
BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

270 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

BUILDING A MALWARE LAB IN
THE AGE OF BIG DATA

Vanja Svajcer
HP, Croatia

Email vanja.svajcer@hp.com

ABSTRACT
The majority of established industry malware research labs
have been built organically over the course of years – even, in
the case of many founding members of the anti-virus fi eld,
over decades.

A lab usually started as a simple virus repository – a
physically isolated space in which samples were stored in a
secure fashion so that they could only be accessed, analysed
and tested by skilled and authorized researchers. Over time,
sample-collection systems such as honeypots, spam traps and
web crawlers were added, along with systems for sharing
samples between trusted vendors.

Eventually, these systems, together with the increase in
activity by malware writers, raised sample volumes to a point
where human researchers could not process all samples
manually. This point marked the start of the age of automated
analysis.

Soon, though, existing automated analysis systems were
inundated with ever-increasing traffi c volumes. The need for
clustering, correlation and automated classifi cation became
clear. All this organic growth caused malware labs to become
extremely complex, with systems that were interdependent and
tied to the existing technology used by each company’s
products.

Recently, we have seen an increase in the number of
newcomers to the fi eld of malware research, who each bring
their own ideas as to how malware problems should be
tackled. These newcomers include incident response
companies as well as the emergency response teams of large
companies and government organizations, and they all need
their own labs.

Unfortunately, it is not always clear how to successfully
evaluate available options and start building an integrated
environment for threat collection, analysis, correlation, and
incident tracking and management. There is a clear need for a
process that can be followed to build a malware research lab
from scratch.

Our paper will propose a simple process for building a fully
functional malware research lab in a relatively short time. It
will provide criteria for evaluating existing systems in each of
the mandatory areas of a fully functional malware lab:
collection, analysis, classifi cation, protection, testing, sharing
and integration.

INTRODUCTION
Most experienced malware researchers started their careers in
an established anti-malware laboratory owned by one of the
anti-virus companies. These are often referred to as ‘virus
labs’ or simply ‘labs’ (two terms used interchangeably through
the rest of this paper). A virus lab’s processes and procedures

are governed by a strict set of rules, which prescribe secure
and safe practices for handling potentially malicious samples,
from their import into the secure environment to their
processing and storage.

It has been common practice to keep virus labs physically
separated from the rest of their companies’ production
systems, with physical access granted only to researchers and
a small group of trusted individuals. This approach guaranteed
that none of the malicious fi les ever left the safe confi nes of
the lab before being rendered unusable for the external
environment. This was usually accomplished by encrypting
samples with PGP, which remained one of the best industry
sample handling practices until today.

Working in an anti-malware vendor’s virus lab entails
following additional rules to ensure the best possible service
for users of anti-malware products. Virus labs are on the
critical path to delivering timely and effective protection
against malware attacks. With growing volumes of malware
and increased user requirements it is not accidental that there
are rigorous controls at every stage of the malware processing
cycle, all the way from the collection of malware samples to
the delivery of malware protection data.

Today, however, a growing number of smaller teams require
virus labs and systems for manual and automated malware
processing. The requirements of those teams are somewhat
different from the requirements of the labs used by established
anti-malware vendors. These differences stem primarily from
the fact that these smaller entities do not have to collect,
process and store every single malware sample, and are not
tied to any particular technology or protection technique.
Examples of such entities include CERT and CIRT teams,
threat intelligence teams, malware SOC analysts, malware
research and response teams in large companies, and
complementary detection technology teams.

This paper provides an introduction to virus lab components,
design, and development principles for teams that have a clear
need for implementing a virus lab and do not yet have a fully
functional lab. For readers with high-throughput virus labs,
such as ones owned by established anti-malware vendors, the
paper may also help as a reference to compare their own
facilities with the proposed design and development
guidelines.

The emphasis of the paper is on describing components and
development principles driven by the so-called new style of IT,
which emphasizes the mobility of users, data and computing
resources. With an ever-increasing volume of malware samples
and malware metadata, and shrinking budgets available to
malware research teams processing the latest threats, aspiring
lab builders have to tread a narrow path to achieve optimum
functionality given their time and resource constraints.

The paper concludes with recommendations and predictions
for the future of virus labs and a catalogue of free, open
source, and selected commercial components worth
considering when building a virus lab. Many of these are used
as de facto standards by the malware research community.

MALWARE LAB DESIGN: HISTORY
The fi rst dedicated virus labs were built [1] in the early 1990s
as an answer to increasing requirements for safe and secure
storage of virus samples. There were only a handful of known
viruses then, and the discovery of new strains was an

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

271VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

infrequent occasion. Computer viruses of the early nineties
were written for DOS and had no network functionality,
which meant that the main requirements for a virus lab were
physical separation and secure storage of media containing
virus samples.

In addition to physical isolation and controlled access, there
was a need for separation between systems for static and
dynamic analysis. Each researcher usually had two physical
machines – one used for static analysis and signature
development and the other for replication and debugging. The
shared virus lab’s systems were used only for secure storage
of samples.

The growth in number of newly discovered virus samples in
the mid-nineties, although tiny by today’s standard (just over
4,000 virus variants were known in 1995 [2]), was a major
driver for the adoption of new analysis techniques. In 1993,
researchers from IBM [3] fi rst drew parallels between a
human immune system infected by a biological disease and a
computer system infected by a computer virus, which
prompted work in the areas of computer immunization and
development of automated analysis systems.

The authors of the seminal Digital Immune System (DIS) [4]
devised a fully automated system, which was put into use
towards the end of the decade. DIS was a result of truly
ground breaking work. It had signifi cant consequences both
for the future development of virus labs as well as for systems
built around the virus lab’s core deliverables.

By the early years of the fi rst decade of the 21st century, it
became clear that no functioning virus lab would be able to
fulfi l its main task of processing all newly discovered
malicious samples without the help of automated analysis
systems. Building an automated analysis system became a
strategic goal for any virus lab, and this is when the fi rst
generation of automated analysis systems saw widespread
adoption.

Around the same time, desktop system virtualization products
started maturing. These left a deep mark on the development
of lab systems as well as on the overall computing and
networking model in most medium to large enterprises.
Today, it is impossible to think about manual malware
analysis, let alone automated malware analysis, without the
incorporation of virtualization and system virtual machines.

Soon after the fi rst generation of automated analysis systems
were built, usually based on physical machines and automated
re-imaging processes, it was clear that those systems would
not scale with the volume of malware without some heavy
investments in hardware. The advantages of virtualization
were obvious, with its horizontal scaling capabilities,
seamless upgrade paths, powerful snapshotting, and
development SDKs. Together with the increase in scalability
and the ability to process a large volume of samples, the
industry generated an abundance of malware metadata that
lent itself to clustering and other machine-learning
algorithms, which further drove requirements for RAM and
CPU cycles and storage capacity.

The computing requirements of a fully functional lab started
to grow in many directions, the most signifi cant of those
being:

• Machine learning, clustering and classifi cation

• Data analytics and search

• Metadata database systems

• Sample acquisition and sharing systems

• System integration and workfl ow systems

However, with a constant need to process all incoming
samples (a process which often feels like fi re-fi ghting), lab
systems have grown organically rather than systematically,
with strong connections to the underlying proprietary
protection technology.

The end of the fi rst and beginning of the second decade of the
21st century brought a myriad of complementary protection,
detection and remediation techniques to the anti-malware
industry, successful largely due to the perception of failure of
technologies used by traditional anti-virus vendors.

Many medium and large enterprises became concerned with
targeted attacks conducted by organized criminal groups and
other sophisticated actors. The term Advanced Persistent
Threat (APT), carrying a different meaning depending on the
geography of the target and the company that addresses
attacks, was fi rst introduced in 2006 [5] and has since served
as a bogeyman used by marketing departments. However, the
term was later adopted by security offi cers in many
companies – despite being laughed off as marketing
gobbledygook by many malware researchers working for
traditional anti-virus companies.

Large enterprises usually have their own security teams
working in Security Operation Centres (SOCs), concerned
with protecting their own estates. Since malicious software is
used as the main delivery method in the majority of
successful attacks, it did not take long for security analysts to
specialize in malware analysis, which also meant that having
their own virus labs became a major requirement. This paper
attempts to help those teams when making decisions and
building their own virus labs to address the requirements of
their organizations.

WHAT KIND OF LAB TO BUILD?

Virus lab requirements
The requirements of a virus lab largely depend on the role of
the team that owns it. Only specialized vendors with hundreds
of researchers and software engineers will have a need for a
high-throughput lab designed to handle hundreds of
thousands of samples on a daily basis. Most internal malware
research teams will not need to manually process more than a
handful of samples daily and up to a few thousand unique
suspicious fi les using the automated analysis systems,
depending on their need and ability to acquire new samples.

The required throughput, the skill of the analyst, and the type
of output will largely drive requirements in the following areas:

• Storage capacity

• Networking bandwidth

• CPU capacity

• Logical components of the virus lab

• Privacy and security of samples

A complete high-throughput virus lab

Judging by the latest data obtained from AV-TEST.org [6], it
is clear that the growing volume of newly discovered

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

272 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

malware samples requires large capacities in all of the
aforementioned categories for any lab wishing to process all
known samples. The number of daily discovered samples has
been growing and reached over 400,000 in 2014 [6]. In 2015,
this number has stabilized, but it is diffi cult to tell whether the
reason is stagnation in development of new malware or the
industry’s lack of capacity to discover even larger numbers of
new samples.

Assuming over 400,000 daily samples with an average
sample size of 500KB (and growing), the newly discovered
samples require a daily storage capacity of 200GB (linearly
extrapolated to 73TB/year if all samples are preserved) and
network bandwidth of at least 20Mbps. That is assuming the
uniform distribution of incoming malware samples
throughout the day and no reserve capacity for when the
number of daily discovered samples exceeds the average size.
The peak bandwidth may well be in the range of hundreds of
megabits per second. And that is only for handling the
incoming samples, never mind all the other requirements of a
high-throughput lab, which include sample sharing, data
publishing and collection of telemetry.

High-throughput virus labs have grown organically over the
course of many years, and designing one to be built in a
timeframe of just a few months is out of the scope of this
paper. We will concentrate in this paper on the lab
requirements for smaller teams.

Optimal lab for smaller teams

To begin our design process, we must defi ne the requirements
and necessary components essential for a modern virus lab.

We will assume the throughput of the lab. No matter how
small the throughput seems to be for anti-malware vendors,
the virus lab we will design will not have an automated
throughput higher than 10,000 samples a day at the
beginning.

We will assume a team size of fi ve researchers, which means
they will be able to analyse manually in detail only a handful
of malware samples every week.

We will defi ne detailed analysis as the process of automated
and manual analysis, which strives to extract all potential
indicators of compromise with the intention of hunting the
threat and its new variants in the organization’s network. This
may include deciphering the malware confi guration and fi nding
and extracting potential domain generation algorithms (DGAs)
to prevent malware communication using egress fi ltering. We

will also assume that the team will be able to create detection
data intended to identify malicious samples for internal use
before anti-virus protection signatures are in place.

In some cases, when the researchers are dealing with an attack
on a high-profi le target, anti-virus signatures will never be
deployed, as the details of the attack tools, techniques and
procedures (TTPs) will be known only internally (that is, inside
the target) and not shared with any other entity; this is why the
ability to create, test and deploy internal signatures is required.

HIGH-LEVEL LOGICAL DESIGN

Let us start our design with a very high-level overview of
various classes of systems and then drill down into every
functional group, its purpose, and its subcomponents.
Figure 1 shows the high-level functional units of a malware
research and processing lab.

Acquisition

If we think of a virus lab as a black box, the inputs required
for any type of activity are malware samples. This remains
true whether we are only looking into research on individual
malware-related incidents, or undertaking classifi cation and
clustering of large malware sets consisting of thousands of
malicious samples a day. The functional unit looking for and
collecting samples is commonly known as Acquisition.

It is a fundamental imperative to be able to acquire malware
samples as soon as they have been spotted in the wild. Reaction
time is critical when dealing with incidents. Newly discovered
malware could have been used by the attacker to get a foothold
inside the target’s environment, and it is important to analyse it
quickly to gain knowledge and decide on the appropriate
course of action when addressing the attack.

Let us consider the individual components of lab sample
acquisition systems, as shown in Figure 2.

Building trust and participating in industry cooperation
largely consists of consuming and producing various feeds
including malware sample sets (a.k.a. collections) as well as
metadata, domains, URLs, and other indicators of
compromise (IOCs). This is why it is important to maintain
systems that both consume samples and organize and publish
sample sets to be consumed by sharing partners.

However, one should not only rely solely on third-party
sources of data. Whilst a lot of cooperation is based on
sharing, re-sharing samples is somewhat ethically

AnalysisAcquistion

Storage

Partner interfaces
Feed producers and

consumers
End user’s systems Workflow Auxiliary

Figure 1: High-level functional units of a malware research and processing lab.

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

273VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

unacceptable. A fully functional lab has to be able to collect
its own samples, especially if its target is discovery of new,
previously unknown attacks.

For that, a number of acquisition systems are required.
However, the major components of acquisitions consist of
Internet crawlers (input suspicious URLs, output analysis of
URL and samples acquired by visiting the suspicious URLs),
honeypots (server and client, low and medium interaction),
spam traps (mailboxes used for a special purpose, where all
incoming email messages are considered either malicious or
spam), and sample upload systems that can be used by
internal and third-party consumers of the virus lab’s services.

In addition to its own collection, a virus lab may decide to use
a third party as a source of samples. One such source is
VirusTotal.com, which holds an exhaustive archive of
samples and excellent sample-hunting features.

Analysis
There are currently several unsolved problems in malware
research, such as the ability to unpack all custom packers to

remove all layers of obfuscation. This is why constant
development of analysis systems and analysis techniques is
required to keep pace with the techniques used by malware
writers to evade analysis, detection and successful malware
classifi cation. Nevertheless, certain types of systems are
required from the beginning.

The fi rst group of analysis systems are automated analysis
systems (Figure 3). They are constantly being developed, and
a dedicated team of developers is required to maintain a high
analysis success rate. However, there are some free and
commercial third-party solutions for automated analysis
systems geared towards implementation in virus labs.

Cuckoo Sandbox, an open-source dynamic automated analysis
system, is a popular choice often used as a basis for the
development of in-house dynamic automated analysis
capabilities. The disadvantage of Cuckoo’s popularity is that
many malware samples do their best to detect its sandboxing
environment and avoid displaying any malicious functionality.

The Workfl ow component is perhaps the most important
component of the lab. It is tasked with driving the workfl ow

Other sources

Sample exchange

Spamtraps URI exchange
consumers

CrawlersPartner feeds

Honeypots

Product
vendors

Sample acquistion

Figure 2: Sample acquisition components.

Static analysis
systemDynamic analysisAnalytics and

mining

Automated
Classification and

clustering

ScannersURL analysis

Sample analysis

Other (Registrar
data

IP analysis
Domain/URL

analysis)

Analysis systems

Workflow

Figure 3: Components of internal automated analysis systems.

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

274 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

of sample analysis and coordination of analysis systems as
well as collection of results. Typically, it is built on top of a
message queuing system integrated with a decision engine to
synchronize and dispatch tasks that emulate the manual
analysis process. The workfl ow system acts as a glue between
all independent analysis systems. This allows for scaling and
synchronization to process almost any required number of
daily samples while allowing researchers to use individual
systems so that their analysis jobs are run before any other
automatically scheduled tasks.

Two last pieces of the analysis systems puzzle, which became
important to malware research relatively recently, are
automated classifi cation/clustering and data analytic systems.
Processing large numbers of samples produces huge amounts
of metadata, which remains just data unless classifi cation and
analytics systems (together with malware researchers)
produce meaningful information to understand and address
threats. Analytics and mining systems are required to fi nd
similar samples, classify them into clusters and extract
previously unknown facts used for protecting the organization
from similar attacks. Good clustering allows the virus lab to
quickly classify incoming samples simply on the basis of the
results of automated analyses.

End-user systems

Although it is possible for researchers to access individual
systems to retrieve data, create new processing jobs and
analyse samples, the real power lies in consolidating and
correlating available data in a single UI accessible to team
members and external users on a need-to-know basis. This is
what we refer to when we talk about end-user systems
(Figure 4).

The Research and Intelligence portal is the main component
of end-user systems. Its role is to consolidate information
about the overall performance of the virus lab in a dashboard,
allowing users to drill down and investigate information
about individual samples or a set of samples linked by a
single security incident.

The Research and Intelligence portal also allows researchers
to reach a farm of VMs suited for individual research tasks,
based on the sample fi le type and the appropriate analysis
environment.

Another group of end-users are those external to the team
and the company. In their case, the virus lab’s output consists
of malware collections/samples for sharing as well as
near-real-time information about new outbreaks and incidents

VM research farm
Workstations

Publishing
Samples

Meta data
URLs

Dashboard data

Research and
intelligence

portal

Telemetry

End user’s systems

Figure 4: Various end-user systems.

Anonymisation

Systems monitoring
and real time data

alerting and
messaging

Authentication and
access rights

WikiTools repository

Source control Lab requests/
ticketing

Demo area

Auxilliary systems

Figure 5: Various important auxiliary viruslab systems.

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

275VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

and the most commonly encountered malware families. The
export format should use one of the industry standards such
as STIX, MAEC or OpenIOC.

Auxiliary systems
The last category consists of systems important to the
functioning of the lab that simply do not fi t directly into any
of the previous categories (Figure 5).

Systems in this group provide various functionalities, such as
repositories for tools or source code control systems used by
team members for versioning of YARA [7] rules and of
various internally developed analysis utilities.

Auxiliary systems also include systems for controlling
authentication and access rights, systems for monitoring and
managing other labs’ systems, a ticketing system for team

requests, and an external-facing anonymizing system that
hides the lab’s identity from research targets.

Storage and databases

Underlying all these systems is a requirement for massive
amounts of hard drive and database storage for storing
samples and metadata; storing telemetry data; importing,
exporting and storing various partner samples collections; and
storage of analysis results.

Figure 6 shows the main storage and database systems that
support the lab’s processing systems.

It is important for all storage systems to have the ability to be
distributed and scalable with high availability, as they have to
be used by all other lab systems and end-users.

Sample storage
and classification

Metadata
Domains

URLs

URL storage and
status

Dynamic results

Static results

Classification rules

Workflow rulesScan results

Figure 6: Major storage and database systems.

Sample storage

Static analysis
system Dynamic analysis

Sample acquisition

Sample exchange

Workflow
executive

VM research farm

Publishing
Samples

Meta data
URLs

Dashboard data

Spamtraps URI exchange
consumers

Crawlers

Demo area

Metadata
Domains

URLs

Analytics and
miningAutomated

Classification and
clustering

URL storage and
statusPartner feeds

Anonymisation

Scanners
Research and
intelligence

portal

Honeypots

Telemetry

Products

Dynamic results Static results

Classification rules

Workflow rules

Monitoring and real
time dana alerting

and messaging

Authentication and
access rights Wiki

Tools repository Source control

Ticketing Scan results

Figure 7: Complexity of the overall set of systems in a virus lab.

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

276 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

The systems in combination

Overall, a fully functional virus lab is a complex system,
ideally consisting of loosely coupled systems working
together to collect, analyse and research new threats; process
existing threats; and convert available data into security
intelligence used by internal and external users and systems.

Interlude: If the virus lab was a human

If we think of a virus lab as a living being, we can understand
how it has its own needs. Just as in Maslow’s hierarchy of
human needs [7], basic needs must be satisfi ed before higher-
level needs can be considered. This pyramid may serve as a
guideline to the various stages of lab development and their
priorities.

Figure 8: A malware research lab’s Maslow hierarchy of
needs.

A lab starts with individual research systems and grows to
self-actualization by choosing building blocks correctly to
reach the higher stages in the hierarchy of needs.

LAB DELIVERABLES
Activities of any production system, including a virus lab,
would be pointless without a set of deliverables. While in an
anti-virus vendor’s lab the main deliverables are detection
signatures and other data used by the company’s product, an
enterprise virus lab has the luxury of choosing its deliverable
formats, as long as they are useful and increase the security
posture of the organization and the malware research
community.

YARA rules
YARA is a tool aimed at helping malware researchers identify
and classify malware samples [8]. With YARA, descriptions
of malware families can be created based on textual or binary
patterns. Although a very simple tool with relatively limited
functionality, YARA has become a de facto standard for rapid
response malware detection in organizations and for sharing
detection information between independent malware research
teams.

The community around YARA is lively, with several YARA
rule repositories [9] and rule exchanges [10]. These
repositories can help research teams kick-start their usage of

YARA, both for the creation of rules and for the detection of
malicious activities inside their organizations.

YARA’s extensibility is very good, and a team can create
auxiliary modules to help with threat detection in their
environment. Perhaps the best known set of extension
modules is exposed through the malware hunting interface of
the VirusTotal Intelligence service [11]. This module exposes
fi le type, tags, detection names and other common searching
conditions to the YARA rules writer.

With the lack of a more powerful content description
language and content-matching utility among the free or
open-source options, YARA became by default an
indispensable tool in the malware researcher’s toolbox.

IDS signatures

Snort [12], Suricata [13] and Bro IDS [14] signatures are
other common ways of sharing actionable intelligence about
malware. When deployed in a production environment, these
systems can point to internal network segments and individual
endpoints affected by a malware attack. IDS signatures match
on packet payload contents as well as TCP/IP packet header
fi elds. They may be able to prevent download activities as
well as some C&C connection attempts, especially if the
packet content is unique to the malware family (e.g. a specifi c
bot HTTP User Agent header).

Both YARA rules and IDS signatures have an issue of trust,
especially if they are automatically generated by a threat-
intelligence sharing framework such as MISP [15]. Before
such rules are applied, they should be tested in a non-
production environment, which is not always available to a
research and response team. That is why deployment of
production-quality IDS rules written and tested by a team of
experienced IDS researchers, such as the Emerging Threat
ETOpen ruleset [16], is preferable to deploying automatically
generated rules.

Threat intelligence
The emergence of threat intelligence vendors and the
development of the threat intelligence industry were largely
driven by the lack of detailed information about existing and
newly discovered threats. The volume of newly discovered
threats and their complexity made so-called virus
encyclopedias containing detailed descriptions of individual
malware samples infeasible, or rather impossible, due to the
lack of resources needed to analyse every single malware
sample.

These encyclopedias are still maintained by traditional
anti-virus companies, but rarely contain more than just a
description of malware behaviour observed by the company’s
automated analysis systems. They now serve as landing pages
to which users are redirected when their product alerts them
to the presence of a malware family.

Today, threat intelligence is expected to be a major
deliverable of any virus lab, either in the format of manually
written or automatically generated descriptions of observed
threats.

Machine-exchangeable information
That said, the type of information usually present in malware
encyclopedias still has value, especially for larger enterprises

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

277VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

that have decided to build a strong data analytics and
correlation capability (e.g. by using an SIEM framework).

With the abundance of threat intelligence data, it became
clear that automated, machine-readable exchange formats are
required. These formats can be generated and shared between
existing threat intelligence frameworks and trusted research
partners, in a fashion similar to sample and URL exchanges
that already exist within the anti-virus industry.

Semi-structured formats

JavaScript Object Notation (JSON) is a simple, widely
adopted, semi-structured and humanly readable data format.
The format is native to several NoSQL database management
systems as well as to threat intelligence frameworks and
existing automated malware analysis systems. For example,
the Cuckoo Sandbox can easily be confi gured to export the
analysis data in JSON format for further storage, analytics,
and sharing.

Structured data exchange formats

Recently, a lot of work has been invested in defi ning several
standards, often XML-based, for describing and exchanging
information about IOCs, malware behaviour and attack
patterns.

The most popular structured-data formats supported by threat
intelligence frameworks are:

• Malware Metadata Exchange Format (MMDEF and
MMDEF-B) [17], created by the IEEE ICSG Malware
Working Group for the purpose of augmenting shared
malware samples with additional structural and
behavioural metadata.

• Trusted Automated eXchange of Indicator Information
(TAXII) [18], a MITRE standard for machine exchange
of threat indicators. The recommended format for the
indicators is STIX.

• Structured Threat Information eXpression (STIX) [19] is a
collaborative community-driven effort to defi ne and
develop a standardized language to represent structured
cyberthreat information. It strives to be fl exible, extensible,
automatable and as humanly readable as possible.

• Cyber Observable eXpression (CybOX) [20], a schema
for the specifi cation, capture, characterization and
communication of events or stateful properties
observable in the operational domain. A wide variety of
high-level cybersecurity use cases rely upon such
information, including event management/logging,
malware characterization, intrusion detection, incident
response/management, attack pattern characterization,
and so on.

• Malware Attribute Enumeration and Characterization
(MAEC) [21], a standardized language for encoding and
communicating high-fi delity information about malware
based upon attributes such as behaviours, artefacts and
attack patterns. It aims to reduce potential duplication of
malware analysis efforts by researchers and to allow for
the faster development of countermeasures by enabling
the ability to leverage responses to previously observed
malware instances.

• Common Attack Pattern Enumeration and Classifi cation
(CAPEC) [22], a dictionary and classifi cation taxonomy

of known attacks that can be used by analysts,
developers, testers and educators to advance community
understanding and enhance defences.

• Open Indicators Of Compromise (OpenIOC) [23],
designed to enable Mandiant’s products to codify
intelligence to rapidly search for potential security
breaches. Mandiant has standardized and open-sourced
the OpenIOC schema and released tools [24] and utilities
to allow machine-to-machine sharing of threat
information.

Often, there is very little to choose between various data
exchange formats, but it is worth keeping in mind that the
virus lab will likely have to be able to consume data
conforming to more than one of the above formats and to be
able to export data in at least one of them.

BEST PRACTICES FOR DEVELOPING LABS
SYSTEMS

Agile systems development principles

Agile principles as defi ned by the Manifesto for Agile
Software Development [25] can, with some modifi cations, be
applied to the development of systems.

At the INCOSE UK ASEC conference in 2012 [26], an IBM
researcher modifi ed the Agile manifesto and proposed how it
can be applied to systems engineering. Agile systems
engineering principles are designed to respond well to
changing requirements. They focus on delivering demonstrable
capability as the primary measure of progress. These principles
can easily be applied to the development of virus lab systems.

Here are the top 10 high-level Agile Systems Engineering
principles as proposed by Hazel Woodcock [26], with a few
additional virus lab-related comments:

1. The highest priority is to satisfy the customer
through early and continuous delivery of
demonstrable system capability. Having some
capability is clearly better than waiting for a fully
functional deployment of all virus lab functionality.

2. Managed change to requirements is welcome, even
late in development. Agile processes harness change
for the customer’s competitive advantage. This is
also particularly true as virus lab functionality and
system features need to adapt constantly to keep up
with the latest threats.

3. Deliver actual or modelled functionality frequently,
from a couple of weeks onwards, with a preference
for the shorter timescale. In a virus lab, the best
practice is to allow malware researchers to model
some functionality as a proof of concept. Eventually,
the development team should implement the feature
in a production environment using tried and tested
development and quality assurance methods.

4. Business people and the project team must work
together daily throughout the project. This process
happens regularly in the lab, with the business people
in that situation being the malware researchers and
experts working together with the systems
development team – in some cases being an intrinsic
part of the development team.

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

278 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

5. Build projects around motivated individuals. Give
them the environment, support what they need, and
trust them to get the job done. The fi eld of malware
research does not lack motivated individuals. If
nothing else, their eagerness has sometimes to be
managed to avoid feature drag in the development
process.

6. Use the most effi cient and effective methods of
conveying information to and within a development
team, from face-to-face discussion to social business
tools and collaborative design tools. It is well known
that the need for constant communication fl ow is
proportional to the geographical distance of the team
members. Many malware researchers work in
globally distributed teams where these requirements
are well known, but this principle should not be
forgotten.

7. Demonstrable capability is the primary measure of
progress. This is the key point for building any
system. Demonstrable capability only allows users
(researchers) to work more effi ciently, but also gives
better feedback on the existing demonstrable
working features as well as proposing new features.

8. Agile processes promote sustainable development.
The sponsors, project team and users should be able
to maintain a constant pace indefi nitely.

9. Continuous attention to technical excellence and
good design enhances agility.

10. Simplicity – the art of maximizing the amount of
work not done – is essential. Malware researchers are
not always masters of simplicity. Of course, the key
is to try to apply just the right level of complexity to
solve a problem with acceptable quality. The KISS
principle has been an old friend of both malware
researchers and system developers working on the
virus lab’s systems.

Additional guidelines

In addition to the above Agile principles, we add a few to
consider when designing a lab. They take into account the
requirement for elasticity of computing power constantly
required in the lab – moving from acquisition of samples over
static and dynamic analysis and analysis of generated data.

These additional principles were inspired by design principles
for web applications running in cloud environments [27].
These cloud applications have been designed from scratch by
keeping the advantages and disadvantages of the cloud
computing model in mind. Many of those can be applied to
the design principles of a virus lab.

1. Start simple with easy wins. The fi rst stage in the
malware research cycle is the acquisition of samples,
which makes it tempting to start building your own
network of honeypots. However, building an
intricate, geographically spread modern network of
honeypots takes time and yields limited returns. On
the other hand, reserving budget for a third-party
service such as VirusTotal will allow researchers to
dig immediately into a wealth of information without
even having to build their own storage and automated
analysis systems. For individual research, including

some trend-spotting, this may be the only thing
needed for some time. If a simple internal static
analysis framework and malware storage system is
required, the Viper [28] framework may be the best
place to start.

2. Build to scale. Once the decision to build a fully
functional lab is made, a cloud platform such as
OpenStack [29] or CloudStack [30] should be
considered to allow for horizontal scaling of
available computing resources. For example, a
Research and Intelligence portal or an automated
analysis system needs to be designed to allow for
simple addition of new resources without taking the
overall system offl ine. Each of the virus lab’s
components should be stateless and able to function
independently, as is often the case with components
of mature virus labs – although that is often simply
by chance and not by design.

3. Use auto-scaling of computing resources for
adaptable computing power. Auto-scaling allows for
programmable maximization of CPU utilization by
automatically assigning new computing instances
when and where they are required. For example, if
the daily load of samples is particularly high, it is
possible to auto-scale computing instances so that
maximum capacity is dedicated to this task, with
only a minimum going to data analytics and
clustering and vice versa. This is an important cloud
mechanism that can be applied to virus labs where
workload can vary from day to day in different
functional areas of the lab.

4. Design for failure. Traditional approaches often
equate reliability with preventing failure. Cloud-
based systems are different, so the design approach
has to be different too. In the cloud, one is dealing
with greater complexity and more interdependencies
– thus more opportunity for failure. Because of that,
virus lab services need to be designed to contain
failures and recover from them quickly.

5. Harness the power of community. Every lab should
be a good member of the malware research
community by sharing the knowledge, tools,
malware samples and threat intelligence with other
community members. By building trust between
community members, more and more knowledge
will become available to the team. This is why
implementation of a malware information sharing
framework such as Malware Information Sharing
Platform (MISP) and plugging your own systems
into it may be a good fi rst step for beginning to
contribute to the community. The implementation of
MISP may also be useful to established virus labs of
traditional anti-virus vendors looking for a better
understanding of threats encountered by the
community.

CONCLUSION AND FURTHER DIRECTIONS

A growing number of smaller teams require virus labs and
systems for malware processing. The requirements of those
teams differ from the usual requirements of traditional
anti-malware virus labs. This paper provides an introduction

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

279VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

into virus lab components and proposes design and
development principles for teams with a need for
implementation of virus lab functionality.

The implementation of a fully functional lab is a moving
target, requiring developers to quickly address changing
requirements. Agile development principles are well-suited to
the task, even for complex systems engineering such as that
required by virus labs.

If developing from scratch, designs of large-scale,
cloud-aware applications should be studied and taken into
account to provide the virus lab with a fl exible environment
that can scale and adjust to daily changes in processing
loads. Assuming the trend of increasing volumes of newly
discovered threats continues, it is likely that virus labs will
require the fl exible computing and storage environments
only available in large cloud deployments. A good design
that can fi t cloud environments without major changes is
required.

The paper provides a set of guidelines that should be followed
during the process of building a fully functional malware
research lab in a relatively short time, together with a set of
near-ready building blocks for each of the lab’s functional
areas.

Overall, building a virus lab is an extremely complex
undertaking, and the team that builds one should be prepared
for a constant development process. Continuous development
of new modules and features will be required in addition to a
signifi cant proportion of maintenance and operations tasks
necessary to keep the system performing and adapting to new
threat techniques and increasing threat volumes.

REFERENCES
[1] Computer Virus Timeline. http://www.infoplease.com/

ipa/A0872842.html.

[2] Kephart, J. O.; Sorkin, G. B.; Arnold, W. C.; Chess,
D. M.; Tesauro, G. J., White, S. R. Biologically
Inspired Defenses Against Computer Viruses.
Proceedings of IJCAI ‘95, Montreal, August 19–25,
pp.985–996, 1995.

[3] Kephart, J. O.; Chess, D. M.; White, S. R. Computers
and epidemiology. IEEE Spectrum, Volume 30, Issue
5, May, 1993.

[4] Bussa, T. The Future of Fighting Viruses: A History
and Analysis of the Digital Immune. 2002.
http://www.giac.org/paper/gsec/706/future-fi ghting-
viruses-history-analysis-digital-immune-
system/101594.

[5] Binde, B. E.; McRee, R.; O’Connor, T. J. Assessing
Outbound Traffi c to Uncover Advanced Persistent
Threat. SANS, 22 May 2011. http://www.sans.edu/
student-fi les/projects/JWP-Binde-McRee-OConnor.
pdf.

[6] AV-TEST malware statistics. http://www.av-test.org/
en/statistics/malware/.

[7] Maslow’s hierarchy of needs. http://en.wikipedia.org/
wiki/Maslow%27s_hierarchy_of_needs.

[8] YARA in a nutshell. http://plusvic.github.io/yara/.

[9] Yara Rules. http://yararules.com/.

[10] Yara signature exchange google group. Deep End
Research website. August 2012.
http://www.deependresearch.org/2012/08/yara-
signature-exchange-google-group.html.

[11] Virus Total Intelligence. https://www.virustotal.com/
intelligence/.

[12] Snort. https://www.snort.org/.

[13] Suricata. Suricata IDS. http://suricata-ids.org/.

[14] The Bro Network Security Monitor. Bro NSM.
https://www.bro.org/.

[15] Malware Information Sharing Platform. MISP.
https://github.com/MISP.

[16] ETOpen Ruleset. Emerging Threats.
http://www.emergingthreats.net/open-source/etopen-
ruleset.

[17] About the ICSG malware metadata exchange format
working group. June 2015. https://standards.ieee.org/
develop/indconn/icsg/mmdef.html.

[18] TAXII. https://taxii.mitre.org/.

[19] STIX. https://stix.mitre.org/.

[20] CybOX. https://cybox.mitre.org/.

[21] MAEC. http://maec.mitre.org/.

[22] CAPEC. http://capec.mitre.org/.

[23] OpenIOC. http://www.openioc.org/.

[24] IOC Editor. Mandiant. http://www.mandiant.com/
resources/download/ioc-editor/.

[25] Manifesto for Agile Software Development.
http://agilemanifesto.org/.

[26] Woodcock, H. The Agile Manifesto reworked for
Systems Engineering. https://www.ibm.com/
developerworks/community/blogs/07f4f478-c082-
4196-8489-e83384d85a70/entry/agile_se_
manifesto?lang=en.

[27] Open Data Center Alliance Best Practice
Architecting Cloud-Aware Applications Rev. 1.0.
http://www.opendatacenteralliance.org/docs/
architecting_cloud_aware_applications.pdf.

[28] Guarnieri, C. Time to do malware research right.
http://viper.li/.

[29] Open source software for creating private and public
clouds. Openstack. https://www.openstack.org/.

[30] Apache CloudStack Open Source Cloud Computing.
Apache. https://cloudstack.apache.org/.

[31] Test of references. http://www.company.com.

[32] Introducing JSON. http://json.org\\\\/.

APPENDIX A: CATEGORIZED LIST OF
COMPONENTS
These suggestions are offered without warranty, but with the
understanding that they are potentially suitable as a starting
point in the categories in which they’re listed. Most of them
will suit one or more purposes but may require modifi cations
to fully suit a set of user requirements.

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

280 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Sample acquisition methods and systems

Honeypots, spamtraps and crawlers
Modern Honey Network (MHN): http://threatstream.github.
io/mhn/

Maltrieve: https://github.com/krmaxwell/maltrieve

Thug client-side honeypot: https://buffer.github.io/thug/

Dionea honeypot: http://dionaea.carnivore.it/

Ragpicker crawler: https://code.google.com/p/malware-
crawler/

hpfeeds and Hpfriends [the HP in these stands for Honeypot
Project, not Hewlett-Packard!]: https://github.com/rep/hpfeeds

Maltrieve feeds crawler: https://github.com/krmaxwell/
maltrieve

Sample repositories
Virus Share: http://www.virusshare.com

VirusTotal (not free but in widespread use):
http://www.virustotal.com

Malware Share: http://www.malshare.com

Malware Zoo: http://zoo.mlw.re

Open Malware: http://www.openmalware.org

ViruSign: http://www.virusign.com

Services and feeds
Combine: https://github.com/mlsecproject/combine

Criticalstack: https://intel.criticalstack.com/

Malicious URLs Tracking and Exchange MUTE:
http://mutegroup.org/

Project Honeypot (spam traps):
https://www.projecthoneypot.org/

Abusix Spamfeedme (spamtraps):
https://spamfeedme.abusix.com/

Shadowserver feeds: https://www.shadowserver.org/wiki/
pmwiki.php/Services/Downloads

Bambenekconsulting: http://osint.bambenekconsulting.com/
feeds/

Malware Patrol: https://www.malwarepatrol.net/lists.shtml

Anonymizing services
Tor: https://www.torproject.org/

OpenVPN: https://openvpn.net/

Privoxy: http://www.privoxy.org/

Storage and organization
Viper malware storage and static analysis framework:
http://viper.li

Aleph Malware Analysis pipeline system: https://github.com/
trendmicro/aleph

Automated analysis

Multi scanner frameworks
Opswat Metascan (commercial): https://www.opswat.com/
products/metascan

IRMA analysis platform for suspicious fi les:
http://irma.quarkslab.com/index.html

Malice, a framework for building a VirusTotal-like system:
https://github.com/blacktop/malice

MITRE’s Multiscanner: https://github.com/MITRECND/
multiscanner

Multiav scanner wrapper: https://github.com/joxeankoret/
multiav

Static analysis frameworks

Mastiff framework: https://git.korelogic.com/mastiff.git/

Viper: http://viper.li

Machete framework (in development at the time of writing,
no URL yet)

Dynamic analysis systems

Cuckoo Sandbox: http://www.cuckoosandbox.org/

Cuckoo Accuvant fork: https://github.com/brad-accuvant/
cuckoo-modifi ed

Cuckoo Mitre fork: https://github.com/MITRECND/cuckoo

Cuckoo KillerInstinc (better offi ce handling) fork:
https://github.com/KillerInstinct/cuckoo-modifi ed

Killerinstinct Cuckoo modules repository:
https://github.com/KillerInstinct/community

VMCloak hiding Cuckoo analysis VM confi guration tool:
http://vmcloak.org/

Cuckoo auto installer (aids with Cuckoo Sandbox
installation): https://github.com/buguroo/cuckooautoinstall

Online analysis services
Cuckoo Sandbox online: https://malwr.com

VirusTotal: https://www.virustotal.com

Team Cymru’s Malware Hash Registry:
http://www.team-cymru.org/MHR.html

Team Cymru’s TotalHash.com static and dynamic analysis:
https://totalhash.cymru.com/

Integration
ZeroMQ: http://zeromq.org/

RabbitMQ: https://www.rabbitmq.com/

Intellect rule engine: https://github.com/nemonik/Intellect

Celery distributed task queue: http://www.celeryproject.org/

Big Data processing and indexing

Elasticsearch stack: https://www.elastic.co/downloads

Netfl ix Scumblr (mining the web): https://github.com/Netfl ix/
Scumblr

Hadoop: https://hadoop.apache.org/

Apache Spark: https://spark.apache.org/

Databases
MariaDB: https://mariadb.org/

neo4j graph database: http://neo4j.com/

BUILDING A MALWARE LAB IN THE AGE OF BIG DATA SVAJCER

281VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

MongoDB: https://www.mongodb.org/

CouchDB: http://couchdb.apache.org/

Cassandra: http://cassandra.apache.org/

HBase: http://hbase.apache.org/

Visualization and graphing

Davix tools: http://www.secviz.org/node/89

OpenDNS OpenGraffi ti: http://www.opengraphiti.com/

Stix Viz, visualization of STIX data: https://github.com/
STIXProject/stix-viz

Kibana, Elastic search visualization: https://www.elastic.co/
products/kibana

Threat intelligence sharing systems

MISP Malware Information Sharing Platform:
https://github.com/MISP/MISP

CRITS Collaborative Research Into Threats:
https://crits.github.io/

CIF Collective Intelligence Framework:
https://code.google.com/p/collective-intelligence-framework/

Soltra Edge intelligence framework: https://www.soltra.com/

Siemens Django Mantis Intelligence framework:
https://github.com/siemens/django-mantis

Threat intelligence online

ThreatConnect: http://threatconnect.com/

HP ThreatCentral: http://go.saas.hp.com/software/threat-central

ThreatStream: https://www.threatstream.com/

FB ThreatExchange: https://threatexchange.fb.com/

Sample sharing systems

Virex virus exchange framework: https://code.google.com/p/
virex/

Incident response framework

Fast incident response by Societe Generale CERT:
https://github.com/certsocietegenerale/FIR

Machine learning
Amazon Machine Learning: https://aws.amazon.com/blogs/
aws/amazon-machine-learning-make-data-driven-decisions-
at-scale/

Windows Azure Machine learning: http://azure.microsoft.
com/en-us/services/machine-learning/

Distributed R: https://github.com/vertica/DistributedR

Python Anaconda: https://store.continuum.io/cshop/anaconda/

Orange Python Data mining: http://orange.biolab.si/

Weka toolkit: http://www.cs.waikato.ac.nz/ml/weka/

RapidMiner: https://github.com/rapidminer/rapidminer

Preconfi gured containers
Docker containers developed by YoloThre.at: http://yolothre.at

