
BREAKING THE BANK(ER): AUTOMATED CONFIGURATION DATA EXTRACTION... WYKE

251VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

BREAKING THE BANK(ER):
AUTOMATED CONFIGURATION

DATA EXTRACTION FOR
BANKING MALWARE

James Wyke
Sophos, UK

Email james.wyke@sophos.com

ABSTRACT

Despite recent successes against large banking malware
botnets such as Gameover Zeus and Shylock, banking
malware continues to be a huge threat as new families such as
Dyreza, Vawtrak and Dridex have occupied the vacant space in
the market.

Not only has the malware itself matured but we have also
seen the ecosystem and market model used by the malware
authors evolve, as they gain in professionalism and
sophistication.

In order to provide holistic protection against these threats and
to aid an adequate incident response and forensic post-mortem
should a compromise succeed, we must know as much about
the malware as possible.

There is a wide variety of information that is useful to us:
indicators of compromise, command and control addresses,
campaign IDs, botnet names, revision numbers, cryptographic
keys, downloaded confi guration fi les that may contain web
injects, redirections, further modules, tertiary command and
control addresses, and many more.

We can use some of these items of information to aid
protection, others to identify infected hosts, decrypt network
traffi c and identify stolen data, and track threat campaigns to
help us assess the overall impact of the threat and provide
attribution.

Extracting this information can be a painstaking manual task
that takes a great deal of time. A far better solution is to
automate the process.

In this paper we outline our sandbox-based system that
automatically extracts command and control addresses,
decrypts and processes network traffi c and confi guration fi les,
and extracts and stores many other types of valuable data, in a
scalable and extensible way.

We describe the architecture of the system, the ease with
which new modules can be plugged in to handle new
malware families, and how we use this system to track and
protect our customers against highly prevalent and damaging
malware families including Vawtrak, Dyreza, Dridex and
Zeus.

INTRODUCTION

In 2014, two highly successful law enforcement actions took
out the Gameover Zeus botnet [1] and the Shylock botnet [2].
Contrary to many previous actions against fi nancial malware
operations, these takedowns effectively eradicated Gameover

Zeus and Shylock, representing perhaps the most successful
law enforcement and industry actions of their kind.

Despite these successes, banking malware is as prevalent and
as much of a threat as ever. New and evolved families such as
Dridex [3], Dyreza [4] and Vawtrak [5] have taken the place of
the families that were wiped out. This waxing and waning of
malware families is a pattern we have seen in the past and one
we can expect to continue in the future.

Since banking malware is going to be a threat for the
foreseeable future we must fi nd ways to combat it. In this
paper we present a system that automatically extracts a wide
variety of useful data from banking malware families that can
be used to help protect against further variants and to aid
incident response after successful compromises.

BREAKING BANKING MALWARE

One way to combat a threat is to attempt to gain as much
information about it as possible. This is a strategy we can
employ against banking malware. There is a wide variety of
data that we can extract from banking malware samples that
we can use to block elements of the malware’s functionality
and to establish what actions the malware carried out when
assessing the impact of a compromise.

The data we can extract ranges from the more obvious examples
such as command and control addresses (particularly useful
when there are backup addresses that may not be evident during
normal execution), to more obscure items such as decryption
keys, Domain Generation Algorithm (DGA) seed values,
campaign names, build versions, installation artifacts such as
fi le names and registry key names, network traffi c such as
downloaded confi guration fi les, downloaded modules and
commands received from the command and control server.

Some of this data is more directly useful for protecting against
further variants of the family, such as network artifacts which
can be blocked or used to identify other infected systems, and
downloaded updates and further modules for which detection
can be added.

Other types of data are more useful in discovering the
intentions of the malware authors, which can be useful when
attempting to develop more robust protection mechanisms.
This includes downloaded confi guration fi les which may
contain web page code injections and other valuable
information, as well as specifi c commands that the botnet
controllers may issue to infected machines, such as further
downloads or system information gathering commands. We
may fi nd that these types of data require other key pieces of
information to be extracted fi rst, such as decryption keys.
Figure 1 shows a snippet of the web page code injections from
a Vawtrak sample.

Yet further types of data may be useful to track specifi c
campaigns or the actors behind the campaigns. This is
generally the kind of meta-data that will help us differentiate
one variant from a similar variant that may have been used by
a different group. For example, many families embed a botnet
name or a campaign ID into binaries. We can extract these
values and use them to track specifi c variants over time.
Figure 2 shows the XML confi guration fi le extracted from a
Dridex loader sample that contains the botnet name, in this
case botnet ‘125’, and server addresses.

BREAKING THE BANK(ER): AUTOMATED CONFIGURATION DATA EXTRACTION... WYKE

252 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Table 1 provides a summary of the different types of data we
can extract and how they can be useful.

SOLUTIONS
The traditional way to extract this kind of information is
through manual analysis. A skilled analyst can reverse
engineer a malware sample and work out where this data is
stored and how it is encrypted, and use that information to

Figure 1: Web page code injection example used by Vawtrak.

Data type Uses

Command and control addresses Prevent further infection; identify additional compromises

Downloaded confi guration fi les Secondary and tertiary command and control addresses; web
page code injections (web injects); further module download
addresses; redirects; keylogger processes; etc.

Decryption keys Decrypt other data types

Campaign IDs, build versions, botnet names Actor tracking; variant distinction

DGA seed values Replicate DGA, block domains

Bot updates Replicate/detect new versions

Issued commands Further network addresses; gain understanding of attacker
intentions

Installation artifacts – fi lenames, registry key names,
etc.

Indicators of compromise; targets to extract from disk

Further cryptographic keys, e.g. signature verifi cation
keys

Actor tracking

Table 1: A comparison of the different types of extractable data.

Figure 2: Dridex botnet name and server details.

BREAKING THE BANK(ER): AUTOMATED CONFIGURATION DATA EXTRACTION... WYKE

253VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

decode data from memory or network captures. Perhaps the
analyst will write a quick tool to perform the decoding and
some of the extraction work on the sample.

However, this is not a solution that scales. Manual analysis is
a diffi cult process that can take a highly skilled researcher
several days or longer. When dealing with many thousands of
samples every day it is impossible for each one to be handled
by a human analyst. To successfully extract data for the
volume of samples that we would like, the process must be
entirely automated.

Furthermore, we need to distil the knowledge gained from
the analysis carried out by the human into a reusable form
that can be applied without modifi cation by a machine to
all other samples belonging to the same malware family.
We should embed this knowledge into a framework that
can easily be extended to perform a similar level of data
extraction against new malware families, and we should
ensure that the framework is capable of processing many
thousands of samples per day. The data we extract must be
machine-readable so that it can be passed onto other
systems such as URL reputation and sample-processing
systems.

An ideal location for this framework is an existing high
availability, high throughput automated analysis or sandbox
system. Many organizations are setting up systems such as
this for internal and external or commercial use. Embedding
the custom data extraction framework into a sandbox solution
means that all the problems of throughput, availability and
queue management become problems belonging to the
sandbox and we are free to concentrate on the data extraction
framework. For our solution we have used the freely available
Cuckoo sandbox [6].

ARCHITECTURE

Figure 3 represents a high-level overview of the architecture
of the system.

The key considerations are ensuring that the correct data is
collected during the sample execution and at the analysis end
stages and that the logic exists to correctly extract the
required information from the raw data during the processing
stage. Once the data has been properly extracted it can be
packaged and sent on to other systems.

CAPTURING DATA

Important items of information that we need to capture
typically include memory dumps, network traffi c, and registry
and disk changes.

For memory data we have found it advantageous to capture
full memory at the end of analysis and also to incorporate
inline memory dumping during execution. This is particularly
useful when applied to processes when they exit, by initiating
a dump from ExitProcess or a similar API hook, as these
processes and any data they contain will most likely not be
available in a full memory dump at the end of the analysis.

Cuckoo includes a facility called auxiliary modules that are
used to execute tasks in parallel to analysis jobs [7]. The
network capture takes place in an auxiliary module named
sniffer.py, which uses tcpdump to output a pcap fi le. We have
also found it useful to intercept and capture encrypted
network traffi c sent over TLS, which can be implemented
through a man-in-the-middle proxy and an additional
auxiliary module.

Some malware families will not display their full
functionality without certain conditions being met during
execution. For example, Vawtrak will not contact its
command and control server until a browser process makes
an outbound network connection. Some malware families
such as Tinba [8] use a DGA to calculate command and
control server addresses. It may take some time before a live
command and control server address is generated so we may
want to execute samples belonging to these families for
longer than others.

We may also see situations such as with many Zeus variants
where the sample fi le we have does not execute outside of the
specifi c location to which it was dropped on a victim
machine. Zeus encodes the pathname and a cryptographic
value that is dependent on the target machine into its own
executable, which prevents normal execution in a sandbox
system. If we wish to process these samples we will need
either to spoof values or to emulate the network activity that
the dropper sample would have carried out.

Fortunately, Cuckoo provides a feature called analysis
packages which we can use to ensure that the appropriate
circumstances for successful execution are created for each
family [9], should we establish that abnormal conditions are

Figure 3: High-level architecture.

BREAKING THE BANK(ER): AUTOMATED CONFIGURATION DATA EXTRACTION... WYKE

254 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

required. These analysis packages may be very simple, for
example in the Vawtrak case where we need only launch a
web browser after a certain period of execution, but they can
also be more complicated, as with Zeus variants, where we
dump the sample during execution, extract the information
necessary to send a request to the command and control
server, and send the data ourselves.

DATA PROCESSING
Once we have captured the raw data we must fi nd and extract
the information that is relevant to us. Cuckoo provides
processing modules that deal with various types of raw data
and present it in a structured way to the next layer. We can
add a processing module specifi cally for extracting the
confi guration data from the raw data captured during
execution.

We implemented a parent Confi gurationData processing
module that takes the data collected during analysis –
memory dumps, network captures and any disk and registry
artifacts that have been captured – applies a fi ltering stage
against the data to identify which family the sample may
belong to, and then loads another module that is designed
specifi cally for that malware family.

These family modules are the only part of the framework that
needs to be implemented for each family. They can vary
according to the specifi c requirements of the malware family
being addressed but they tend to be fairly similar. The
dumped fi les are searched for the markers that indicate where
important data structures are located. These data structures
are then decoded and added to the results dictionary returned
by the outer Confi gurationData module.

The data that has been extracted from the memory dumps will
likely then be used to decode other artifacts such as network
traffi c, registry hives or fi les from the disk. The accumulated
data is then added to the results for the analysis task.

This framework is fairly fl exible and allows for the use of
third-party modules for the actual data processing if required.
For example, we can use Volatility [10] modules against the
full memory dump or ChopShop modules [11] against the
network capture.

WORKED EXAMPLE

To illustrate the concept we will now give a detailed
walk-through of the data extraction module used to extract
data from Vawtrak samples.

All the code for dealing with Vawtrak data is contained
within a single Python module named vawtrakconfi g.py,
which contains a single class VawtrakConfi g. All such classes
should inherit from the Confi gData class which contains
initialization and helper methods. Each new class must at
least implement the getData() method which returns the
extracted data as a Python dictionary. Figure 4 shows a
simplifi ed overview of the VawtrakConfi g class.

Figure 4: VawtrakConfi g class overview.

Inside getData() we construct a dictionary object and fi ll it
with the various items of interest that we want to return.
These include the command and control addresses, build
version, project ID and POST request format string. We also
decode any useful data from the network capture, such as
downloaded confi guration fi les and commands received from
the server.

Vawtrak stores most of its static data (almost everything
except data downloaded from the web) inside an encrypted
blob embedded in the executable. Inside getData() we have
further methods to fi nd this blob inside the dumped PE fi le,
decode the data and add it to the results.

Figure 5 shows the piece of code that references the
encrypted blob, labelled as Ptr2EncryptedBlob in the image.

We fi nd this section of code using a regular expression and
extract the address of the encrypted blob from the code block.

Figure 5: Code referencing the Vawtrak encrypted blob.

BREAKING THE BANK(ER): AUTOMATED CONFIGURATION DATA EXTRACTION... WYKE

255VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

Once the blob has been located we can read it from the
dumped fi le and decrypt it in Python, grabbing the data from
the various offsets.

Vawtrak’s downloaded confi guration fi le is compressed with
aPLib [12] and then encrypted with the same algorithm as
used to encrypt the blob that contains the static details. To
make processing of the network traffi c easier, we fi rst convert
the pcap fi le to an HTTP Archive (HAR) fi le, then examine
each fl ow for likely command and control traffi c, decode it
and add the results to the dictionary.

EXTENDING

The process for adding data extraction for new malware
families is relatively simple as the framework we have
created does not generally need to be modifi ed. A new
family-specifi c module can be added that is just concerned
with the details of data extraction for this malware family.
Furthermore, since the framework is fairly generic, we can
apply this process to any types of malware where there is data
that we wish to extract that is not immediately evident from
normal execution, not just banking malware.

OUTPUT AND RESULTS

Once the data has been collated we can send it to the various
other systems that will consume and act on that data. For this
we use Cuckoo’s reporting modules. These are a class of

module that take the combined results dictionary and present
it in various formats, for example Cuckoo includes a JSON
reporting module which dumps the whole results dictionary
out to a JSON fi le, and a MongoDB reporting module which
outputs all the data into a MongoDB database that also acts as
a user-friendly web interface to the results.

We can include a reporting module that extracts all network
artifacts from the results and delivers them to a URL
reputation system. We can take all extracted PE fi les and send
them to a fi le-processing system. We may choose to send the
web injects and other contents from any downloaded
confi guration fi les to another database where those specifi c
details are stored for analysis.

It is worth demonstrating the output that can be achieved by
showcasing several examples. Figure 6 shows the
cryptographic key material and the confi guration fi le URLs
for a Citadel sample.

Figure 7 shows the campaign ID and command and control
server addresses for a Dyreza sample.

Figure 8 shows a variety of information extracted from a
Vawtrak sample, including the build version, command and
control addresses, the format string for its POST request and
the project ID used to differentiate between campaigns.

When this level of data extraction is employed on a large
scale we begin to see certain trends in the data. For example
we have used this data to track Vawtrak campaigns in [5], and

Figure 6: Citadel data.

Figure 7: Dyreza campaign ID and command and control servers.

BREAKING THE BANK(ER): AUTOMATED CONFIGURATION DATA EXTRACTION... WYKE

256 VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

to determine the geographically localized interests of the
Vawtrak customers based on the web injects deployed. We
can track re-use of encryption keys across Zeus variants and
identify samples that are likely to be operated by the same
groups. We can also identify similarities between the web
injects used in different banking malware families that might
indicate that the web injects have been developed by the same
individual or team. We can also identify when a new
organization is being targeted by web injects, redirects or
some other banking malware technique.

PITFALLS
There are certain pitfalls that are worth mentioning for
anyone who is looking to develop a similar project to this.

One snag we have occasionally found is the issue of certain
malware families needing slightly different circumstances
from others to execute to their full extent. We have already
discussed the use of analysis packages to create these
circumstances but it can also be advantageous to allow the
sample to execute for longer than normal so that maximum
opportunity is afforded to download modules and
confi guration fi les.

There is also an increasing trend of malware becoming more
modularized and multi-staged. It is useful to execute these
samples on multiple platforms as second-stage modules will
quite often be different depending on the architecture of the
victim machine. For example, Dridex will download an x86
version of its main module if running under x86 and an x64
version if executing under x64, so it is important to execute
the dropper on both platforms to ensure coverage for all the
components.

CONCLUSION

We have built a system that automates the extraction of a
wide range of valuable information from a range of banking
malware families. It is extensible and scalable and used for
protection as well as longer-term analysis purposes.

We have designed a framework that allows analysts to
concentrate on the hard part of the process – analysing the
malware – and not get bogged down dealing with extraneous

details that are typically copy-pasted from one project to
another.

We have shown that this system can be put to a variety of uses
ranging from blocking and detection of malware artifacts to
threat actor tracking and giving assistance to digital forensics
and incident response. The system can continuously be
improved by adding to the number and range of families that
are addressed, and this is an ongoing task.

REFERENCES

[1] U.S. Leads Multi-National Action Against
‘Gameover Zeus’ Botnet and ‘Cryptolocker’
Ransomware, Charges Botnet Administrator. United
States Department of Justice, June 2014.
http://www.justice.gov/opa/pr/us-leads-multi-
national-action-against-gameover-zeus-botnet-and-
cryptolocker-ransomware.

[2] Global Action Targeting Shylock Malware. Europol,
July 2014. https://www.europol.europa.eu/content/
global-action-targeting-shylock-malware.

[3] Olson, R. Dridex Banking Trojan Begins 2015 with a
Bang. January 2015. http://researchcenter.
paloaltonetworks.com/2015/01/dridex-banking-
trojan-begins-2015-bang/.

[4] Stone-Gross, B.; Khandhar, P. Dyre Banking Trojan.
December 2014. http://www.secureworks.com/cyber-
threat-intelligence/threats/dyre-banking-trojan/.

[5] Wyke, J. Vawtrak – International Crimeware-as-a-
Service. December 2014. https://www.sophos.com/
en-us/medialibrary/PDFs/technical%20papers/
sophos-vawtrak-international-crimeware-as-a-
service-tpna.pdf?la=en.

[6] http://www.cuckoosandbox.org/.

[7] http://cuckoo.readthedocs.org/en/latest/
customization/auxiliary/.

[8] http://securityblog.switch.ch/2015/06/18/so-long-
and-thanks-for-all-the-domains/.

Figure 8: Vawtrak extracted data.

BREAKING THE BANK(ER): AUTOMATED CONFIGURATION DATA EXTRACTION... WYKE

257VIRUS BULLETIN CONFERENCE SEPTEMBER 2015

[9] http://cuckoo.readthedocs.org/en/latest/
customization/packages/.

[10] http://www.volatilityfoundation.org/.

[11] https://github.com/MITRECND/chopshop.

[12] http://ibsensoftware.com/products_aPLib.html.

