design and features included in each crypter
are extremely varied, giving many options for malware

developers to test their detection rate.

A remarkably employed technique known as ‘Dynamic
Forking’ or ‘RunPE’ is present in numerous samples.
Basically, there’s a stub which launches a legitimate system
process or code in suspended mode, changing the context of
the execution afterwards in order to continue to load (directly

to memory) the malicious payload that was encrypted in the
original PE fi le. Anti-virus engines can recognize a crypter’s
stub not only by signature but by heuristics too, meaning that
accessing the regularly used APIs demonstrating a clearly
marked behaviour will raise a red fl ag in most security suites.
Manual modifi cation of a crypter and the stub is usually
necessary to avoid detection by many scanners, and is not an
easy task to achieve by any means.

Figure 41: A Facebook message selling a claimed ‘fully
undetectable’ crypter (Tesla Crypter).

With the appearance of the Poweliks malware, a new
protection mechanism was devised by nefarious minds. This
ingenious creation utilized several layers of protection, but
when it fi nally needed to deliver the malicious payload it
would write it directly to the system’s registry, loading the
code to memory straight from the registry on each reboot,
meaning that there was no actual fi le to scan. A fi leless
infection was achieved, utilizing a combination of commonly
available protection measures and astute PowerShell
scripting.

Use of the handy ‘System.Refl ection’ namespace methods to
dynamically load code into memory is a frequently used
technique for recovering code from a resource fi le or even a
byte array. These embedded resources or arrays can initially
be encoded or obfuscated, so it’s better to implement the
same methods shown in the source code for deobfuscation,
generally utilizing ILSpy or any static decompiler to unwrap
the protection layers one by one. Although variations of these
protective measures do exist, there’s hope since they can
usually be defeated either by re-implementing the same
methods in our custom developed tools, or by performing a
memory dump in order to obtain a clear copy of the IL code
in memory. Of course, some tools offer protection against
virtualized environments and even debuggers. Nevertheless,
the same logic that is applied to the analysis of any other
malicious sample is applicable in this circumstance, removing
the most annoying protections fi rst and then proceeding with
the core of the infectious program or script.

The implementation of custom tools is not restricted to the
classes and namespaces offered by the .NET framework,
several disassembly engines offer APIs to interface with

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

116 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

.NET-supported languages such as C#. Amongst them we can
fi nd Capstone, a lightweight multi-platform, multi-
architecture disassembly framework. Additionally, we can fall
back on NIDebugger, a non-intrusive x86 debugger for the
.NET Framework, or dnlib, a library that can read, write and
create .NET assemblies and modules. The number of tools
available and ready to use is staggering, with the vast majority
of them being free and open source, awaiting customization
to our needs.

Not every protection requires the same skill set or tools to be
defeated effi ciently, with some being simple ‘process checkers’
such as KillProc (Figure 42), which disables many system tools
that a user could want to execute to confi rm or terminate a
malware infection. In the case of CoinVault, a much more
elaborate and complex RunPE application was used, with
detection of virtualized environments and commonly used
malware analysis tools. Sometimes, a memory dump at the
right time can save us hours of unnecessary work, and at other
times there’s no way around it, and we’ll need to analyse each
layer of protection until we can reach the core of the studied
sample. Automating these tasks with PowerShell, or even with
a simple custom C# application, will go a long way towards
maximizing our effi ciency as analysts when we need to face .
NET and PowerShell specimens.

ADVANCED PERSISTENT THREATS AND
MALICIOUS CAMPAIGNS
Pro-government Syrian hacking groups have been distributing
a wide array of malware for quite a long time now. Mainly

using social engineering techniques and taking advantage of
the impersonation of legitimate contacts, victims end up
executing malicious payloads sent specifi cally to them. Fake
messages via Facebook or Skype are among the most common
ways of approaching the target, and since most of the samples
boast the distinct ‘feature’ of stealing credentials, it seems as
if we are dealing with a never-ending game of identity theft
and malware dissemination.

Among the many malicious fi les we can fi nd just about
everything, ranging from a fake Skype encryption utility, to a
Facebook anti-hacker application, with the notable mention of
fake PDF documents and bogus JPG images that are carefully
embedded into installable executable fi les. There’s a clear
objective shared within this pool of samples: to infect the
target computer with one of many publicly available RATs
(Remote Administration Tools), or a specially crafted .NET
keylogger. Gaining total control of the system and stealing
credentials is paramount, and it’s clear that fi nancial gain is
not a priority for this type of attack.

The majority of the malicious applications found try to pose
as legitimate downloads, cleverly luring the user into thinking
they are installing some kind of protection software needed to
maintain their privacy and anonymity online. Syrian citizens
are reasonably concerned about these topics, which is one
reason why these attacks are so effective. Social engineering
combined with spear-phishing is a dangerous recipe, and new
threats are appearing every day.

Moreover, some Facebook pages have been set up
masquerading as anti-hacking or computer security enthusiast

Figure 42: KillProc, a simple way to verify running processes in a Windows system.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

117VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

groups. By accessing malicious download links shared in the
comments section, Syrian citizens looking for security
solutions end up infecting their own systems.

Using SFX archives in early stages combined with social
engineering and spear phishing techniques yields maximum
infection rates while arousing little suspicion. The usage of
high-level programming languages (i.e. C#) is becoming
more popular among attackers as they need to modify their
malicious creations more rapidly. This brings the added
benefi t of leveraging already available source code from the
underground scene. The possibility of embedding remote

administration tools into the malware used for distribution
enables extreme customization of the code, making this type
of threat something that we constantly need to watch for.

Another relevant example of an APT relying on.NET and
PowerShell for stealthiness and persistence is the one
reported by CrowdStrike in November 2014, named ‘Deep
Panda’. Employing a number of scripts conveniently launched
as Windows scheduled tasks, a second stage payload is
downloaded silently onto the victim’s system. Undoubtedly,
this trend will continue, and as Windows systems continue to
be adopted in cloud environments and private corporate

Figure 43: A simple .NET application with a supposedly leaked spreadsheet leading to malware infection by a RAT targeting
Syrian government dissidents [16].

Figure 44: The real power behind .NET and PowerShell is the community of researchers behind these technologies, with several of
them releasing scripts to demonstrate how to automate the analysis of .NET samples.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

118 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

networks, resolving to use deeply ingrained OS components
for a successful attack will entice the attacker to maintain
their investment in high-level languages and the .NET
framework in general.

POWERSHELL – THE HOLY GRAIL FOR
ATTACKERS
Besides malware development, PowerShell has become the
holy grail of attackers, and its major features have become a
real Swiss Army knife for the different stages of an intrusion,
since it can be used to bypass anti-virus detection, maintain
persistence or exfi ltrate data. Moreover, some of its modules
can already be whitelisted by the system. For example, to
carry out evasive techniques, PowerShell scripts can be
loaded dynamically into memory without ever touching the
hard disk, thus leaving the least amount of evidence possible
on a compromised computer.

One point to consider is the fact that almost the majority of
Microsoft’s products natively interface with PowerShell,
broadening the attack surface and enabling lateral movement
within the systems present in the targeted network. For
example, an attacker could interact with Active Directory, get
information from SQL Server databases or create a rogue
mailbox account in Exchange once they have obtained
elevated privileges.

Around the ever-evolving PowerShell ecosystem, some
researchers have developed fully featured open source
toolsets that can run primarily on Windows-based systems, or
if desired, even ported to other platforms. These tools can be
executed from the targeted computer or remotely, giving the
attacker enough fl exibility to bypass security measures in
place, all within one convenient framework. The interesting
thing about this is that even though researchers have built
these frameworks as proofs of concept, or to use them in
penetration testing engagements, there is enough compelling
evidence to show that some of their functionality has been
leveraged by attackers in malware campaigns, and more
recently in targeted attacks all around the world.

The ‘Weaponization of PowerShell’ – using or creating
PowerShell scripts for offensive purposes – has been growing,
with some existing toolkits such as SET (Social Engineering
Toolkit) or the Metasploit Framework including an extensive
list of modules that are already built in and ready to use.

PowerSploit [17]
This framework, developed by Matt Graeber, integrates a
collection of powerful PowerShell scripts and modules to be
used in the post exploitation phases of an attack. PowerSploit
can execute scripts to perform administrative and low-level
tasks without the need to drop malicious executables, aiming
to evade timely anti-virus detection.

PowerSploit classifi es the available scripts according to their
functionality, such as anti-virus bypass, persistence, recon,
code execution and exfi ltration. This tool could work together
with other offensive tools such as Mimikatz to dump user
credentials.

A widely used technique to execute or invoke malicious
PowerSploit functions is by using the .NET WebClient class
and the Invoke-Expression method (Figure 45). Once the
attacker compromises a target, it’s necessary just to run a
simple command to download and execute a second stage
payload. The command can also be embedded in a
document, shared by email, or distributed via social
networks.

This is possible because these scripts don’t require any
external dependencies, so the attacker just needs to download
the malicious code and execute directly to achieve their goal.

At this point, it is possible to call the invoke-shellcode
function to connect to a remote listener and take control of
the target machine, with the possibility of performing a
plethora of malicious activities such as injecting code into an
existing or newly hidden process, injecting a DLL fi le, fi nding
anti-virus signatures or discovering new targets to make a
lateral move.

Veil-Framework

Veil-Framework [18], developed by Chris Truncer and Mike
Wright, is a collection of tools designed to generate
AV-evading executables, placing them into already existent
executable fi les or customized macros within Microsoft Offi ce
documents. The Veil-Framework components are classifi ed as
Veil-Evasion, Veil-Catapult, Veil-Pillage and Veil-PowerView.
Between these components we can fi nd different payloads
developed in numerous programming languages such as
Python, Ruby, C, C# and, of course, PowerShell’s native
syntax.

Figure 46: Payloads in PowerShell’s native syntax.

The primary objective of an attack is usually to get a system
shell while avoiding detection for as long as possible. Veil and
PowerSploit work together to achieve this. Veil generates a
PowerShell-encoded meterpreter payload, and PowerSploit
creates a PowerShell wrapper that is executed on the target
machine in order to maintain a persistent connection used for
exfi ltration.

Figure 45: A widely used technique to execute or invoke malicious PowerSploit functions is by using the .NET WebClient class and
Invoke-Expression method.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

119VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Figure 47: Veil generates a PowerShell-encoded meterpreter
payload.

Nishang – PowerShell for penetration testing
and offensive security
Nishang [19], written by Nikhil Mittal, is a post exploitation
framework containing a peculiar collection of scripts written
on top of the PowerShell functionality. Interestingly enough,
‘Nishang’ means ‘quiver’ in Sanskrit, providing us ‘a
container for arrows’ which can be used in all sorts of attacks.

The scripts on this framework are classifi ed according to their
functionality, such as webshell, backdoors, client, execution,
escalation, gather, pivot, prasadhak, scan, powerterpreter,
shells or utility. In the same way as PowerSploit, Nishang
scripts can be downloaded or invoked via the web and
executed directly into memory.

An example of how an attacker can use Nishang to conduct a
client-side attack is by adopting the specifi c parameters to
search recursively for .docx fi les, generate a macro-enabled
version of them and delete the original ones afterwards
(Figure 48).

SET – PowerShell attack vectors
The popular tool SET (Social Engineering Toolkit) [20]
includes some interesting PowerShell modules to be used in
the attack/post attack stages (Figure 49).

The PowerShell attack vectors include a comprehensive set of
convenient modules to inject encoded commands which are
able to bypass the Windows execution policy in place, execute
a reverse or bind shells, furthermore allowing the attacker to
dump the SAM database if so desired (Figure 50).

HUNTING THE EVIL, A FORENSICS
APPROACH
The use of PowerShell as hacking tool presents several
challenges for digital forensics investigators since it is a

legitimate and essential component of Windows systems, and
it is very diffi cult at fi rst sight to differentiate legitimate
activities from those that are potentially malicious.

However, common attack patterns performed through
PowerShell – such as reconnaissance, establishing
persistence, lateral movement, remote command execution
and fi le transfer, make it possible to track evidence left behind
during a compromise.

When an attacker aims at an individual target, his fi rst priority
will be to elevate the privileges obtained so as to benefi t from
certain administrative PowerShell features, such as:

• Execution of remote commands.

• The ability to execute malicious code in memory.

• The ability to evade anti-virus and intrusion prevention
systems.

• Full access to WMI and the .NET Framework base class
library.

It is important to identify the key sources of information such
as network traffi c, network connections, suspicious
modifi cations to particular Windows registry keys and of
course, the Windows event log, being on guard for distinct
indicators that may suggest that a malicious activity has taken
place.

Figure 48: An attacker can use Nishang to conduct a client-side attack by adopting the specifi c parameters to search recursively
for .docx fi les, generating a macro-enabled version of them and deleting the original ones.

Figure 49: The popular SET tool includes some interesting
PowerShell modules to be used in the attack/postattack

stages.

Figure 50: The PowerShell attack vectors include a
comprehensive set of convenient modules to inject encoded

commands.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

120 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

An example could be to monitor the security events related to
the execution of a console or PowerShell interpreter:

• Event ID 4688 (‘A new process has been created’)

Or security events that indicate a change in the confi guration
of Windows Remote Management Service:

• Event ID 7040 ‘The start type of the Windows Remote
Management (WS-Management) service was changed
from [disabled / demand start] to auto start.’

• Event ID 10148 (‘The WinRM service is listening for
WS-Management requests’).

INCIDENT RESPONSE, FORENSICS AND
MALWARE ANALYSIS
In the same way as PowerShell can be used for malicious
purposes, we can also achieve excellent results when it is
used for performing forensic investigations or dissecting
malware specimens. Unlike the aforementioned hacking tools
which are widely accessible, PowerShell-based forensic
analysis utilities and frameworks are scarce but promising in
regards of features and applicability in our everyday jobs.

Kansa: PowerShell-based incident response
framework
Kansa [21] is an incident response PowerShell tool developed
by Dave Hull to automate acquisition of data via local or
remotely executed scripts (Figure 51).

The data collection process can be customized to get specifi c
information and later converted into queryable formats such
as CSV, TSV or XML (Figure 52).

After fi nishing with the data collection stage, Kansa could be
used in conjunction with a log parser tool to create SQL-like
queries, analysing and dissecting the obtained information.

A straightforward example is the output of the Get-Netstat.ps1
script running locally [22] (Figure 53).

KEEPING AN EYE ON MALWARE

PowershellArsenal
PowerShellArsenal [23], developed by Matthew Graeber, is a
PowerShell module oriented to .NET reverse engineering and
malware analysis. Being previously just a standalone module
for PowerSploit, it has now become a separate tool in its own
right. The collection of modules offered have capabilities to
perform memory analysis, parsing a wide array of fi le formats

Figure 51: Kansa, an incident response PowerShell tool developed to automate acquisition of data via local or remotely executed
scripts.

Figure 52: The data can later be converted into queryable formats such as CSV, TSV or XML.

Figure 53: Output of the Get-Netstat.ps1 script running
locally.

Figure 54: Image from: Get-Logparser.ps1 shows differences
between DLL hashes.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

121VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

and getting information about the system. The tools at one’s
disposal are categorized as disassembly, malware analysis,
memory tools, parsers, Windows internals and miscellaneous.

POWERSHELL ANTI-FORENSICS
By nature, PowerShell also has features which can be used in
an anti-forensic approach: an attacker could simply manipulate
the timestamp of a fi le in order to make an investigation a time-
consuming process, delaying the on-going process. For
example, it’s pretty easy to modify the MACe attributes of a
fi le to avoid the identifi cation of important dates related to its
creation or modifi cation (Figure 55). In a similar way of the
timestamp tool, theses type of anti-forensic attempts can make
our lives as investigators a little more diffi cult when it comes to
fi nding the true meaning of a set of events during our research.

Steganographic commands

Another peculiar form in which an attacker can avoid
detection is merely by using steganography to invoke
PowerShell commands. A proof of concept of how this is
possible was published by J. Wolfgang Goerlich [24],
demonstrating how an attacker could invoke commands
contained inside an image from a website.

MULTI-PLATFORM SOFTWARE, SIMPLICITY
IS THE NAME OF THE NEW GAME
Some companies are betting on the development of
applications that can be executed in different environments
and platforms, even the nascent but promising market of
mobile phones. This phenomenon was previously observed
with Java and only recently with Microsoft’s .NET. When the
company unveiled its fl agship code editor Visual Studio Code
for Windows, Mac and Linux, they opened a world of
possibilities for creating software based on a sort of
open-source .NET framework.

There have been some previous initiatives in this area, both
open source and commercial, seeking the same goal. We will
mention some of the current available options in the following
subsections.

Mono
As mentioned before, Mono was the fi rst open-source
implementation for the .NET Framework hoping to aid the
development of cross-platform applications. This project is
sponsored by Xamarin and it can be installed on Mac OS X,
Linux and Windows.

Figure 56: Mono.

Mono-developed projects can be ported from one platform to
another using MoMA (Mono Migration Analyzer) which, like

many other automated tools, doesn’t work perfectly, but gives
programmers (both legitimate and malicious) a productivity
boost in their malicious application lifecycle efforts.

Figure 57: Mono-developed projects can be ported from one
platform to another using MoMA (Mono Migration Analyzer).

Xamarin

Xamarin is a development platform with the goal of creating
applications that share an analog code base across different
platforms, all using Microsoft’s C# programming language.

Figure 58: Xamarin.

With Xamarin, applications written entirely in C# can share the
same code on iOS, Android, Windows and even Mac OS X.

Visual Studio Code
Visual Studio Code is the Microsoft development tool that
works in Windows, Mac OS X or Linux.

Figure 55: It’s pretty easy to modify the MACe attributes of a fi le to avoid the identifi cation of important dates related to its
creation or modifi cation.

Figure 59: Developers can use the same editor to create cloud
and web cross-platform applications using different languages.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

122 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Developers can use the same editor to create cloud and web
cross-platform applications using different languages.

THE RISE OF .NET AND MULTI-PLATFORM
MALWARE
With the emergence of new programming trends and
technologies, new inherent risks also appear inadvertently. As
a result of this, application portability has also increased the
number of pieces of malware that run on multiple platforms.
Malware developers and hackers always search for new ways
to take advantage of current technologies.

As an example, in recent years we have seen a very large
amount of malware developed in Java, the reason is pretty
simple: the potential to develop a single sample of malware
that can run in any environment is quite attractive.

In 2014, Kaspersky researchers presented an APT called
‘Machete’. This APT mainly affected countries in Latin
America using a Java applet as web infection vector. This
malicious code could run on Linux, OS X and Windows in x86
or x64 architectures [25] (Figure 60).

In 2012, F-Secure reported a multi-platform Java applet
backdoor targeting the Colombian transport website
(Figure 61). Combining social engineering techniques with a
malicious applet, users would get a message box prompt asking
them to download and install a missing component in order to
use the website correctly. Victims running on Windows, Linux,
or OS X systems were at risk, showing that one malware to rule
all platforms is the cybercriminal’s dream [26].

Interestingly, in both cases the attackers seem to have used
SET to generate the malicious applet.

As mentioned before, there is evidence that on occasions the
attackers are relying on code or components generated by
offensive security frameworks.

Figure 60: The ‘Machete’ APT used a Java applet as web infection vector. This malicious code could run on Linux, OS X and
Windows in x86 or x64 architectures.

Figure 61: In 2012, F-Secure reported a multi-platform Java
applet backdoor targeting the Colombian transport website.

Figure 62: The attackers seem to have used SET to generate
the malicious applet.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

123VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

POWERSHELL DESIRED STATE
CONFIGURATION
According to Microsoft TechNet [27], DSC is a management
platform built as an extension for Windows PowerShell that
enables the deployment and management of confi guration
data for software services in addition to providing support for
managing the environment in which these services run.

DSC provides a set of Windows PowerShell language
extensions, new Windows PowerShell cmdlets, and resources
that you can use declaratively to specify how you want your
software environment to be confi gured. It also provides a
means to maintain and manage existing confi gurations.

DSC can be used with built-in DSC resources to confi gure
and manage computers in an automated way, enabling or
disabling server roles and features; managing registry
settings, environment variables, fi les and directories; starting,
stopping, and managing processes and services; managing
groups and user accounts; or deploying new software.

POWERSHELL DSC TAKES ON LINUX
Microsoft’s state-of-the-art vision aims to present the
company as more open-source friendly, which has been
refl ected in its decision to provide source code for several
.NET Framework components and the emergence of new
products such as PowerShell DSC for Linux [28].

PowerShell DSC for Linux uses the open-source Open
Management Infrastructure (OMI) as a Common Information
Model. Some of the main features in this initial release
include support for the following Linux server operating
systems: CentOS, Debian GNU/Linux, Oracle Linux, Red Hat
Enterprise Linux, SUSE Linux Enterprise Server and Ubuntu
Server.

In the initial release, the available resources to confi gure
Linux computers are as follows.

• nxFile – manages fi les and directory state.

• nxScript – runs script blocks on target nodes.

• nxUser – manages Linux users.

• nxGroup – manages Linux groups.

• nxService – manages Linux services (System-V, Upstart,
SystemD).

It is worth noting in this case the capacity to push confi guration
fi les to the Linux systems from a potentially compromised
Windows host, allowing the possibility of moving laterally from
one platform to another in the post-attack stage.

CONCLUSION, BECOME ONE WITH THE
TAO
‘You must be shapeless, formless, like water. When you pour
water in a cup, it becomes the cup. When you pour water in a
bottle, it becomes the bottle. When you pour water in a teapot,
it becomes the teapot. Water can drip and it can crash.
Become like water my friend.’ - Bruce Lee

The number of malware samples created either in any
CTS-compliant .NET language or PowerShell is increasing,
and while it’s currently being used solely to target Windows
systems, we could soon be witnesses of a reality where a
cross-platform infection is not just an academic proof-of-
concept but a possible and dangerous threat. With the timely

release of the source code for core components of .NET,
alternative frameworks such as the Mono Project could easily
be providing an extensively cross-platform means to execute
.NET applications. Even in the burgeoning .NET for mobile
ecosystem, an interesting malicious sample was recently
spotted in the wild. Supported by the Android version of the
Mono framework, it shows that the bad guys never stop
testing new fertile grounds for business opportunities.

Targeted malicious campaigns and advanced persistent threats
are being announced non-stop nowadays, and with the ease
provided by high-level programming languages such as C#
and VB .NET, the coordination between a large group of
developers focused on compromising a specifi c set of targets
could reap the benefi ts of software engineering practices.
Even if a persistent threat needs an ‘advanced’ component in
order to be considered as such, the defi nition might become
more fl exible considering that not only one technology would
be used in order to compromise a desired mark, making the
combination of high-level programming languages, scripting,
and any other available means a recipe for true malware
development modularization. From code versioning directly
available in the developer’s IDE to continuous build
automation, the organized cybercrime industry can give a
whole new defi nition to the phrase ‘malware as a service’.

When it comes to defending against such attacks we will need
to adapt not only our tools and skills, but also our behaviour
as system administrators and, why not, as end-users. The
chaos unleashed by ransomware is not reserved just for .NET
malware, exhibiting that even with all the defensive
technologies in the world, users and particularly user
education when it comes to current threats are paramount in
combating cybercrime.

As security researchers and malware analysts, the extensive
amount of source code available from the analysis of
in-the-wild malware samples and ‘hacking’ tools will allow us
to get a glimpse of the previously hidden internals of the
malware world, one that was purely written in assembly and
is now becoming available for the entire community to learn
from. With each new malicious sample representing a
challenge in itself, a common set of characteristics arise
between them all, shaping our job into a puzzle-solving
reality where we abstract from any technology used in the
conception of malware until we are ready to act, analyse and
defend. As the poet, novelist, and natural philosopher Johann
Wolfgang von Goethe expressed, ‘Knowing is not enough; we
must apply. Willing is not enough; we must do.’

REFERENCES
[1] Mono Project, open source .NET implementation.

https://goo.gl/lVzBRU.

[2] Introduction to the C# Language and the .NET
Framework. MSDN. https://goo.gl/AlHPth.

[3] CLR Executables. eTutorials.org. https://goo.gl/
Ez3llC.

[4] Pontiroli, S. A nightmare on malware street.
Securelist.com. https://goo.gl/vxegrJ.

[5] Rijndael Class. MSDN. https://goo.gl/Ul1ffJ.

[6] van der Wiel, J.; Pontiroli, S. Challenging CoinVault
– it’s time to free those fi les. Securelist.com.
https://goo.gl/RmXjzN.

THE TAO OF .NET AND POWERSHELL MALWARE ANALYSIS PONTIROLI & MARTINEZ

124 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

[7] Alyshin, V. A fl awed ransomware encryptor.
Securelist.com. http://goo.gl/j4M9F8.

[8] Using the Get-ExecutionPolicy Cmdlet. MSDN.
https://goo.gl/QuCPt5.

[9] 15 Ways to Bypass the PowerShell Execution Policy.
The NetSPI Blog. https://goo.gl/m0n3mT

[10] HTML Application. Wikipedia.
https://goo.gl/cgEcaa.

[11] System.Refl ection Namespace. MSDN. https://goo.
gl/EtRDjU.

[12] 0xd4d/de4dot. GitHub. https://goo.gl/OoouZj.

[13] Mono.Cecil. Mono-Project. https://goo.gl/RX9yOi.

[14] Gendarme. Mono-Project. https://goo.gl/kUc8hx.

[15] Pontiroli, S. Garfi eld True, or The Story Behind
Syrian Malware, .NET Trojans and Social
Engineering. Securelist.com, https://goo.gl/cwg9Ks.

[16] The Syrian Malware House of Cards. Published by
GReAT on Securelist.com. https://goo.gl/nSOUdd.

[17] Powersploit. https://github.com/mattifestation/
PowerSploit.

[18] Veil Framework. https://github.com/Veil-
Framework/.

[19] Nishang. https://github.com/samratashok/nishang.

[20] Social Engineering Toolkit. https://github.com/
trustedsec/social-engineer-toolkit.

[21] Kansa. https://github.com/davehull/Kansa/.

[22] Trustedsignal Blog and images. http://trustedsignal.
blogspot.mx/. Get-Netstat.ps1 Image.
http://www.powershellmagazine.com/2014/07/18/
kansa-a-powershell-based-incident-response-
framework/.

[23] PowershellArsenal. https://github.com/mattifestation/
PowerShellArsenal.

[24] WebpageSeganography. https://github.com/
SimWitty/Incog/blob/master/Incog/PowerShell/
Commands/GetIncogImageCommand.cs.

[25] ‘El machete’, Web Infection. Securelist.
https://securelist.com/blog/research/66108/el-
machete/.

[26] Multi-platform Backdoor Lurks in Colombian
Transport Site. F-Secure. https://www.f-secure.com/
weblog/archives/00002397.html.

[27] Windows PowerShell Desired State Confi guration
Overview. https://technet.Microsoft.com/en-us/
library/dn249912.aspx.

[28] Announcing Windows PowerShell Desired State
Confi guration for Linux. http://blogs.msdn.com/b/
powershell/archive/2014/05/19/announcing-
Windows-powershell-desired-state-confi guration-for-
Linux.aspx.

