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ABSTRACT
The majority of established industry malware research labs 
have been built organically over the course of years – even, in 
the case of many founding members of the anti-virus fi eld, 
over decades.

A lab usually started as a simple virus repository – a 
physically isolated space in which samples were stored in a 
secure fashion so that they could only be accessed, analysed 
and tested by skilled and authorized researchers. Over time, 
sample-collection systems such as honeypots, spam traps and 
web crawlers were added, along with systems for sharing 
samples between trusted vendors.

Eventually, these systems, together with the increase in 
activity by malware writers, raised sample volumes to a point 
where human researchers could not process all samples 
manually. This point marked the start of the age of automated 
analysis.

Soon, though, existing automated analysis systems were 
inundated with ever-increasing traffi c volumes. The need for 
clustering, correlation and automated classifi cation became 
clear. All this organic growth caused malware labs to become 
extremely complex, with systems that were interdependent and 
tied to the existing technology used by each company’s 
products.

Recently, we have seen an increase in the number of 
newcomers to the fi eld of malware research, who each bring 
their own ideas as to how malware problems should be 
tackled. These newcomers include incident response 
companies as well as the emergency response teams of large 
companies and government organizations, and they all need 
their own labs.

Unfortunately, it is not always clear how to successfully 
evaluate available options and start building an integrated 
environment for threat collection, analysis, correlation, and 
incident tracking and management. There is a clear need for a 
process that can be followed to build a malware research lab 
from scratch.

Our paper will propose a simple process for building a fully 
functional malware research lab in a relatively short time. It 
will provide criteria for evaluating existing systems in each of 
the mandatory areas of a fully functional malware lab: 
collection, analysis, classifi cation, protection, testing, sharing 
and integration.

INTRODUCTION
Most experienced malware researchers started their careers in 
an established anti-malware laboratory owned by one of the 
anti-virus companies. These are often referred to as ‘virus 
labs’ or simply ‘labs’ (two terms used interchangeably through 
the rest of this paper). A virus lab’s processes and procedures 

are governed by a strict set of rules, which prescribe secure 
and safe practices for handling potentially malicious samples, 
from their import into the secure environment to their 
processing and storage.

It has been common practice to keep virus labs physically 
separated from the rest of their companies’ production 
systems, with physical access granted only to researchers and 
a small group of trusted individuals. This approach guaranteed 
that none of the malicious fi les ever left the safe confi nes of 
the lab before being rendered unusable for the external 
environment. This was usually accomplished by encrypting 
samples with PGP, which remained one of the best industry 
sample handling practices until today. 

Working in an anti-malware vendor’s virus lab entails 
following additional rules to ensure the best possible service 
for users of anti-malware products. Virus labs are on the 
critical path to delivering timely and effective protection 
against malware attacks. With growing volumes of malware 
and increased user requirements it is not accidental that there 
are rigorous controls at every stage of the malware processing 
cycle, all the way from the collection of malware samples to 
the delivery of malware protection data. 

Today, however, a growing number of smaller teams require 
virus labs and systems for manual and automated malware 
processing. The requirements of those teams are somewhat 
different from the requirements of the labs used by established 
anti-malware vendors. These differences stem primarily from 
the fact that these smaller entities do not have to collect, 
process and store every single malware sample, and are not 
tied to any particular technology or protection technique. 
Examples of such entities include CERT and CIRT teams, 
threat intelligence teams, malware SOC analysts, malware 
research and response teams in large companies, and 
complementary detection technology teams.

This paper provides an introduction to virus lab components, 
design, and development principles for teams that have a clear 
need for implementing a virus lab and do not yet have a fully 
functional lab. For readers with high-throughput virus labs, 
such as ones owned by established anti-malware vendors, the 
paper may also help as a reference to compare their own 
facilities with the proposed design and development 
guidelines. 

The emphasis of the paper is on describing components and 
development principles driven by the so-called new style of IT, 
which emphasizes the mobility of users, data and computing 
resources. With an ever-increasing volume of malware samples 
and malware metadata, and shrinking budgets available to 
malware research teams processing the latest threats, aspiring 
lab builders have to tread a narrow path to achieve optimum 
functionality given their time and resource constraints. 

The paper concludes with recommendations and predictions 
for the future of virus labs and a catalogue of free, open 
source, and selected commercial components worth 
considering when building a virus lab. Many of these are used 
as de facto standards by the malware research community. 

MALWARE LAB DESIGN: HISTORY
The fi rst dedicated virus labs were built [1] in the early 1990s 
as an answer to increasing requirements for safe and secure 
storage of virus samples. There were only a handful of known 
viruses then, and the discovery of new strains was an 
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infrequent occasion. Computer viruses of the early nineties 
were written for DOS and had no network functionality, 
which meant that the main requirements for a virus lab were 
physical separation and secure storage of media containing 
virus samples. 

In addition to physical isolation and controlled access, there 
was a need for separation between systems for static and 
dynamic analysis. Each researcher usually had two physical 
machines – one used for static analysis and signature 
development and the other for replication and debugging. The 
shared virus lab’s systems were used only for secure storage 
of samples. 

The growth in number of newly discovered virus samples in 
the mid-nineties, although tiny by today’s standard (just over 
4,000 virus variants were known in 1995 [2]), was a major 
driver for the adoption of new analysis techniques. In 1993, 
researchers from IBM [3] fi rst drew parallels between a 
human immune system infected by a biological disease and a 
computer system infected by a computer virus, which 
prompted work in the areas of computer immunization and 
development of automated analysis systems. 

The authors of the seminal Digital Immune System (DIS) [4] 
devised a fully automated system, which was put into use 
towards the end of the decade. DIS was a result of truly 
ground breaking work. It had signifi cant consequences both 
for the future development of virus labs as well as for systems 
built around the virus lab’s core deliverables. 

By the early years of the fi rst decade of the 21st century, it 
became clear that no functioning virus lab would be able to 
fulfi l its main task of processing all newly discovered 
malicious samples without the help of automated analysis 
systems. Building an automated analysis system became a 
strategic goal for any virus lab, and this is when the fi rst 
generation of automated analysis systems saw widespread 
adoption.

Around the same time, desktop system virtualization products 
started maturing. These left a deep mark on the development 
of lab systems as well as on the overall computing and 
networking model in most medium to large enterprises. 
Today, it is impossible to think about manual malware 
analysis, let alone automated malware analysis, without the 
incorporation of virtualization and system virtual machines. 

Soon after the fi rst generation of automated analysis systems 
were built, usually based on physical machines and automated 
re-imaging processes, it was clear that those systems would 
not scale with the volume of malware without some heavy 
investments in hardware. The advantages of virtualization 
were obvious, with its horizontal scaling capabilities, 
seamless upgrade paths, powerful snapshotting, and 
development SDKs. Together with the increase in scalability 
and the ability to process a large volume of samples, the 
industry generated an abundance of malware metadata that 
lent itself to clustering and other machine-learning 
algorithms, which further drove requirements for RAM and 
CPU cycles and storage capacity. 

The computing requirements of a fully functional lab started 
to grow in many directions, the most signifi cant of those 
being:

• Machine learning, clustering and classifi cation

• Data analytics and search

• Metadata database systems

• Sample acquisition and sharing systems

• System integration and workfl ow systems

However, with a constant need to process all incoming 
samples (a process which often feels like fi re-fi ghting), lab 
systems have grown organically rather than systematically, 
with strong connections to the underlying proprietary 
protection technology.

The end of the fi rst and beginning of the second decade of the 
21st century brought a myriad of complementary protection, 
detection and remediation techniques to the anti-malware 
industry, successful largely due to the perception of failure of 
technologies used by traditional anti-virus vendors. 

Many medium and large enterprises became concerned with 
targeted attacks conducted by organized criminal groups and 
other sophisticated actors. The term Advanced Persistent 
Threat (APT), carrying a different meaning depending on the 
geography of the target and the company that addresses 
attacks, was fi rst introduced in 2006 [5] and has since served 
as a bogeyman used by marketing departments. However, the 
term was later adopted by security offi cers in many 
companies – despite being laughed off as marketing 
gobbledygook by many malware researchers working for 
traditional anti-virus companies. 

Large enterprises usually have their own security teams 
working in Security Operation Centres (SOCs), concerned 
with protecting their own estates. Since malicious software is 
used as the main delivery method in the majority of 
successful attacks, it did not take long for security analysts to 
specialize in malware analysis, which also meant that having 
their own virus labs became a major requirement. This paper 
attempts to help those teams when making decisions and 
building their own virus labs to address the requirements of 
their organizations.

WHAT KIND OF LAB TO BUILD?

Virus lab requirements
The requirements of a virus lab largely depend on the role of 
the team that owns it. Only specialized vendors with hundreds 
of researchers and software engineers will have a need for a 
high-throughput lab designed to handle hundreds of 
thousands of samples on a daily basis. Most internal malware 
research teams will not need to manually process more than a 
handful of samples daily and up to a few thousand unique 
suspicious fi les using the automated analysis systems, 
depending on their need and ability to acquire new samples.

The required throughput, the skill of the analyst, and the type 
of output will largely drive requirements in the following areas:

• Storage capacity

• Networking bandwidth

• CPU capacity

• Logical components of the virus lab

• Privacy and security of samples

A complete high-throughput virus lab

Judging by the latest data obtained from AV-TEST.org [6], it 
is clear that the growing volume of newly discovered 
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malware samples requires large capacities in all of the 
aforementioned categories for any lab wishing to process all 
known samples. The number of daily discovered samples has 
been growing and reached over 400,000 in 2014 [6]. In 2015, 
this number has stabilized, but it is diffi cult to tell whether the 
reason is stagnation in development of new malware or the 
industry’s lack of capacity to discover even larger numbers of 
new samples. 

Assuming over 400,000 daily samples with an average 
sample size of 500KB (and growing), the newly discovered 
samples require a daily storage capacity of 200GB (linearly 
extrapolated to 73TB/year if all samples are preserved) and 
network bandwidth of at least 20Mbps. That is assuming the 
uniform distribution of incoming malware samples 
throughout the day and no reserve capacity for when the 
number of daily discovered samples exceeds the average size. 
The peak bandwidth may well be in the range of hundreds of 
megabits per second. And that is only for handling the 
incoming samples, never mind all the other requirements of a 
high-throughput lab, which include sample sharing, data 
publishing and collection of telemetry.

High-throughput virus labs have grown organically over the 
course of many years, and designing one to be built in a 
timeframe of just a few months is out of the scope of this 
paper. We will concentrate in this paper on the lab 
requirements for smaller teams.

Optimal lab for smaller teams

To begin our design process, we must defi ne the requirements 
and necessary components essential for a modern virus lab. 

We will assume the throughput of the lab. No matter how 
small the throughput seems to be for anti-malware vendors, 
the virus lab we will design will not have an automated 
throughput higher than 10,000 samples a day at the 
beginning. 

We will assume a team size of fi ve researchers, which means 
they will be able to analyse manually in detail only a handful 
of malware samples every week. 

We will defi ne detailed analysis as the process of automated 
and manual analysis, which strives to extract all potential 
indicators of compromise with the intention of hunting the 
threat and its new variants in the organization’s network. This 
may include deciphering the malware confi guration and fi nding 
and extracting potential domain generation algorithms (DGAs) 
to prevent malware communication using egress fi ltering. We 

will also assume that the team will be able to create detection 
data intended to identify malicious samples for internal use 
before anti-virus protection signatures are in place.

In some cases, when the researchers are dealing with an attack 
on a high-profi le target, anti-virus signatures will never be 
deployed, as the details of the attack tools, techniques and 
procedures (TTPs) will be known only internally (that is, inside 
the target) and not shared with any other entity; this is why the 
ability to create, test and deploy internal signatures is required. 

HIGH-LEVEL LOGICAL DESIGN

Let us start our design with a very high-level overview of 
various classes of systems and then drill down into every 
functional group, its purpose, and its subcomponents. 
Figure 1 shows the high-level functional units of a malware 
research and processing lab.

Acquisition

If we think of a virus lab as a black box, the inputs required 
for any type of activity are malware samples. This remains 
true whether we are only looking into research on individual 
malware-related incidents, or undertaking classifi cation and 
clustering of large malware sets consisting of thousands of 
malicious samples a day. The functional unit looking for and 
collecting samples is commonly known as Acquisition.

It is a fundamental imperative to be able to acquire malware 
samples as soon as they have been spotted in the wild. Reaction 
time is critical when dealing with incidents. Newly discovered 
malware could have been used by the attacker to get a foothold 
inside the target’s environment, and it is important to analyse it 
quickly to gain knowledge and decide on the appropriate 
course of action when addressing the attack.

Let us consider the individual components of lab sample 
acquisition systems, as shown in Figure 2.

Building trust and participating in industry cooperation 
largely consists of consuming and producing various feeds 
including malware sample sets (a.k.a. collections) as well as 
metadata, domains, URLs, and other indicators of 
compromise (IOCs). This is why it is important to maintain 
systems that both consume samples and organize and publish 
sample sets to be consumed by sharing partners. 

However, one should not only rely solely on third-party 
sources of data. Whilst a lot of cooperation is based on 
sharing, re-sharing samples is somewhat ethically 

AnalysisAcquistion

Storage

Partner interfaces
Feed producers and 

consumers
End user’s systems Workflow Auxiliary

Figure 1: High-level functional units of a malware research and processing lab.
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unacceptable. A fully functional lab has to be able to collect 
its own samples, especially if its target is discovery of new, 
previously unknown attacks. 

For that, a number of acquisition systems are required. 
However, the major components of acquisitions consist of 
Internet crawlers (input suspicious URLs, output analysis of 
URL and samples acquired by visiting the suspicious URLs), 
honeypots (server and client, low and medium interaction), 
spam traps (mailboxes used for a special purpose, where all 
incoming email messages are considered either malicious or 
spam), and sample upload systems that can be used by 
internal and third-party consumers of the virus lab’s services.

In addition to its own collection, a virus lab may decide to use 
a third party as a source of samples. One such source is 
VirusTotal.com, which holds an exhaustive archive of 
samples and excellent sample-hunting features. 

Analysis
There are currently several unsolved problems in malware 
research, such as the ability to unpack all custom packers to 

remove all layers of obfuscation. This is why constant 
development of analysis systems and analysis techniques is 
required to keep pace with the techniques used by malware 
writers to evade analysis, detection and successful malware 
classifi cation. Nevertheless, certain types of systems are 
required from the beginning.

The fi rst group of analysis systems are automated analysis 
systems (Figure 3). They are constantly being developed, and 
a dedicated team of developers is required to maintain a high 
analysis success rate. However, there are some free and 
commercial third-party solutions for automated analysis 
systems geared towards implementation in virus labs. 

Cuckoo Sandbox, an open-source dynamic automated analysis 
system, is a popular choice often used as a basis for the 
development of in-house dynamic automated analysis 
capabilities. The disadvantage of Cuckoo’s popularity is that 
many malware samples do their best to detect its sandboxing 
environment and avoid displaying any malicious functionality. 

The Workfl ow component is perhaps the most important 
component of the lab. It is tasked with driving the workfl ow 

Other sources

Sample exchange

Spamtraps URI exchange
consumers

CrawlersPartner feeds

Honeypots

Product
vendors

Sample acquistion

Figure 2: Sample acquisition components.

Static analysis 
systemDynamic analysisAnalytics and 

mining

Automated
Classification and 

clustering

ScannersURL analysis

Sample analysis

Other ( Registrar 
data

IP analysis
Domain/URL 

analysis)

Analysis systems

Workflow

Figure 3: Components of internal automated analysis systems.
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of sample analysis and coordination of analysis systems as 
well as collection of results. Typically, it is built on top of a 
message queuing system integrated with a decision engine to 
synchronize and dispatch tasks that emulate the manual 
analysis process. The workfl ow system acts as a glue between 
all independent analysis systems. This allows for scaling and 
synchronization to process almost any required number of 
daily samples while allowing researchers to use individual 
systems so that their analysis jobs are run before any other 
automatically scheduled tasks. 

Two last pieces of the analysis systems puzzle, which became 
important to malware research relatively recently, are 
automated classifi cation/clustering and data analytic systems. 
Processing large numbers of samples produces huge amounts 
of metadata, which remains just data unless classifi cation and 
analytics systems (together with malware researchers) 
produce meaningful information to understand and address 
threats. Analytics and mining systems are required to fi nd 
similar samples, classify them into clusters and extract 
previously unknown facts used for protecting the organization 
from similar attacks. Good clustering allows the virus lab to 
quickly classify incoming samples simply on the basis of the 
results of automated analyses. 

End-user systems

Although it is possible for researchers to access individual 
systems to retrieve data, create new processing jobs and 
analyse samples, the real power lies in consolidating and 
correlating available data in a single UI accessible to team 
members and external users on a need-to-know basis. This is 
what we refer to when we talk about end-user systems 
(Figure 4).

The Research and Intelligence portal is the main component 
of end-user systems. Its role is to consolidate information 
about the overall performance of the virus lab in a dashboard, 
allowing users to drill down and investigate information 
about individual samples or a set of samples linked by a 
single security incident. 

The Research and Intelligence portal also allows researchers 
to reach a farm of VMs suited for individual research tasks, 
based on the sample fi le type and the appropriate analysis 
environment. 

Another group of end-users are those external to the team 
and the company. In their case, the virus lab’s output consists 
of malware collections/samples for sharing as well as 
near-real-time information about new outbreaks and incidents 

VM research farm
Workstations

Publishing
Samples

Meta data
URLs

Dashboard data

Research and 
intelligence

portal

Telemetry

End user’s systems

Figure 4: Various end-user systems.
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Figure 5: Various important auxiliary viruslab systems.
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and the most commonly encountered malware families. The 
export format should use one of the industry standards such 
as STIX, MAEC or OpenIOC.

Auxiliary systems
The last category consists of systems important to the 
functioning of the lab that simply do not fi t directly into any 
of the previous categories (Figure 5). 

Systems in this group provide various functionalities, such as 
repositories for tools or source code control systems used by 
team members for versioning of YARA [7] rules and of 
various internally developed analysis utilities. 

Auxiliary systems also include systems for controlling 
authentication and access rights, systems for monitoring and 
managing other labs’ systems, a ticketing system for team 

requests, and an external-facing anonymizing system that 
hides the lab’s identity from research targets. 

Storage and databases

Underlying all these systems is a requirement for massive 
amounts of hard drive and database storage for storing 
samples and metadata; storing telemetry data; importing, 
exporting and storing various partner samples collections; and 
storage of analysis results.

Figure 6 shows the main storage and database systems that 
support the lab’s processing systems.

It is important for all storage systems to have the ability to be 
distributed and scalable with high availability, as they have to 
be used by all other lab systems and end-users. 

Sample storage 
and classification

Metadata
Domains

URLs

URL storage and 
status

Dynamic results

Static results

Classification rules

Workflow rulesScan results

Figure 6: Major storage and database systems.
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Figure 7: Complexity of the overall set of systems in a virus lab.
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The systems in combination

Overall, a fully functional virus lab is a complex system, 
ideally consisting of loosely coupled systems working 
together to collect, analyse and research new threats; process 
existing threats; and convert available data into security 
intelligence used by internal and external users and systems. 

Interlude: If the virus lab was a human 

If we think of a virus lab as a living being, we can understand 
how it has its own needs. Just as in Maslow’s hierarchy of 
human needs [7], basic needs must be satisfi ed before higher-
level needs can be considered. This pyramid may serve as a 
guideline to the various stages of lab development and their 
priorities.

Figure 8: A malware research lab’s Maslow hierarchy of 
needs.

A lab starts with individual research systems and grows to 
self-actualization by choosing building blocks correctly to 
reach the higher stages in the hierarchy of needs.

LAB DELIVERABLES
Activities of any production system, including a virus lab, 
would be pointless without a set of deliverables. While in an 
anti-virus vendor’s lab the main deliverables are detection 
signatures and other data used by the company’s product, an 
enterprise virus lab has the luxury of choosing its deliverable 
formats, as long as they are useful and increase the security 
posture of the organization and the malware research 
community. 

YARA rules
YARA is a tool aimed at helping malware researchers identify 
and classify malware samples [8]. With YARA, descriptions 
of malware families can be created based on textual or binary 
patterns. Although a very simple tool with relatively limited 
functionality, YARA has become a de facto standard for rapid 
response malware detection in organizations and for sharing 
detection information between independent malware research 
teams.

The community around YARA is lively, with several YARA 
rule repositories [9] and rule exchanges [10]. These 
repositories can help research teams kick-start their usage of 

YARA, both for the creation of rules and for the detection of 
malicious activities inside their organizations. 

YARA’s extensibility is very good, and a team can create 
auxiliary modules to help with threat detection in their 
environment. Perhaps the best known set of extension 
modules is exposed through the malware hunting interface of 
the VirusTotal Intelligence service [11]. This module exposes 
fi le type, tags, detection names and other common searching 
conditions to the YARA rules writer.

With the lack of a more powerful content description 
language and content-matching utility among the free or 
open-source options, YARA became by default an 
indispensable tool in the malware researcher’s toolbox. 

IDS signatures

Snort [12], Suricata [13] and Bro IDS [14] signatures are 
other common ways of sharing actionable intelligence about 
malware. When deployed in a production environment, these 
systems can point to internal network segments and individual 
endpoints affected by a malware attack. IDS signatures match 
on packet payload contents as well as TCP/IP packet header 
fi elds. They may be able to prevent download activities as 
well as some C&C connection attempts, especially if the 
packet content is unique to the malware family (e.g. a specifi c 
bot HTTP User Agent header). 

Both YARA rules and IDS signatures have an issue of trust, 
especially if they are automatically generated by a threat-
intelligence sharing framework such as MISP [15]. Before 
such rules are applied, they should be tested in a non-
production environment, which is not always available to a 
research and response team. That is why deployment of 
production-quality IDS rules written and tested by a team of 
experienced IDS researchers, such as the Emerging Threat 
ETOpen ruleset [16], is preferable to deploying automatically 
generated rules.

Threat intelligence
The emergence of threat intelligence vendors and the 
development of the threat intelligence industry were largely 
driven by the lack of detailed information about existing and 
newly discovered threats. The volume of newly discovered 
threats and their complexity made so-called virus 
encyclopedias containing detailed descriptions of individual 
malware samples infeasible, or rather impossible, due to the 
lack of resources needed to analyse every single malware 
sample. 

These encyclopedias are still maintained by traditional 
anti-virus companies, but rarely contain more than just a 
description of malware behaviour observed by the company’s 
automated analysis systems. They now serve as landing pages 
to which users are redirected when their product alerts them 
to the presence of a malware family. 

Today, threat intelligence is expected to be a major 
deliverable of any virus lab, either in the format of manually 
written or automatically generated descriptions of observed 
threats.

Machine-exchangeable information
That said, the type of information usually present in malware 
encyclopedias still has value, especially for larger enterprises 
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that have decided to build a strong data analytics and 
correlation capability (e.g. by using an SIEM framework).

With the abundance of threat intelligence data, it became 
clear that automated, machine-readable exchange formats are 
required. These formats can be generated and shared between 
existing threat intelligence frameworks and trusted research 
partners, in a fashion similar to sample and URL exchanges 
that already exist within the anti-virus industry. 

Semi-structured formats

JavaScript Object Notation (JSON) is a simple, widely 
adopted, semi-structured and humanly readable data format. 
The format is native to several NoSQL database management 
systems as well as to threat intelligence frameworks and 
existing automated malware analysis systems. For example, 
the Cuckoo Sandbox can easily be confi gured to export the 
analysis data in JSON format for further storage, analytics, 
and sharing.

Structured data exchange formats

Recently, a lot of work has been invested in defi ning several 
standards, often XML-based, for describing and exchanging 
information about IOCs, malware behaviour and attack 
patterns.

The most popular structured-data formats supported by threat 
intelligence frameworks are:

• Malware Metadata Exchange Format (MMDEF and 
MMDEF-B) [17], created by the IEEE ICSG Malware 
Working Group for the purpose of augmenting shared 
malware samples with additional structural and 
behavioural metadata.

• Trusted Automated eXchange of Indicator Information 
(TAXII) [18], a MITRE standard for machine exchange 
of threat indicators. The recommended format for the 
indicators is STIX.

• Structured Threat Information eXpression (STIX) [19] is a 
collaborative community-driven effort to defi ne and 
develop a standardized language to represent structured 
cyberthreat information. It strives to be fl exible, extensible, 
automatable and as humanly readable as possible.

• Cyber Observable eXpression (CybOX) [20], a schema 
for the specifi cation, capture, characterization and 
communication of events or stateful properties 
observable in the operational domain. A wide variety of 
high-level cybersecurity use cases rely upon such 
information, including event management/logging, 
malware characterization, intrusion detection, incident 
response/management, attack pattern characterization, 
and so on.

• Malware Attribute Enumeration and Characterization 
(MAEC) [21], a standardized language for encoding and 
communicating high-fi delity information about malware 
based upon attributes such as behaviours, artefacts and 
attack patterns. It aims to reduce potential duplication of 
malware analysis efforts by researchers and to allow for 
the faster development of countermeasures by enabling 
the ability to leverage responses to previously observed 
malware instances.

• Common Attack Pattern Enumeration and Classifi cation 
(CAPEC) [22], a dictionary and classifi cation taxonomy 

of known attacks that can be used by analysts, 
developers, testers and educators to advance community 
understanding and enhance defences.

• Open Indicators Of Compromise (OpenIOC) [23], 
designed to enable Mandiant’s products to codify 
intelligence to rapidly search for potential security 
breaches. Mandiant has standardized and open-sourced 
the OpenIOC schema and released tools [24] and utilities 
to allow machine-to-machine sharing of threat 
information.

Often, there is very little to choose between various data 
exchange formats, but it is worth keeping in mind that the 
virus lab will likely have to be able to consume data 
conforming to more than one of the above formats and to be 
able to export data in at least one of them. 

BEST PRACTICES FOR DEVELOPING LABS 
SYSTEMS

Agile systems development principles

Agile principles as defi ned by the Manifesto for Agile 
Software Development [25] can, with some modifi cations, be 
applied to the development of systems. 

At the INCOSE UK ASEC conference in 2012 [26], an IBM 
researcher modifi ed the Agile manifesto and proposed how it 
can be applied to systems engineering. Agile systems 
engineering principles are designed to respond well to 
changing requirements. They focus on delivering demonstrable 
capability as the primary measure of progress. These principles 
can easily be applied to the development of virus lab systems. 

Here are the top 10 high-level Agile Systems Engineering 
principles as proposed by Hazel Woodcock [26], with a few 
additional virus lab-related comments: 

1. The highest priority is to satisfy the customer 
through early and continuous delivery of 
demonstrable system capability. Having some 
capability is clearly better than waiting for a fully 
functional deployment of all virus lab functionality.

2. Managed change to requirements is welcome, even 
late in development. Agile processes harness change 
for the customer’s competitive advantage. This is 
also particularly true as virus lab functionality and 
system features need to adapt constantly to keep up 
with the latest threats.

3. Deliver actual or modelled functionality frequently, 
from a couple of weeks onwards, with a preference 
for the shorter timescale. In a virus lab, the best 
practice is to allow malware researchers to model 
some functionality as a proof of concept. Eventually, 
the development team should implement the feature 
in a production environment using tried and tested 
development and quality assurance methods. 

4. Business people and the project team must work 
together daily throughout the project. This process 
happens regularly in the lab, with the business people 
in that situation being the malware researchers and 
experts working together with the systems 
development team – in some cases being an intrinsic 
part of the development team.
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5. Build projects around motivated individuals. Give 
them the environment, support what they need, and 
trust them to get the job done. The fi eld of malware 
research does not lack motivated individuals. If 
nothing else, their eagerness has sometimes to be 
managed to avoid feature drag in the development 
process.

6. Use the most effi cient and effective methods of 
conveying information to and within a development 
team, from face-to-face discussion to social business 
tools and collaborative design tools. It is well known 
that the need for constant communication fl ow is 
proportional to the geographical distance of the team 
members. Many malware researchers work in 
globally distributed teams where these requirements 
are well known, but this principle should not be 
forgotten. 

7. Demonstrable capability is the primary measure of 
progress. This is the key point for building any 
system. Demonstrable capability only allows users 
(researchers) to work more effi ciently, but also gives 
better feedback on the existing demonstrable 
working features as well as proposing new features.

8. Agile processes promote sustainable development. 
The sponsors, project team and users should be able 
to maintain a constant pace indefi nitely.

9. Continuous attention to technical excellence and 
good design enhances agility.

10. Simplicity – the art of maximizing the amount of 
work not done – is essential. Malware researchers are 
not always masters of simplicity. Of course, the key 
is to try to apply just the right level of complexity to 
solve a problem with acceptable quality. The KISS 
principle has been an old friend of both malware 
researchers and system developers working on the 
virus lab’s systems. 

Additional guidelines

In addition to the above Agile principles, we add a few to 
consider when designing a lab. They take into account the 
requirement for elasticity of computing power constantly 
required in the lab – moving from acquisition of samples over 
static and dynamic analysis and analysis of generated data.

These additional principles were inspired by design principles 
for web applications running in cloud environments [27]. 
These cloud applications have been designed from scratch by 
keeping the advantages and disadvantages of the cloud 
computing model in mind. Many of those can be applied to 
the design principles of a virus lab.

1. Start simple with easy wins. The fi rst stage in the 
malware research cycle is the acquisition of samples, 
which makes it tempting to start building your own 
network of honeypots. However, building an 
intricate, geographically spread modern network of 
honeypots takes time and yields limited returns. On 
the other hand, reserving budget for a third-party 
service such as VirusTotal will allow researchers to 
dig immediately into a wealth of information without 
even having to build their own storage and automated 
analysis systems. For individual research, including 

some trend-spotting, this may be the only thing 
needed for some time. If a simple internal static 
analysis framework and malware storage system is 
required, the Viper [28] framework may be the best 
place to start.

2. Build to scale. Once the decision to build a fully 
functional lab is made, a cloud platform such as 
OpenStack [29] or CloudStack [30] should be 
considered to allow for horizontal scaling of 
available computing resources. For example, a 
Research and Intelligence portal or an automated 
analysis system needs to be designed to allow for 
simple addition of new resources without taking the 
overall system offl ine. Each of the virus lab’s 
components should be stateless and able to function 
independently, as is often the case with components 
of mature virus labs – although that is often simply 
by chance and not by design.

3. Use auto-scaling of computing resources for 
adaptable computing power. Auto-scaling allows for 
programmable maximization of CPU utilization by 
automatically assigning new computing instances 
when and where they are required. For example, if 
the daily load of samples is particularly high, it is 
possible to auto-scale computing instances so that 
maximum capacity is dedicated to this task, with 
only a minimum going to data analytics and 
clustering and vice versa. This is an important cloud 
mechanism that can be applied to virus labs where 
workload can vary from day to day in different 
functional areas of the lab.

4. Design for failure. Traditional approaches often 
equate reliability with preventing failure. Cloud-
based systems are different, so the design approach 
has to be different too. In the cloud, one is dealing 
with greater complexity and more interdependencies 
– thus more opportunity for failure. Because of that, 
virus lab services need to be designed to contain 
failures and recover from them quickly. 

5. Harness the power of community. Every lab should 
be a good member of the malware research 
community by sharing the knowledge, tools, 
malware samples and threat intelligence with other 
community members. By building trust between 
community members, more and more knowledge 
will become available to the team. This is why 
implementation of a malware information sharing 
framework such as Malware Information Sharing 
Platform (MISP) and plugging your own systems 
into it may be a good fi rst step for beginning to 
contribute to the community. The implementation of 
MISP may also be useful to established virus labs of 
traditional anti-virus vendors looking for a better 
understanding of threats encountered by the 
community. 

CONCLUSION AND FURTHER DIRECTIONS

A growing number of smaller teams require virus labs and 
systems for malware processing. The requirements of those 
teams differ from the usual requirements of traditional 
anti-malware virus labs. This paper provides an introduction 
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into virus lab components and proposes design and 
development principles for teams with a need for 
implementation of virus lab functionality. 

The implementation of a fully functional lab is a moving 
target, requiring developers to quickly address changing 
requirements. Agile development principles are well-suited to 
the task, even for complex systems engineering such as that 
required by virus labs. 

If developing from scratch, designs of large-scale, 
cloud-aware applications should be studied and taken into 
account to provide the virus lab with a fl exible environment 
that can scale and adjust to daily changes in processing 
loads. Assuming the trend of increasing volumes of newly 
discovered threats continues, it is likely that virus labs will 
require the fl exible computing and storage environments 
only available in large cloud deployments. A good design 
that can fi t cloud environments without major changes is 
required. 

The paper provides a set of guidelines that should be followed 
during the process of building a fully functional malware 
research lab in a relatively short time, together with a set of 
near-ready building blocks for each of the lab’s functional 
areas.

Overall, building a virus lab is an extremely complex 
undertaking, and the team that builds one should be prepared 
for a constant development process. Continuous development 
of new modules and features will be required in addition to a 
signifi cant proportion of maintenance and operations tasks 
necessary to keep the system performing and adapting to new 
threat techniques and increasing threat volumes. 
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APPENDIX A: CATEGORIZED LIST OF 
COMPONENTS
These suggestions are offered without warranty, but with the 
understanding that they are potentially suitable as a starting 
point in the categories in which they’re listed. Most of them 
will suit one or more purposes but may require modifi cations 
to fully suit a set of user requirements. 
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Sample acquisition methods and systems

Honeypots, spamtraps and crawlers
Modern Honey Network (MHN): http://threatstream.github.
io/mhn/

Maltrieve: https://github.com/krmaxwell/maltrieve

Thug client-side honeypot: https://buffer.github.io/thug/

Dionea honeypot: http://dionaea.carnivore.it/

Ragpicker crawler: https://code.google.com/p/malware-
crawler/

hpfeeds and Hpfriends [the HP in these stands for Honeypot 
Project, not Hewlett-Packard!]: https://github.com/rep/hpfeeds

Maltrieve feeds crawler: https://github.com/krmaxwell/
maltrieve

Sample repositories
Virus Share: http://www.virusshare.com

VirusTotal (not free but in widespread use): 
http://www.virustotal.com 

Malware Share: http://www.malshare.com

Malware Zoo: http://zoo.mlw.re

Open Malware: http://www.openmalware.org

ViruSign: http://www.virusign.com

Services and feeds
Combine: https://github.com/mlsecproject/combine

Criticalstack: https://intel.criticalstack.com/

Malicious URLs Tracking and Exchange MUTE: 
http://mutegroup.org/

Project Honeypot (spam traps): 
https://www.projecthoneypot.org/

Abusix Spamfeedme (spamtraps): 
https://spamfeedme.abusix.com/

Shadowserver feeds: https://www.shadowserver.org/wiki/
pmwiki.php/Services/Downloads

Bambenekconsulting: http://osint.bambenekconsulting.com/
feeds/

Malware Patrol: https://www.malwarepatrol.net/lists.shtml

Anonymizing services
Tor: https://www.torproject.org/

OpenVPN: https://openvpn.net/

Privoxy: http://www.privoxy.org/

Storage and organization
Viper malware storage and static analysis framework: 
http://viper.li

Aleph Malware Analysis pipeline system: https://github.com/
trendmicro/aleph

Automated analysis

Multi scanner frameworks
Opswat Metascan (commercial): https://www.opswat.com/
products/metascan

IRMA analysis platform for suspicious fi les: 
http://irma.quarkslab.com/index.html

Malice, a framework for building a VirusTotal-like system: 
https://github.com/blacktop/malice

MITRE’s Multiscanner: https://github.com/MITRECND/
multiscanner

Multiav scanner wrapper: https://github.com/joxeankoret/
multiav

Static analysis frameworks

Mastiff framework: https://git.korelogic.com/mastiff.git/

Viper: http://viper.li

Machete framework (in development at the time of writing, 
no URL yet)

Dynamic analysis systems

Cuckoo Sandbox: http://www.cuckoosandbox.org/

Cuckoo Accuvant fork: https://github.com/brad-accuvant/
cuckoo-modifi ed

Cuckoo Mitre fork: https://github.com/MITRECND/cuckoo

Cuckoo KillerInstinc (better offi ce handling) fork: 
https://github.com/KillerInstinct/cuckoo-modifi ed

Killerinstinct Cuckoo modules repository: 
https://github.com/KillerInstinct/community

VMCloak hiding Cuckoo analysis VM confi guration tool: 
http://vmcloak.org/

Cuckoo auto installer (aids with Cuckoo Sandbox 
installation): https://github.com/buguroo/cuckooautoinstall

Online analysis services
Cuckoo Sandbox online: https://malwr.com

VirusTotal: https://www.virustotal.com

Team Cymru’s Malware Hash Registry: 
http://www.team-cymru.org/MHR.html

Team Cymru’s TotalHash.com static and dynamic analysis: 
https://totalhash.cymru.com/

Integration
ZeroMQ: http://zeromq.org/

RabbitMQ: https://www.rabbitmq.com/

Intellect rule engine: https://github.com/nemonik/Intellect

Celery distributed task queue: http://www.celeryproject.org/

Big Data processing and indexing

Elasticsearch stack: https://www.elastic.co/downloads

Netfl ix Scumblr (mining the web): https://github.com/Netfl ix/
Scumblr

Hadoop: https://hadoop.apache.org/

Apache Spark: https://spark.apache.org/

Databases
MariaDB: https://mariadb.org/

neo4j graph database: http://neo4j.com/
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MongoDB: https://www.mongodb.org/

CouchDB: http://couchdb.apache.org/

Cassandra: http://cassandra.apache.org/

HBase: http://hbase.apache.org/

Visualization and graphing 

Davix tools: http://www.secviz.org/node/89

OpenDNS OpenGraffi ti: http://www.opengraphiti.com/

Stix Viz, visualization of STIX data: https://github.com/
STIXProject/stix-viz

Kibana, Elastic search visualization: https://www.elastic.co/
products/kibana

Threat intelligence sharing systems

MISP Malware Information Sharing Platform: 
https://github.com/MISP/MISP

CRITS Collaborative Research Into Threats: 
https://crits.github.io/

CIF Collective Intelligence Framework: 
https://code.google.com/p/collective-intelligence-framework/

Soltra Edge intelligence framework: https://www.soltra.com/

Siemens Django Mantis Intelligence framework: 
https://github.com/siemens/django-mantis

Threat intelligence online

ThreatConnect: http://threatconnect.com/

HP ThreatCentral: http://go.saas.hp.com/software/threat-central

ThreatStream: https://www.threatstream.com/

FB ThreatExchange: https://threatexchange.fb.com/

Sample sharing systems

Virex virus exchange framework: https://code.google.com/p/
virex/

Incident response framework

Fast incident response by Societe Generale CERT: 
https://github.com/certsocietegenerale/FIR

Machine learning
Amazon Machine Learning: https://aws.amazon.com/blogs/
aws/amazon-machine-learning-make-data-driven-decisions-
at-scale/

Windows Azure Machine learning: http://azure.microsoft.
com/en-us/services/machine-learning/

Distributed R: https://github.com/vertica/DistributedR

Python Anaconda: https://store.continuum.io/cshop/anaconda/

Orange Python Data mining: http://orange.biolab.si/

Weka toolkit: http://www.cs.waikato.ac.nz/ml/weka/

RapidMiner: https://github.com/rapidminer/rapidminer

Preconfi gured containers
Docker containers developed by YoloThre.at: http://yolothre.at


