
CATCHING THE SILENT WHISPER: UNDERSTANDING THE DERUSBI FAMILY TREE PUN ET AL.

307VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

CATCHING THE SILENT
WHISPER: UNDERSTANDING
THE DERUSBI FAMILY TREE

Micky Pun, Eric Leung & Neo Tan
Fortinet, Canada

Email {mpun, ericleung, ntan}@fortinet.com

ABSTRACT
From stealing sensitive information from Mitsubishi Heavy
Industries in 2011 to the Anthem data breach revealed in
February 2015, the complexity of the Derusbi malware family
has been the real driving force behind all these espionage
campaigns. Upon entering a targeted company through a
newly discovered vulnerability, Derusbi would be dropped on
the compromised computer with the purpose of setting up a
well hidden front-line camp in the targeted organization.
Sophisticated in its covert presence and uncommon malicious
activity, our records reveal that many security vendors did not
start to detect a Derusbi variant until it had been circulating
among vendors for half a year. While most articles focus on
linking how these attacks are country-sponsored through the
venue of passive DNS, we want to focus on the technical
aspects of the Derusbi family. In addition, we will look at how
it has evolved over time to remain under the radar of most
vendors, as well as at its rare and noteworthy approaches to
conducting its espionage objectives.

BACKGROUND
Judging by the compilation times of the malware samples we
collected, we believe that the history of Derusbi dates back to
2008 (MD5: 338e4deb0be7769ef2c9d7080fb56154). The fi rst

reported incident of Derusbi was from the Mitsubishi hack [1,
2] in October at 2011. The sample from that attack indicated a
compilation time of 15 April 2011. Although we knew of no
other major reports of hacks or compromised data between
2011 and 2014, reports about the group(s) using Derusbi, such
as ShellCrew [3] and Deep Panda [4], were published by
companies with incident response teams during this period.
This indicates that the malicious groups were still actively
developing and running campaigns utilizing this special tool
during this time frame. Through analysing the samples
compiled between 2011 to the present, we observed that the
malicious beacon URL used by Derusbi has been seen to be
associated with military equipment or public infrastructure
(see Appendix A). The latest attack to make the news
headlines was the CareFirst BlueCross BlueShield attack,
where personal data of approximately 1.1 million of customers
was breached during 2014 [5].

MODUS OPERANDI
The Derusbi samples that we will refer to are Win32 or Win64
DLL fi les. As a DLL fi le, it requires other fi les to load it
before it can run its malicious payload. In our collection, we
have found malicious droppers that contain both encrypted 32-
bit and 64-bit Derusbi samples. Since we did not have access
to any Derusbi-infected machines, we do not know exactly
how the droppers got onto the infected computers. However,
we were able to fi nd other malware samples that share some
unique features, helping us link the Derusbi family to other
pieces of malware that might be used together during an
espionage campaign. Figure 1 shows a couple of malware
families that have similarities with Derusbi.

Sakula

The Sakula malware family (MD5: c384e7f567abd9ea50f6477
15a28661a) consists of executables that were linked to the

Figure 1: Relationship between different malware families and Derusbi.

CATCHING THE SILENT WHISPER: UNDERSTANDING THE DERUSBI FAMILY TREE PUN ET AL.

308 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Deep Panda campaign in early 2014 and the Anthem attack
revealed in February 2015. Sakula is a packer that contains an
embedded downloader in its resource section, and during
execution, the packer will decrypt and drop the downloader.
From the samples we have seen, the dropped downloaders are
from the Shyape family. Some Sakula samples have the same
stolen DTOPTOOLZ Co. [6] digital signature as Derusbi
samples (MD5: 0a9545f9fc7a6d8596cf07a59f400fd).

Shyape

The Shyape family of malware (example MD5:
528963946e5040ebcda9d8982f911f4a) are generally
downloaders which are distinguished by their traffi c. The
downloaders’ traffi c routinely uses POST requests pointing to
a photo subdirectory, similar to the traffi c created by Derusbi.
In addition, some Shyape samples contain the same stolen
digital signatures as were used by Derusbi clients.

Remote administration tools infoadmin.dll and
sqlsrv32.dll

The remote administration tools (RATs) infoadmin.dll (MD5:
47619fca20895abc83807321cbb80a3d) and sqlsrv32.dll
(MD5: e1b09815bacaa7ca3fed0d3aca849055) can be
unpacked from the Deep Panda campaign (MD5:
528963946e5040ebcda9d8982f911f4a) and Anthem breach
IOCs. These RATs would allow the attackers to perform
actions such as keylogging and accessing the fi le systems of
comprised computers.

TXPFProxy.dll

The samples we have seen of the TXPFProxy.dll (MD5: 50b

6dee51ef2d9ec1a81dbfb62d51448) were compiled around
2012, and it seems to be a more primitive version of the
RATs mentioned above. We have observed that
TXPFProxy.dll shares similarities with Derusbi samples
collected from the ShellCrew campaign and the RAT
samples from the Panda campaign. We encountered it
because the way it constructed the OS version identifi er
(PCC_MISC System Info, described below) seems
consistent in style (demonstrated in Figure 1). Hence it
gives us reason to believe that all these incidents are from
the hands of the same malware developer.

VARIANTS OF DERUSBI
Unlike common polymorphic malware that has similar
features and behaviours amongst different samples, we can
see that the authors of Derusbi added in a high degree of
customization to the builds, as the various Derusbi samples
we analysed contained different combinations of the available
modules. Because the previous reported victims were from
pretty specifi c industries or companies, we believe that
Derusbi samples are used only in targeted attacks, and that a
specifi c version of Derusbi was compiled for each of its
targets depending on the needs of the campaign. We believe
that the samples were dropped as a post-exploitation tool to
gather and steal information.

In Figure 3 we outline the relationship between various
features present in different samples since 2008. The features
are included selectively depending on need, and because of
this, newer samples do not have a higher number of features
than older samples, even though new features have
continuously been developed. Combined with a relatively low
sample collection rate, this reinforces the idea that the

Figure 2: TXPFProxy.dll has similarities with both RAT and Derusbi samples collected from the ShellCrew campaign.

CATCHING THE SILENT WHISPER: UNDERSTANDING THE DERUSBI FAMILY TREE PUN ET AL.

309VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Derusbi-related espionage campaigns use malware tailored to
the targeted victims.

Figure 3 shows some of the notable characteristics of some
Derusbi variants. Samples targeted for different campaigns
will have different features/characteristics. The following are
some notable insights regarding the evolution of Derusbi:

• From the samples that we have gathered, it seems that a
64-bit version was only introduced in late 2011 and that
64-bit samples are a rarity in our collection of samples.

• One of the classes/modules used in gathering PC
information (PCC_MISC) does not report Win8 and
beyond, even from a sample that had a compilation date
of November 2014.

• Different versions and variants of classes/modules are
available, and newer samples do not necessarily use a
newer version of a certain class, even if the newer class
has been available for over a year.

• We can see signifi cant differences between the samples
from 2008 and the samples from 2013/2014. The
malware has much more functionality in the more recent
samples.

From the different combinations of classes and embedded
tools that we have seen bundled with Derusbi, we generalize
the Derusbi family as an underlying framework that provides
a well-hidden backdoor connection between the infected host
and the outside world. In the following sections, we will take
a detailed dive into its code structure and reveal all the
available functionality provided by this tool.

TECHNICAL ANALYSIS

DLL entries

Hiding itself as a service on the infected machine, before
Derusbi’s export function ServiceMain/DllRegisterServer/
DllUnregisterServer runs, the DLL fi le is fi rst loaded by
svchost or regsvr32. In some older samples, the malicious
functions can be found right at the DLLEntryPoint. In other

samples, the DLLEntryPoint function is simply used for
initialization and the main malicious subroutines are within
the exported functions. To complicate things, we have also
observed a signifi cant number of samples that are packed,
with the DLLEntryPoint subroutine containing code to
unpack the other export functions during DLL loading. In
addition, although Derusbi comes with a number of different
export functions, only the export functions DllRegisterServer,
DllUnregisterServer and ServiceMain are of importance. The
other export functions seem to be a mere distraction.

Persistence management

When the DLLRegisterServer export function is initially
invoked during service registration, Derusbi will decrypt
built-in confi guration data that has been XOR-encrypted with
a hard-coded DWORD key. It will then proceed to move the
original DLL to a hard-coded location in the Windows
directory or as specifi ed in the built-in confi guration data. The
DLL will be stored with the fi lename ‘[prefi x][random_
string].[extension]’, where the prefi x and extension are hard-
coded. The original fi le will then be set for deletion after a
reboot (using the MOVEFILE_DELAY_UNTIL_REBOOT
fl ag).

After saving itself in the fi le system, Derusbi will register
itself as a system service with the name ‘svc_name’ (a list of
the service names that Derusbi uses is given in Appendix B).
First, it will set the registry value ‘netsvcs’ with data ‘svc_
name’ (the actual service name it is pretending to be) at the
registry key HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\SvcHost. Then it
will alter the path of the legitimate service that is loaded by
setting the registry value ‘ServiceDLL’ to the local path of
the Derusbi sample at the registry key HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\Services\svc_name\
Parameters. In the fi nal step to ensure a successful set-up
before it starts running the malicious part of the malware,
Derusbi will check whether certain anti-virus processes
(vstskmgr.exe and mcshield.exe) are running in the
background. If they do exist, Derusbi will make a copy of

Figure 3: Different feature sets in Derusbi variants, plotted chronologically.

CATCHING THE SILENT WHISPER: UNDERSTANDING THE DERUSBI FAMILY TREE PUN ET AL.

310 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

regsvr.exe and rename the copied regsvr.exe to update.exe.
Then, through this ‘update.exe’, the DllUnregisterServer
export function of Derusbi can be run without triggering
detection by anti-virus products.

When the DllUnregisterServer export function is called by the
DllRegisterServer subroutine, the malware checks whether
there are other instances of Derusbi running by checking for
the existence of a specifi c mutex. If the specifi c mutex has not
been created, it will proceed to execute the main payload.

Payload

The rest of the ServiceMain export function can be divided
into two major parts:

1. Escalation of privileges of the current process and
SeDebugPrivilege, SeLoadDriverPrivilege,
SeShutdownPrivilege and SeTcbPrivilege, and
creation of a ‘Connection Thread’ which contains all
the malicious communication and packet handling for
Derusbi.

2. Patching an original service such that it will be run
after the malicious routine. This ensures that the
Windows environment will still function normally
without raising any suspicion. (Appendix B contains a
list of service options for patching.)

Confi guration

Throughout the Derusbi client, a confi guration is used to
control the client’s behaviour. The default confi guration of
the Derusbi client is encrypted and hard-coded into each
client. Once the DLL is loaded/registered, the confi guration
can be decrypted by a four-byte XOR key that is also hard-
coded in the sample. The confi guration settings will be stored
in the registry for persistency, encrypted using a combination
of NOT and XOR with a different key. The client usually
picks an existing HKLM registry subkey to store the
encrypted confi guration settings. Whenever the client is
initialized, it will attempt fi rst to extract the confi guration
from this registry key and only fall back to using the hard-
coded confi guration in the malware sample if confi guration
data extraction from the registry key fails. From looking at
different confi guration data in various samples, some
samples’ confi gurations have 0s between various fi elds, while
other samples have random/junk data between various fi elds.

We compared the confi guration data from different samples
and came up with a data structure that will apply to most
Derusbi samples. Table 1 shows the important members of
the built-in confi guration structure.

Optional functionalities

Other than the operating client, the Derusbi malware can be
embedded with different kinds of executables and install them
onto the system at runtime.

Keylogger DLL

The samples (e.g. MD5:
a4df6ca8904f1073c3de09bf77aa3bed) that contain a
keylogging driver as an embedded fi le will check if the
Zhudongfanyu.exe process (a background process of an
anti-virus product from 360 Total Security) is currently
running using the ZwQuerySystemInformation API. If
Zhudongfanyu.exe does not exist, this driver will be dropped.

USB drive infector
Some of the samples (e.g. MD5: 92d18d1ca7e66539873be7f5
366b04d1) contain a USB-driver-infecting function that can
plant and invoke a copy of the Derusbi client in other drives.
The infector will iterate the whole directory and drop a copy
of Derusbi where it contains fi les which also have export
functions ‘DllRegisterServer’, ‘DllUnregisterServer’ and
‘SvchostPushServiceGlobals’. After that, it will create an
autorun.inf fi le that will silently register the Derusbi client
stored in the drive when a device is plugged in and auto-
played.

In one sample of the USB drive infector, a path for program
debugging database ‘G:\Work\hack\BackDoor\Ctrl11Sum\
i386\UdiskExe.pdb’, was found. This path also corresponds
to other .pdb fi le paths we have seen inside Derusbi samples
(e.g. S:\Work\Hack\Backdoor\Ctrl12Nov\trunk_OUT\
MainDLL64.pdb and G:\Work\hack\BackDoor\RkBios\i386\
DoorInst.pdb). These paths provides some interesting insight
into the malware authors’ development environment. One
thing we can note here is that ‘U disk’, translated into
Chinese, is actually the usual way to refer to a USB drive.

Network hooking driver
Some Derusbi samples (MD5:
a1fb51343f3724e8b683a93f2d42127b) contain an embedded

Size Description

N/A Infected machine identifi er: (Computer name + random number) or just random number.

(Runtime generated)

N/A Beacon URL

4 bytes Sleep time/interval

N/A Persistence service name (e.g. hlpsrv), which is what the Dersubi client is patched to run its malicious payload
before loading the actual legitimate driver (e.g. Still Image Drivers, Microsoft Windows Updater Module or
Microsoft PCHealth Service)

4 bytes Unknown fl ag

N/A Proxy server (if it exists) (e.g. 172.22.161.19:8080)

N/A Persistence fi le path where the Derusbi client is stored on the computer under a different name (e.g. C:\....).

Table 1: Derusbi confi guration structure.

CATCHING THE SILENT WHISPER: UNDERSTANDING THE DERUSBI FAMILY TREE PUN ET AL.

311VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

device driver that will be decrypted and installed on the
system. It performs SSDT hooking on the NSI proxy driver. It
also uses a special keyword, ‘KDTR’, to name the pool tag
for allocation.

Connection thread

Most of the samples contain code in the beginning which
delays the start of the network connection.

1. The malware loads the existing or built-in
confi guration and connects to the URL if it starts with
http. Otherwise, it will use the IP address to follow
instead.

2. The malware will query and check whether the stored
URL has the same IP address as expected. If it doesn’t,
it will use the hard-coded IP address, which points to
the malicious site, as a last resort.

3. The malware will attempt to initialize a connection
with the IP address, if this IP address gives a response.
It will attempt to use this IP address as a proxy to
connect to a malicious URL.

4. Once the malware has verifi ed that it can reach the
malicious URL, it will attempt to send an encrypted
data packet which contains the OS environment
information of the client.

5. The client will establish itself a select server to handle
traffi c between the C&C server and start to handle the
incoming traffi c/packets with its C++ classes described
in the following section.

CLASS ANALYSIS
Thanks to the Derusbi samples being written in C++, we were

able to gain some insight into what classes were present in its
source code. For each sample, it appears that the malware
authors made a deliberate choice of which classes to include.
We made a chart of what classes were included in the samples
if we organize them chronologically. Our fi ndings match
what others have found previously in [7] and [4].

Command classes

Through static analysis of different samples, we were able to
get a sense of what types of commands are available from the
C&C servers. Each type of command is handled by a different
processing class that usually starts with the prefi x ‘PCC_’.
The following subsections are a summary of these classes.

PCC_ class commands
All the PCC_ classes that handle commands from the C&C
servers are child classes of a base class called ‘PCC_
BASEMOD’. These child classes all implement a handler
function that allows the corresponding class to conveniently
be called when a message is received from the C&C server.
Interestingly, the enums or source code had gone through a
signifi cant change, as we encountered two different versions
of the command ID or command type corresponding to the
PCC_ classes. This change might be due to having added the
INTERNAL_CMD classes that sometimes replaced the PCC_
CMD class. Even though newer samples have the PCC_CMD
class in the code, it seems the PCC_CMD class is no longer
derived from the PCC_BASEMOD class, and that the class
only contains a destructor member function.

We list the IDs of the child classes of PCC_BASEMOD in
Table 2. Note that not all samples will have all the classes
listed. We usually see at least the PCC_CMD/INTERNAL_
CMD class along with the PCC_SYS and PCC_FILE classes.

Figure 4: Class characteristics against compilation time.

CATCHING THE SILENT WHISPER: UNDERSTANDING THE DERUSBI FAMILY TREE PUN ET AL.

312 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

The PCC_BASEMOD class hierarchy was not seen in the
earliest samples that date back to 2008 and was probably not
introduced until 2012.

Older samples Newer samples

PCC_SYS – 80h PCC_SYS – 4

PCC_CMD – 81h INTERNAL_CMD – 5

PCC_PROXY – 82h PCC_PROXY – 6

PCC_FILE – 84h PCC_FILE – 8

Default_handler – F0h PCC_MISC – 10

Default_handler – 100h

Table 2: PCC_ classes and their class IDs.

Default handler class commands

The default handler class is always present in the samples. It
is contains a bare-minimum number of actions for remotely
controlling the malware such as stopping execution or
updating the DLL sample. Tables 3 and 4 are lists of
functions along with their command IDs for the newer and
older samples.

PCC_CMD class

This class seems like it is a deprecated class. It seems that
whenever the INTERNAL_CMD is present, the PCC_CMD
class is also present, but it does not have any member
functions. When the PCC_CMD class is alone, it will accept
different commands. This class is present in the earliest
sample we have, which dates back to 2008.

INTERNAL_CMD class

There are two known versions of the INTERNAL_CMD
class, version 1.1 and version 1.2. There are some new
additional commands in v1.2. It does not use command code/
IDs like the other classes. This class was fi rst seen in a
sample with a compilation date in late 2011. If the
compilation date is correct, then that means this class would
have been available while PCC_CMD was still used.

Commands Action

help or ? Print a help menu

cd Go to directory

dir List fi les in dir

md Make directory

rd Remove directory

del Delete fi le

copy Copy fi le

ren Move fi le

type Display information about command type

start Run a program in the background

Table 5: INTERNAL_CMD v1.1 and 1.2 commands.

Commands Action

runas Run a program as the same user as
another process with pid

reboot [-f] Restart computer [force]

shutdown [-f] Shut down computer [force]

clearlog Clear event logs

wget [httpurl] Download and save a fi le

Table 6: INTERNAL_CMD v1.2 commands.

PCC_MISC class

The PCC_MISC class provides miscellaneous functions.
There are two types of commands, numerical and text, as
shown in Tables 7 and 8.

Command
ID

Action

1 Save fi le attached in message from C&C to
a temp fi le. Remembers up to 16 fi les. Then
the temp fi les are loaded as DLLs to install
them.

2 Delete a temporary saved fi le. Filenames
of the attached in message. Must match
previous fi lenames from C&C.

Table 7: Numerical command IDs.

Command ID Action

2 Clean up the classes data

3 Back up confi g to registry, set current
fi le to be deleted on reboot, terminate
current process immediately

4 Terminate after current jobs

5 Save fi le from command data to temp
location, load temp fi le as DLL, and
run DllRegisterServer, then delete
temp fi le. This effectively uninstalls
the old one while installing a new
DLL. Set current fi le to delete after
reboot.

Table 3: Default handler class command IDs (newer).

Command ID Action

8 Terminate current connection

10h Clean up all command classes

14h Back up confi guration to registry,
set current fi le to be deleted on
reboot, terminate current process
immediately

18h Terminate after current jobs

1Ch Save fi le from command data to
temp location, load temp fi le as
DLL, and run DllRegisterServer,
then delete temp fi le. This effectively
uninstalls the old one while installing
a new DLL. Set current fi le to delete
after reboot.

20h To be analysed

Table 4: Default handler class (older).

CATCHING THE SILENT WHISPER: UNDERSTANDING THE DERUSBI FAMILY TREE PUN ET AL.

313VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Command Action

pstore Password stealer function that steals
password and account info stored in Internet
Explorer (IE) and Mozilla Firefox.

For IE stored passwords for versions 4–6, as
well as 7 and above.

For IE 4–6, MSN messenger and Outlook,
passwords are stored at the same location
and they are also gathered.

keylog Send back saved keylog information to C&C

Info Gathers system information

Table 8: Text commands.

Table 9 shows more details of the gathered system information.

PCC_SYS class

PCC_SYS class offers additional system-related functions.
This class, along with PCC_CMD and PCC_FILE, has been
seen since the earliest Derusbi samples. The commands can
be split into four groups: a screenshot command, process-
related commands, service-related commands, and registry-
related commands. The screenshot command will take a
screenshot of the user desktop. The other commands are
described in Tables 10–12.

PCC_FILE class

The PCC_FILE class provides support for common fi le
operations. This class has also undergone changes over the

System info OS_NAME BUILD_NUM

Win32s
Win95
Win95 OSR2
Win98
Win98 SE
WinMe
NT Works
Win2000 Server
Win2000 Advanced Server
WinXP Home/Pro
WinXP64 Home/Pro
Win2003 (R2)
Win2003 (R2) Datacenter Itanium
Win2003(R2) Enterprise x64
Win2003 (R2) Enterprise Itanium
Win2003 (R2) Standard x64
Win2003 (R2) Web
Vista Home/Pro
Win2008
Win7 Home/Pro

SPxx (yy)
xx = service pack number
yy = build number

Adaptor info For each network adapter, get

• Adapter name

• Adapter description

• MAC address

• IP addresses associated with the network adapter

IE version

Proxy info Look for proxy server addresses for all currently active users stored under the ‘ProxyServer’ value at
HKEY_USERS\xxxx\Software\Microsoft\Windows\CurrentVersion\Internet Settings

xxxx = SID of active users

AV info Recognize if one or more of the following AV processes are running:
navapsvc.exe – Norton AntiVirus Auto-Protect Service
ccSvcHst.exe – Norton
zhudongfangyu.exe – 360
KAVsvc.exe – Kaspersky Anti-Virus application
RAVMonD.exe – Rising RealTime monitor
Avp.exe – old Kapersky AV
TmPfw.exe – Trend Micro
NOD32ekrn.exe – NOD32
avguard.exe – Avira Free Antivirus

Table 9: Details of the gathered system information.

CATCHING THE SILENT WHISPER: UNDERSTANDING THE DERUSBI FAMILY TREE PUN ET AL.

314 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Command ID Action

0 Enumerate all current processes and get the process info. Gets the number of currently running processes.
For each process the following information is recorded:

• Process name. If the process can be opened, open the process and get the name using
GetModuleFilename(). Otherwise, get it from the SYSTEM_PROCESS_INFO structure
(https://msdn.microsoft.com/en-us/library/windows/desktop/ms725506%28v=vs.85%29.aspx).

• SID of the user that started the process
• Process ID
• A reserved DWORD from offset 50h in the structure _SYSTEM_PROCESS_INFORMATION

1 Kill a process by process ID

Table 10: PCC_SYS process-related commands.

Command ID Action

0 Enumerate all services and get their info. Gets the number of services on the system. For each service,
all the information about a service stored in a ENUM_SERVICE_STATUS structure (https://msdn.
microsoft.com/en-us/library/windows/desktop/ms682651%28v=vs.85%29.aspx) is recorded. A copy of
the info is provided below:

• Service name
• Service display name
• Service type
• Current state of service
• Control code accepted by the service
• Error code the service uses to report start or stop errors
• Service-specifi c error code for start/stop errors
• Check-point value for the service progress
• Estimated wait time for pending start/stop/pause/continue operations

1 Starts a service

2 Stops a service

3 Deletes a service

Table 11: PCC_SYS service-related commands.

Command ID Action

0 Enumerate all subkeys and values for a given registry key. The number of registry subkeys as well as the
number of registry values are recorded. For a subkey, only the subkey name is recorded. For a registry
value, the following is recorded:

• Registry value name
• Registry value type code
• Registry value data size
• Registry value data

1 Create a registry subkey

2 Do nothing

3 Delete a subkey and all its descendants

4 Set registry value for a key

5 Replace/overwrite a registry value

6 Delete a registry value

Table 12: PCC_SYS registry-related commands.

CATCHING THE SILENT WHISPER: UNDERSTANDING THE DERUSBI FAMILY TREE PUN ET AL.

315VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

years since it was present in the earliest Derusbi samples. The
recent commands and their IDs are listed in Table 13.

Command ID Action

1 Clean up class data

2 Enumerate all drives

3 Find fi le

5 Rename fi le

6 Delete fi le

7 Save a fi le to system

8 Recursively enumerate directory

Ah Copy fi le

Bh Move fi le

Ch Start new process

Dh Recursively enumerate directory

Eh Recursively enumerate directory

Fh Recursively enumerate all drives

Table 13: Recent commands and their IDs.

CONCLUSION
After reviewing all the samples we have collected since 2011,
we can conclude that Derusbi has successfully laid down a
solid framework for conducting covert espionage operations.
The low and slow sample forensic recovery rate of Derusbi
relative to other related malware families (Sakula or packed
RATs) indicates that the operation was carefully planned.
Derusbi is an important piece of malware that was not meant
to be recovered. Through reversing the class structure, we can
gain a better understanding of the traffi c pattern, especially
the raw packet structure, which can be used as a powerful
weapon against Derusbi operations. Meanwhile, any form of
behavioural or signature-based detection has been proven to
be weak against the Derusbi family and the upkeep is high
because the lack of samples. As Derusbi has already hit the
headlines and played a vital part in a number of fruitful
information breach operations, we believe the adversary will
continue to invest more resources in continuing the
development of Derusbi.

REFERENCES
[1] Reuters. http://af.reuters.com/article/energyOilNews/

idAFL3E7KJ04120110919.

[2] Mistsubishi Heavy Industry Cyberattack TSPY_
DERUSBI.A (translated). IXoXI Blog. https://ixoxi.
wordpress.com/2011/10/16/
.%E4%B8%89%E8%8F%B1%E9%87%8D%E5%B
7%A5%E3%82%B5%E3%82%A4%E3%83%90%E
3%83%BC%E6%94%BB%E6%92%83-%E3%82%
B9%E3%83%91%E3%82%A4%E3%82%A6%E3%
82%A7%E3%82%A2%E3%83%BB%E3%82%A6
%E3%82%A4%E3%83%AB%E3%82%B9-derusbi/

[3] RSA Incident Response. (2014). Emerging Threat
Profi le: Shell_Crew. RSA. http://www.emc.com/
collateral/white-papers/h12756-wp-shell-crew.pdf.

[4] Deep Panda Intellgence Team Report ver1.0.
CrowdStrike. https://www.documentcloud.org/
documents/2084641-crowdstrike-deep-panda-report.
html.

[5] Vinton, K. Forbes. http://www.forbes.com/sites/
katevinton/2015/05/20/data-belonging-to-1-1-
million-carefi rst-customers-stolen-in-cyber-attack/.

[6] ThreadConnect. http://www.threatconnect.com/news/
the-anthem-hack-all-roads-lead-to-china/.

[7] Derusbi (Server Variant) Analysis. http://www.
novetta.com/wp-content/uploads/2014/11/Derusbi.
pdf.

APPENDIX A – URL FOR BLENDING IN
NORMAL TRAFFIC OF THE ATTACK TARGET
The following list consists of websites that resemble URLs
that would be consistent with the compromised machines’
normal traffi c patterns.

URL Description

sheisme42.jetos.com:80 Flight management system

www.deltekinfo.com:443 SHANGHAI MEICHENG
Technology Information
Development

moinia.eicp.net:443 Health care

proxy.pl.abb.com:8080 Automation and power
company

APPENDIX B – A LIST OF TARGETED
SERVICES DERUSBI INTENDS TO PATCH

Service name Original DLL

stisvc %SystemRoot%\\System32\\wiaservc.dll

wuauserv %systemroot%\\system32\\wuaueng.dll

helpsvc %WINDIR%\PCHealth\HelpCtr\
Binaries\pchsvc.dll

iphlpsvc %SystemRoot%\System32\iphlpsvc.dll

dnscfghlp dnscfghlp.dll

iphlpsvc %SystemRoot%\System32\iphlpsvc.dll

