
LAZARUS & BYOVD: EVIL TO THE
WINDOWS CORE
Peter Kálnai & Matěj Havránek
ESET, Czech Republic

peter.kalnai@eset.com
matej.havranek@eset.com

28 - 30 September, 2022 / Prague, Czech Republic

www.virusbulletin.com

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

2 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

ABSTRACT

As defined by the Microsoft Security Serving Criteria for Windows, the administrator-to-kernel transition is not a security
boundary. Nevertheless, it is an advantage to have the ability to modify kernel memory, especially if an attacker can achieve
that from user space. The Bring Your Own Vulnerable Driver (BYOVD) technique is a viable option for doing so: the
attackers carry and load a specific kernel driver with a valid signature, thus overcoming the driver signature enforcement
policy (DSE). Moreover, this driver contains a vulnerability that gives the attacker an arbitrary kernel write primitive. In
such cases, the Windows API ceases to be a restriction, and an adversary can tamper with the most privileged areas of the
operating system at will.

To complete this mission successfully, one must undergo an undoubtedly sophisticated and time-consuming process:
choosing an appropriate vulnerable driver; researching Windows’ internals, as the functioning of the kernel is not well
documented; working with a code base that is unfamiliar to most developers; and finally testing, as any unhandled error is
the last step before a BSOD, which might trigger a subsequent investigation and the loss of access.

In this paper we dive into a deep technical analysis of a malicious component that was used in an APT attack by Lazarus in
late 2021. The malware is a sophisticated, previously undocumented user-mode module that uses the BYOVD technique
and leverages the CVE-2021-21551 vulnerability in a legitimate, signed Dell driver. After gaining write access to kernel
memory, the module’s global goal is to blind security solutions and monitoring tools. This is tactically realized via seven
distinct mechanisms that target important kernel functions, structures, and variables of Windows systems from versions 7.1
up to Windows Server 2022. We will shed more light on these mechanisms by demonstrating how they operate and what
changes they make to system monitoring once the user-mode module is executed.

When compared to other APTs using BYOVD, this Lazarus case is unique, because it possesses a complex bundle of ways
to disable monitoring interfaces that have never before been seen in the wild. While some of the individual techniques may
have been spotted before by vulnerability researchers and game cheats, we will provide a comprehensive analysis of all of
them and put them in context.

INTRODUCTION

In October 2021, we recorded an attack on an endpoint of a corporate network in the Netherlands [1]. Various types of
malicious tools were deployed onto the victim’s computer, many of which can confidently be attributed to the infamous
Lazarus threat actor [2]. Besides usual malware like HTTP(S) backdoors, downloaders and uploaders, one sample attracted
our curiosity – an 88,064-byte user-mode dynamically linked library with internal name FudModule. Its functionality is the
main subject of this paper.

FUDMODULE

Installation

The complete chain of the delivery of FudModule was not fully recovered. The initial discovery was shellcode with an
encrypted buffer running in the memory space of a legitimate, but compromised, msiexec.exe process. In Figure 1 , one
can see the action of loading the decrypted buffer (l_au8Decrypted), which contains FudModule, and also that the 64-bit
return value (ret_Close) of its exported Close function is stored as a hexadecimal string in C:\WINDOWS\windows.ini.
The return value represents how successful the payload was in its mission.

F igure 1: In-memory shellcode that loads FudModule. The return value is stored in windows.ini.

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

3VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

It turns out that FudModule’s functionality is focused on the Windows kernel space. However, user-mode DLLs cannot
read or write kernel memory directly. To achieve that, this module leverages the Bring Your Own Vulnerable Driver
(BYOVD) technique – it loads an embedded, validly signed legitimate driver, DBUtil_2_3.sys, developed by Dell. There
are various flaws present in the driver, with a single CVE assigned in May 2021: CVE-2021-21551 (see [3]). The attackers
are only interested in acquiring the kernel write primitive. In case this step fails, the module quits, as any further actions
would be impossible to complete.

The driver is dropped into the C:\WINDOWS\System32\drivers\ folder under a name randomly chosen from
circlassmgr.sys, dmvscmgr.sys, hidirmgr.sys, isapnpmgr.sys, mspqmmgr.sys and umpassmgr.sys. Note
that this operation already requires administrator privileges.

In Figure 2, CVE-2021-21551 is triggered by calling the DeviceIoControl API with a specific control code and
buffer. The code, 0x9B0C1EC8 (IOCTL_VIRTUAL_WRITE), is a value required by the driver to execute the correct
program branch of DBUtil_2_3 for the kernel write vulnerability. The buffer consists of 32 bytes:
0x4141414142424242, followed by a specifically calculated kernel address and 16 zero bytes. The kernel address is
the location of the PreviousMode [4] member of the current thread’s ETHREAD object. Rewriting this parameter from
0x01 (UserMode) to 0x00 (KernelMode) will indicate to native system services that this user-mode thread originates
from kernel mode and all subsequent calls of the nt!NtWriteVirtualMemory API targeting kernel memory will
proceed successfully.

Fi gure 2: The current user-mode module has kernel mode enabled via the vulnerable driver’s ability to write to kernel
memory.

Several low-level Windows API functions from ntdll.dll are resolved dynamically: NtUnloadDriver, NtLoadDriver,
NtQuerySystemInformation, NtWriteVirtualMemory, RtlInitUnicodeString, NtOpenDirectoryObject,
NtOpenSection, NtMapViewOfSection, NtUnmapViewOfSection and RtlCreateUserThread. Moreover, the
following conditions must be met to prevent the module from exiting prematurely:

• The process must not be debugged (from checking the flag BeingDebugged in the Process Environment Block [5]).

• The version of Windows must be between Windows 7.1 and Windows Server 2022 (see a list of Windows versions at
[6]).

Next, the kernel base addresses of ntoskrnl.exe and netoi.sys must be obtained (by parsing the result of an
NtQuerySystemInformation call with the SystemModuleInformation parameter). These addresses are important for
resolving additional kernel pointers later.

What follows is an explanation of the types of kernel manipulations made by this malicious module. The numbering of the
next seven sections corresponds with the bit fields in the u32Flags value (see Figure 3). Recall that this bit field is
returned to the shellcode loading the module and stored in a file C:\WINDOWS\windows.ini, as shown in Figure 1. From
the high-level perspective, this module is responsible for removing notifications that are needed for a security solution to
monitor what is going on within the system and hence to flag potentially malicious behaviour.

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

4 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Fig ure 3: The main procedure of FudModule’s Close export.

Fea tures

There are seven features that FudModule tries to turn off. For each case, we try to cover the following:

• Purpose: to explain high-level behaviour, using a simple open-source driver example from Microsoft’s GitHub [7] or
complex closed software like Process Monitor or Windows Defender.

• Core: to show the underlying low-level principles of the feature, especially the kernel structures.

• Attack: to describe in detail how FudModule turns off the mechanism.

• Impact: to demonstrate what is affected and no longer working.

0x01: Registry callbacks

Microsoft’s documentation [8] states ‘a registry filtering driver is any kernel-mode driver that filters registry calls’. Such
drivers are notified of any WINAPI calls to registry functions. Besides various security solutions, a good example of an
application having such a filtering driver and relying on such callbacks is the well-known Process Monitor by Microsoft’s
Sysinternals team. The tool logs registry events (see Figure 4) inc luding just the regedit.exe process for simplicity. The
filter excludes all other event classes, because only the Registry switch is on.

Figu re 4: Process Monitor properly logging events from the Registry event class for regedit.exe.

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

5VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

All registry callbacks are stored in the doubly linked list CallbackListHead, which is unexported. When Process
Monitor is running, there are at least two registered callbacks: its own one and one belonging to WdFilter.sys, which is a
component of Windows Defender, see Figure 5. Note that the latter driver also occurs in many additional features.

Figur e 5: A doubly linked list CallbackListHead with two registered callback structures for WdFilter.sys and
Procmon24.sys. For simplicity, the red arrows sketch just one direction of the list.

So, the first step of FudModule is to obtain the address of the exported nt!CmRegisterCallback function within the
ntoskrnl.exe memory base. The procedure contains a reference of CallbackListHead, so its address helps to
compute the location of the doubly linked list of interest. The linked list is emptied in such a way that its tail points to its
head, indicating that it is empty. Thus, monitoring of any actions performed on the Windows registry relying on this
mechanism is stopped (see Figure 6). The Process Monitor’s current filter is shown explicitly, to demonstrate what was
expected to be logged, but wasn’t, despite our actions of opening and editing registry entries within the Regedit in the
background.

Figure 6: No registry events recorded in Process Monitor after meddling with the doubly linked list.

0x02: Object callbacks

There is a sample driver, ObCallbackTest.sys, of the ObCallbackTest solution on Microsoft’s GitHub [9] that
demonstrates the use of registered callbacks for process supervision. Using the user-mode executable
ObCallbackTestCtrl.exe with the corresponding switches, one can prevent a chosen process from being created
(-reject) or terminated (-name). When we use the latter switch for notepad.exe, a user cannot terminate that process,
as seen in the last two lines of Figure 7.

To perform the attack successfully, the first step is to locate the address of the exported nt!ObGetObjectType function.
Next, the attacker needs to find a pointer to the object callback table, nt!ObTypeIndexTable, with an algorithm such that
its success is not dependent on the version of Windows it runs on; see Figure 8 for various locations of the pointer of
interes t.

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

6 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 7: It’s not possible to kill notepad.exe after registering an object callback that controls process creation.

Figure 8 : The body of the nt!ObGetObjectType function of ntoskrnl.exe in Windows 7.1 and Windows 10 10773,
respectively.

This nt!ObTypeIndexTable table contains pointers to all OBJECT_TYPE structures. Each structure has a CallbackList
field that points to the head of a list of installed callbacks (see Figure 9 for the PsProcessType object). FudModule clears
this list in the same way as in the previous mechanism – by pointing its tail to its head.

Figure 9. PsProcessType, one of the OBJECT_TYPE structures in nt!ObTypeIndexTable. Highlighted in red is one
direction of the doubly linked list containing two callbacks, for WdFilter.sys and ObCallBackTest.sys.

Afterward s, the process notepad.exe (2560) from Figure 7 is no longer protected and we can kill it.

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

7VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

0x04: Process, image and thread callbacks

There are several process-related notifications available from the Windows kernel. One can run Process Monitor and track
events generated when a new process or thread starts and an executable image is loaded – see Figure 10 when just the
notepad.exe process is included for simplicity. The filter excludes all other event classes, because only the Process
switch is on.

Figure 10: Process Monitor properly logging events from the Process event class for notepad.exe.

The callbacks are organized in three global tables of pointers denoted as nt!PspCreateThreadNotifyRoutine,
nt!PspSetCreateProcessNotifyRoutine and nt!PspLoadImageNotifyRoutine. Figure 11 shows the
PspLoadImageNotifyRoutine function table with two callbacks for an allowlisted ahcache.sys (in dark blue) and
targeted Procmon24.sys (in red).

Figure 11: PspLoadImageNotifyRoutine function table with two callbacks for an allowlisted ahcache.sys and
targeted Procmon24.sys.

The attack starts by resolving the kernel addresses of the functions nt!PsSetCreateThreadNotifyRoutine,
nt!PsSetCreateProcessNotifyRoutineEx and nt!PsSetLoadImageNotifyRoutine. Next, the addresses of the
global pointers are obtained algorithmically, so that success is preserved with a Windows update. Finally, the tables are
parsed; before removing a callback, a check is performed to see if it belongs in the list of allowlisted drivers seen in Table 1.

FudModule seems to care about the safety of the unhooking operation; it also resolves the global variable
nt!PspNotifyEnableMask, which is zeroed first, so no notifications are sent to existing drivers; then the notification
handler pointers for non-allowlisted drivers are cleared. Finally, the nt!PspNotifyEnableMask is restored to its original
value, so the allowlisted drivers continue to function without being affected.

Filename Description
\ntoskrnl.exe NT Kernel & System
\ahcache.sys Application Compatibility Cache
\mmcss.sys Multimedia Class Scheduler Service Driver
\cng.sys Kernel Cryptography, Next Generation
\ksecdd.sys Kernel Security Support Provider Interface
\tcpip.sys TCP/IP Driver
\iorate.sys I/O Rate Control Filter
\ci.dll Code Integrity Module
\dxgkrnl.sys DirectX Graphics Kernel

Table 1: Al lowlist of Microsoft drivers.

As a result, security solutions that have set up notifications for when a process or a thread is created would no longer be
notified of such events. In particular, Process Monitor won’t show the process-related activity of notepad.exe – see

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

8 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 12. Again, the current filter is shown explicitly, to demonstrate what was expected to be logged but wasn’t, despite
our actions of opening and closing instances of Notepad in the background.

F igure 12: No process events of notepad.exe recorded in Process Monitor after removing process-related callbacks.

0x08: File system callbacks in non-legacy minifilters

There’s a Scanner File System Minifilter Driver solution in Microsoft’s GitHub [10] that demonstrates how a
minifilter examines file system data. When its user-mode console component scanuser.exe is running, it communicates
with the scanner.sys kernel driver. It is possible to specify a list of denied keywords, restricting any operations that
contain them. In our case, we chose the EICAR test string [11]. Figure 13 shows a failed attempt to save the string to a new
file called malware.txt.

Fi gure 13: Write access to a file is denied when it contains a forbidden string.

FudModule aims to turn off this functionality by disabling all non-legacy minifilters. First, the kernel memory address of
nt!MmFreeNonCachedMemory is obtained in order to calculate the value of the non-exported nt!MiPteInShadowRange
function. Next, the addresses of three functions, FilterFindNext, FilterFindFirst and FilterFindClose, from
fltlib.dll, are retrieved to parse the FILTER_AGGREGATE_STANDARD_INFORMATION structures containing information
about minifilters and legacy filter drivers. Minifilters are an option, provided by the operating system to third-party
developers, representing a simpler and more robust alternative to legacy file system filter drivers [12]. Put simply,
minifilters are Windows file system drivers that monitor or track file system data, with components of endpoint security
products like AVs and EDRs being a classic example.

FudModule then retrieves only the non-legacy minifilters (identified by the flag FLTFL_ASI_IS_LEGACYFILTER [13]
being set to false) and stores them in an array within the malicious structure. Moreover, and quite to our surprise, the
attackers continue performing very risky manipulations and modifying the PostCall field for numerous IRP dispatch
routines [14] (like IRP_MJ_ACQUIRE_FOR_SECTION_SYNCHRONIZATION, IRP_MJ_CREATE_MAILSLOT, IRP_MJ_
CREATE, IRP_MJ_WRITE, IRP_MJ_SET_INFORMATION and IRP_MJ_FILE_SYSTEM_CONTROL) in the loaded minifilter.
FudModule modifies the prologs of the minifilter’s functions so that they return immediately instead of processing the

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

9VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

notification. This level of intrepidity in the kernel space is rarely seen among malware authors. See Figure 14 for an
example of the scanner.sys minifilter being disabled – making malware.txt from Figure 13 accessible again.

Fig ure 14: Runtime modification of the scanner.sys minifilter. On the left is the original prolog, on the right the modified
one, skipping the actual filtering code and returning immediately.

0x10: Windows Filtering Platform callouts

The Windows Filtering Platform (WFP) [15] is a set of system services providing a platform for creating network filtering
applications. WFP callout drivers [15] extend the capabilities of the WFP by processing TCP/IP-based network data. They
are used for deep packet inspection, packet modification, stream modification and data logging, e.g. endpoint security,
HIPS, firewalls and EDR products.

There’s a project called PacketModificationFilter as a part of [16], which is a minimalistic TCP and UDP firewall
based on WFP callouts and has the source code available. We customized it to block the EICAR test string when sent
locally over TCP – see Figure 15. In its upper pane, a WFP callout is registered for a local TCP connection via port 12345.
In the lower left pane is the running server listening on the port 12345 and in the lower right pane is the client able to send
messages through the corresponding port. First, a string LegitimateTraffic is sent to test the communication, and
succeeds. Next, the forbidden EICAR test string is sent, and the communication is blocked (the logic is implemented in the
PacketModificationFilter driver, where the EICAR string is also hard coded) and the error message
‘ConnectionAbortedError: [WinError 10053] An established connection was aborted by the software in your host machine’
is printed.

Figu re 15: The EICAR test string triggered the blocking of server-client connection (lower pane) after the WFP callout is
created on the local TCP connection over port 12345 (upper pane).

Despite our efforts to understand callout structures, we still do not fully comprehend their definition. A default callout
structure is initialized in the subroutine netio!InitDefaultCallout, as shown in Figure 16. Note that the size of the
structure is 80 bytes and the initialization sets the callout flags to 0x40 (line 20).

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

10 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figur e 16: Default callout initialization in Windows 10. The size of the structure is 80 bytes and the flags are set to 0x40.

However, the registration of a filter callout via fwpkclnt!FwpsCalloutRegister in the PacketModificationFilter
project assumes the size of 48 bytes only, for the Windows 10 SP3 version and above, see Listing 1.

#if (NTDDI_VERSION >= NTDDI_WIN10_RS3)

// Version-1 of run-time state necessary to invoke a callout.
typedef struct FWPS_CALLOUT3_
{

// Uniquely identifies the callout. This must be the same GUID supplied to
// FwpmCalloutAdd0.
GUID calloutKey;
// Flags
UINT32 flags;
// Pointer to the classification function.
FWPS_CALLOUT_CLASSIFY_FN3 classifyFn;
// Pointer to the notification function.
FWPS_CALLOUT_NOTIFY_FN3 notifyFn;
// Pointer to the flow delete function.
FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN0 flowDeleteFn;

} FWPS_CALLOUT3;

Listing 1: A definition of a callout structure in fwpvi.h.

F igure 17: The flag FWP_CALLOUT_FLAG_CONDITIONAL_ON_FLOW is set in the callout structure by FudModule.

We checked the registered callouts in memory during runtime; they had 80 bytes. In the code of
PacketModificationFilter, there are no flags set. The modification by FudModule sets the bit FWP_CALLOUT_FLAG_
CONDITIONAL_ON_FLOW in the callout’s flags (see Figure 17) . This is done to all non-allowlisted drivers (see Table 1), which
includes, besides PacketModificationFilter, network monitoring drivers of third-party vendors’ security products.

In order to locate the callout structures in the kernel memory, the module need to carry out several steps. First, it obtains the
address of the exported netio!WfpProcessFlowDelete function. Next, the attacker needs to find a pointer to the object
callback table, netio!gWfpGlobal, again with an algorithm not dependent on the version of Windows. Then the number
of callout entries and the pointer to an array of callout structures are obtained using version-specific constants from the

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

11VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

malware’s configuration, u64Offset_Callouts_StructuresPointer and u64Offset_Callouts_
NumberofEntries (see Figure 22). Finally, the location of the structure member containing flags is calculated from a
hard-coded constant, u32Size_CalloutsEntry.

However, the particular modification did not change the outcome of the initial demonstration, so what the attackers aimed
at with this feature is still not clear to us.

0x20: Handles of event tracing for Windows

According to Microsoft’s documentation, Event Tracing for Windows (ETW) [17] is a kernel-level tracing model that provides
a mechanism to trace and log events that are raised by user-mode applications and kernel-mode drivers. Events can be
consumed in real time or from a log file. There are three components of ETW: controllers, providers and consumers.

Thanks to the exported nt!EtwRegister function, the FudModule derives the locations of all ETW Tracing Provider
Handles (parsing through all calls to nt!EtwRegister and collecting the fourth parameter, named RegHandle [18]). As
seen in Figure 18, these handles include nt!EtwpEventTracingProvRegHandle, nt!EtwKernelProvRegHandle,
nt!EtwpPsProvRegHandle, nt!EtwpNetProvRegHandle, nt!EtwpDiskProvRegHandle,
nt!EtwpFileProvRegHandle, nt!EtwpRegTraceHandle, nt!EtwpMemoryProvRegHandle,
nt!EtwAppCompatProvRegHandle, nt!EtwApiCallsProvRegHandle, nt!EtwCVEAuditProvRegHandle,
nt!EtwThreatIntProvRegHandle, nt!EtwLpacProvRegHandle, nt!EtwAdminlessProvRegHandle,
nt!EtwSecurityMitigationsRegHandle and nt!PerfDiagGlobals.

Fi gure 18: The fourth parameter of the nt!EtwRegister call is a pointer to the target handle.

Figure 19 illustrates the module zeroing these handles of interest. This means that there are no system ETW providers for
any consuming application. This should effectively mean that many relevant ETW monitoring providers are disabled.
However, as of the time of writing this paper, we haven’t been able to demonstrate the impact of this kernel modification.

Fig ure 19: On the left, FudModule’s implementation. On the right, its effect of zeroing all ETW Register Handles during
runtime, with only one provider highlighted in red.

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

12 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

0x40: nt!PfSnNumActiveTraces

Prefetch files are an important component of the Windows operating system, responsible for speeding up process creation
by caching process metadata. Moreover, they are also relevant in digital forensics because they help reconstruct the timeline
of events before and during an incident. A Lazarus attack often involves using a large number of artifacts and executables.
Removing such evidence makes any investigation much harder, but prefetch files are often left behind. One of the tools that
reads the prefetch files stored in a Windows system and displays the information stored in them is WinPrefetchView [19] by
NirSoft. The normal behaviour of the tool is shown in the upper pane of Figure 20, capturing the execution of Notepad and
Calculator.

Figu re 20: Prefetch files before and after manually exceeding the limit for allowed traces in Nirsoft’s WinPrefetchView.

To prevent creating prefetch files, FudModule is interested in the global kernel variable nt!PfSnNumActiveTraces,
which is referenced in several ntoskrnl.exe procedures (e.g. nt!PfSnBeginTrace, nt!PfSnActivateTrace,
nt!PfSnDeactivateTrace, nt!PfSnProcessExitNotification and nt!PfFileInfoNotify). As seen in Figure
21, the attackers chose the last-mentioned procedure to locate the position of nt!PfSnNumActiveTraces and set its value
to 0xFFFFFF. The procedure nt!PfSnBeginTrace exits prematurely if nt!PfSnNumActiveTrace reaches a threshold
value represented by g_u32Traces_Threshold (unlike the other names in Figure 21, this name is not from the official
PDB database but denotes our own understanding of the variable’s role).

Figur e 21: The nt!PfSnBeginTrace function returns prematurely if nt!PfSnNumActiveTraces surpasses the
g_u32Traces_Threshold value.

Afterwards, the execution of Windows applications is no longer traced – see the empty listbox in the lower pane of Figure 20.

Malware configuration

Finally, in Figure 22 we can see the module’s complete runtime configuration. It is stored as a structure in its memory address
space and contains all information required for the malware to function. It includes the handle of the DBUtil_2_3.sys
driver; its installation path; the module base addresses of ntoskrnl.exe and netio.sys; pointers to the located kernel
variables like nt!CallbackListHead (section 0x01, above), nt!ObTypeIndexTable (section 0x02, above), and
nt!PspNotifyEnableMask (section 0x04, above). The names of up to 20 non-legacy minifilters can be stored in the
structure, indicating that they should be disabled (section 0x08, above). There is also space for up to 20 kernel addresses of
ETW providers to nullify (section 0x20, above). Moreover, there are multiple structure members representing offsets of
important kernel variables that vary throughout different Windows versions. The malware developers have researched the
correct values for the most of the Windows builds from 7601 up to 20348. We show an example for Windows 7.1 build 7601
(highlighted in purple) and for Windows 10 build 17763 (highlighted in dark blue).

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

13VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 22: The complete runtime configuration of FudModule stored in a structure. Many constants differ among OS
versions.

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

14 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Related work

The earliest mentions of Object Callbacks (0x02) that we found online are in a blog post by Doug ‘Douggem’ Confere
from May 2015 [20] introducing the concept, and a blog post by Adam Chester from December 2017 [21], explaining their
role in an anti-debugging technique of a protected anti-virus process. Process, thread and image load notification callbacks
(0x04) were analysed in a post published on triplefault.io in September 2017 [22].

We would like to point out a talk by Christopher Vella from 2019 [23] that touches on the topic of disabling the callbacks of
types 0x01, 0x02 and 0x04, thus blinding Endpoint Detection and Response (EDR) [24] solutions generically. An
additional blog post that deals with the removal of the same type of callbacks is by infosec researcher br-sn from August
2020 [25]. A web resource describing the process of minifilter (0x08) hooking was published in 2020 [26]. Considering
Windows Filtering Platform and callouts (0x10), the idea of a kernel driver filtering out malicious traffic based on WFP
was published in 2012, see [27]. Regarding Event Tracing for Windows (0x20), we found a blog post on neutralizing an
ETW Threat Intelligence Provider from May 2021 [28] and an academic paper proposing a logging technique based on
ETW from December 2015 [29]. Finally, we didn’t find any online resource explaining the 0x40 mechanism. However, in
[30], the authors mention the PfSnBeginTrace API function in relation to their research on Windows prefetch files, which
brought us on the right track (after they pointed out that the prefix Pf means ‘prefetch’).

For research purposes, it’s an advantage to see various kernel objects in a GUI. There’s an actively developed but closed
project called Windows Kernel Explorer by Axt Müller [31] that is able to display the corresponding data from the
kernel for all the features, except the data related to 0x20 and 0x40. In the open-source category, we found a project called
CheekyBlinder by br-sn [32], partially covering features 0x01, 0x02 and 0x04, but not tested on many Windows versions
and with its most recent commit from August 2020. The tool EtwExplorer can display data on ETW providers of the
feature 0x20, see [33].

A general resource for Windows kernel programming is the book by Pavel Yosifovich [34]. It also explains, in Chapters 9
and 10, many of the features discussed here.

A blog post on various vulnerable kernel drivers by Michal Poslušný was published in January 2022, see [35] and the
bibliography section for additional related research.

CONCLUSION
In the attacks attributed to Lazarus, there are usually many tools distributed to compromise endpoints in the networks of
interest. The above-mentioned case in the Netherlands from October 2021 stood out with the discovery of the user-mode
FudModule operating robustly in kernel space, using Windows internals that have little to no documentation. For the first
time in the wild, the attackers were able to leverage CVE-2021-21551 in order to disable the monitoring capabilities of all
security solutions, by using mechanisms either not known before or familiar only to specialized security researchers and
(anti-)cheat developers. On the attackers’ side, this undoubtedly required deep research, development, and intense testing.
For security researchers and product developers, this should be a motivation for re-evaluation of their implementations and
increasing their solutions’ self-protection features.

IOCS

File SHA256
FudModule.dll 97C78020EEDFCD5611872AD7C57F812B069529E96107B9A33B4DA7BC967BF38F

Dbutil_2_3.sys 0296E2CE999E67C76352613A718E11516FE1B0EFC3FFDB8918FC999DD76A73A5

REFERENCES
[1] Kálnai, P. Amazon-themed campaigns of Lazarus in the Netherlands and Belgium. WeLiveSecurity. 30 September

2022. https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium.

[2] Park, S. Multi-universe of adversary: multiple campaigns of the Lazarus group and their connections. Virus Bulletin
Conference Proceedings. 2021. https://vblocalhost.com/uploads/VB2021-Park.pdf.

[3] Dekel, K. CVE-2021-21551- Hundreds Of Millions Of Dell Computers At Risk Due to Multiple BIOS Driver
Privilege Escalation Flaws. Sentinel Labs Security Research. May 2021. https://www.sentinelone.com/labs/cve-2021-
21551-hundreds-of-millions-of-dell-computers-at-risk-due-to-multiple-bios-driver-privilege-escalation-flaws/.

[4] Microsoft. PreviousMode. December 2021. https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/
previousmode.

[5] Microsoft. !peb. December 2021. https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/-peb.

[6] Wikipedia. List of Microsoft Windows verions. https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions.

[7] Microsoft. Driver Samples for Windows. 10 June 2022. https://github.com/microsoft/Windows-driver-samples.

https://github.com/microsoft/Windows-driver-samples
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/-peb
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/previousmode
https://www.sentinelone.com/labs/cve-2021-21551-hundreds-of-millions-of-dell-computers-at-risk-due-to-multiple-bios-driver-privilege-escalation-flaws
https://vblocalhost.com/uploads/VB2021-Park.pdf
https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium

LAZARUS & BYOVD: EVIL TO THE WINDOWS CORE KÁLNAI & HAVRÁNEK

15VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

[8] Microsoft. Filtering Registry Calls. December 2021. https://docs.microsoft.com/en-us/windows-hardware/drivers/
kernel/filtering-registry-calls.

[9] microsoft / Windows-driver-samples. GitHub. https://github.com/microsoft/Windows-driver-samples/tree/main/
general/obcallback.

[10] microsoft / Windows-driver-samples. GitHub. https://github.com/microsoft/Windows-driver-samples/tree/main/
filesys/miniFilter/scanner.

[11] Wikipedia. EICAR test file. https://en.wikipedia.org/wiki/EICAR_test_file.

[12] Microsoft. About file system filer drivers. December 2021. https://docs.microsoft.com/en-us/windows-hardware/
drivers/ifs/about-file-system-filter-drivers.

[13] Microsoft. FILTER_AGGREGATE_STANDARD_INFORMATION structure (fltuserstructures.h). April 2021.
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltuserstructures/ns-fltuserstructures-_filter_
aggregate_standard_information.

[14] Microsoft. Writing IRP Dispatch Routines. December 2021. https://docs.microsoft.com/en-us/windows-hardware/
drivers/ifs/writing-irp-dispatch-routines.

[15] Microsoft. Introduction to Windows Filtering Platform Callout Drivers. December 2021.
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-windows-filtering-platform-
callout-drivers.

[16] Vach, M. Paketový filtr a modifikátor. Diploma Thesis. University of Pardubice, 9. September 2014.
https://dk.upce.cz/handle/10195/58000.

[17] Microsoft. Event Tracing for Windows (ETW). December 2021. https://docs.microsoft.com/en-us/windows-
hardware/drivers/devtest/event-tracing-for-windows--etw-.

[18] Microsoft. EtwRegister function (wdm.h). April 2022. https://docs.microsoft.com/en-us/windows-hardware/drivers/
ddi/wdm/nf-wdm-etwregister.

[19] NirSoft. WinPrefetchView v1.37. https://www.nirsoft.net/utils/win_prefetch_view.html.

[20] Confere, D. ObRegisterCallbacks and Countermeasures. Douggem’s game hacking and reversing notes. 27 May
2015. https://douggemhax.wordpress.com/2015/05/27/obregistercallbacks-and-countermeasures/.

[21] Chester, A. Windows Anti-Debug techniques – OpenProcess filtering. 13 December 2017. https://blog.xpnsec.com/
anti-debug-openprocess/.

[22] triplefault.io. Enumerating process, thread, and image load notification callback routines in Windows.
17 September 2017. https://www.triplefault.io/2017/09/enumerating-process-thread-and-image.html.

[23] Vella, C. Reversing & bypassing EDRs. CrikeyCon, 2019. https://www.youtube.com/watch?v=85H4RvPGIX4.

[24] Wikipedia. Endpoint detection and response. https://en.wikipedia.org/wiki/Endpoint_detection_and_response.

[25] br-sn. Removing Kernel Callbacks Using Signed Drivers. GitHub. 2 August 2020. https://br-sn.github.io/
Removing-Kernel-Callbacks-Using-Signed-Drivers/.

[26] Shamriz, A. Part 1: Fs Minifilter Hooking. 10 July 2020. https://aviadshamriz.medium.com/part-1-fs-minifilter-
hooking-7e743b042a9d.

[27] Govind, K.; Kumar Pandey, V.; Selvakumar, S. Pattern Programmable Kernel Filter for Bot Detection. Defence
Science Journal 62.3 (2012): 174-179. https://publications.drdo.gov.in/ojs/index.php/dsj/article/view/1425.

[28] CNO Development Labs. Data Only Attack: Neutralizing EtwTi Provider. May 2021. https://public.cnotools.studio/
bring-your-own-vulnerable-kernel-driver-byovkd/exploits/data-only-attack-neutralizing-etwti-provider.

[29] Ma, S., et al. Accurate, Low Cost and Instrumentation-Free Security Audit Logging for Windows. Proceedings of
the 31st Annual Computer Security Applications Conference. Los Angeles, 2015. 401-410. https://dl.acm.org/doi/
abs/10.1145/2818000.2818039.

[30] Shashidhar, N.; Novak, D. Digital Forensic Analysis on Prefetch Files: Exploring the Forensic Potential of Prefetch
Files in the Windows Platform. International Journal of Information Security Science 4.2 (2015): 39-49.
https://www.ijiss.org/ijiss/index.php/ijiss/article/download/118/pdf_25.

[31] Müller, A. Windows Kernel Explorer. 11 November 2021. https://github.com/AxtMueller/Windows-Kernel-Explorer.

[32] br-sn. CheekyBlinder. GitHub. 9 August 2020. https://github.com/br-sn/CheekyBlinder.

[33] Yosifovich, P. EtwExplorer 0.39. 21 February 2019. https://github.com/zodiacon/EtwExplorer.

[34] Yosifovich, P. Windows Kernel Programming. Lean Publishing, 2020. https://leanpub.com/windowskernelprogramming.

[35] Poslušný, M. Signed kernel drivers – Unguarded gateway to Windows’ core. We Live Security. 11 January 2022.
https://www.welivesecurity.com/2022/01/11/signed-kernel-drivers-unguarded-gateway-windows-core/.

https://www.welivesecurity.com/2022/01/11/signed-kernel-drivers-unguarded-gateway-windows-core/
https://leanpub.com/windowskernelprogramming
https://github.com/zodiacon/EtwExplorer
https://github.com/br-sn/CheekyBlinder
https://github.com/AxtMueller/Windows-Kernel-Explorer
https://www.ijiss.org/ijiss/index.php/ijiss/article/download/118/pdf_25
https://dl.acm.org/doi/abs/10.1145/2818000.2818039
https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/exploits/data-only-attack-neutralizing-etwti-provider
https://publications.drdo.gov.in/ojs/index.php/dsj/article/view/1425
https://aviadshamriz.medium.com/part-1-fs-minifilter-hooking-7e743b042a9d
https://br-sn.github.io/Removing-Kernel-Callbacks-Using-Signed-Drivers/
https://en.wikipedia.org/wiki/Endpoint_detection_and_response
https://www.youtube.com/watch?v=85H4RvPGIX4
https://www.triplefault.io/2017/09/enumerating-process-thread-and-image.html
https://blog.xpnsec.com/anti-debug-openprocess/
https://douggemhax.wordpress.com/2015/05/27/obregistercallbacks-and-countermeasures/
https://www.nirsoft.net/utils/win_prefetch_view.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-etwregister
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://dk.upce.cz/handle/10195/58000
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-windows-filtering-platform-callout-drivers
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/writing-irp-dispatch-routines
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltuserstructures/ns-fltuserstructures-_filter_aggregate_standard_information
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/about-file-system-filter-drivers
https://en.wikipedia.org/wiki/EICAR_test_file
https://github.com/microsoft/Windows-driver-samples/tree/main/filesys/miniFilter/scanner
https://github.com/microsoft/Windows-driver-samples/tree/main/general/obcallback
https://github.com/microsoft/Windows-driver-samples/tree/main/general/obcallback

