
COMBATING CONTROL FLOW
FLATTENING IN .NET MALWARE
Georgy Kucherin
Kaspersky, Russia

georgy.kucherin@gmail.com

28 - 30 September, 2022 / Prague, Czech Republic

www.virusbulletin.com

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

2 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

ABSTRACT
It has become increasingly popular for developers of targeted malware to create sophisticated custom obfuscators that make
use of control flow transformation techniques. One such technique is control flow flattening. It basically rearranges lines of
code in a chaotic manner, thus making analysis tedious.

While control flow flattening has previously been researched in the context of C and C++ binaries, virtually no attention
has been given to unflattening .NET programs. Furthermore, existing deobfuscation software that removes unflattening in
C/C++ programs cannot be applied to .NET binaries. That is because .NET code is compiled not to x86 assembly, but to a
virtual bytecode called Common Intermediate Language.

Advanced threat actors favour using control flow flattening to protect their .NET implants. For example, this obfuscation
was employed in early versions of the Kazuar backdoor. It has also recently been spotted in DoubleZero, a wiper
discovered in March 2022 in Ukraine.

In this research, we detail how to remove control flow flattening from .NET binaries, taking the DoubleZero wiper as an
example. To perform unflattening, we modify the source code of de4dot, a popular .NET deobfuscation framework. We first
explain how to restore DoubleZero’s original control flow. Then we move from general to specific and demonstrate how to
add a custom deobfuscator module to de4dot. Afterwards, we describe how de4dot’s block deobfuscation component comes
in useful for implementing the unflattening algorithm. Along the way, we give multiple tips on how to use other de4dot
features.

The paper is accompanied by extensively commented code of the unflattener. It manages to successfully deobfuscate all
of DoubleZero’s functions. It is possible to use this code as a basis for creating unflatteners of other .NET malware
families.

INTRODUCTION
Control flow flattening is an obfuscation technique that is considered quite difficult to combat. For this reason, it is often
used in malware to considerably slow down the process of its reverse engineering. For example, it is quite common to
encounter flattened C or C++ samples protected with OLLVM, an open-source obfuscator. Examples of such malware
include FinSpy and Emotet. In the case of C and C++, control flow flattening can be removed using plug-ins for the
Hex-Rays decompiler [1]. However, there is not much information available about how to perform unflattening of C#
(.NET) binaries. This is despite the fact that this obfuscation can be encountered in C# malware as well. For instance, it has
recently been found in the DoubleZero wiper, which was discovered in Ukraine in 2022. In this paper we will discuss how
to unflatten DoubleZero’s code and make its functions with thousands of lines look pretty.

We will first examine a sample of DoubleZero and find out how control flow flattening is implemented in it. Then, we will
describe the steps required to remove the flattening from the sample. Finally, and most importantly, we will explain in great
detail how to implement the unflattening algorithm using de4dot, a framework for deobfuscating .NET binaries. We assume
that the readers of this paper have no previous experience of working with this framework. While explaining how to code
the unflattener, we will provide all the necessary information about de4dot’s internals.

TAKING A LOOK AT DOUBLEZERO
The sample of DoubleZero that we will be lookin g at (SHA256:
30b3cbe8817ed75d8221059e4be35d5624bd6b5dc921d4991a7adc4c3eb5de4a) can be downloaded for free from
vx-underground [2]. In order to better understand the contents of this paper, we strongly recommend that the reader
downloads the sample and follows along with our steps.

First, we will open the sample in dnSpy, a .NET decompiler. Upon looking at DoubleZero’s Main function (Figure 1), we
observe that it has 1,392 lines. The code itself is heavily obfuscated and difficult to read.

In order to better understand what kind of obfuscation we are dealing with in this sample, we will take a look at another
function that has many fewer lines of code, namely _6d604a38de5c5e96._a39a27ee5cddb1d4. In this function, we
observe the code as shown in Figure 2.

On lines 4-10 in the snippet shown in Figure 2, we initialize an array of five integer arrays. Then, on line 12, we iterate over
each integer array, using the variable i to access its elements. On line 13, we pass each integer array to the
X1BFovEdxME9D.HbkAc6Pu function that returns an integer. Since this function accepts an array of integers with large
numbers and returns a rather small integer (such as 13 or 121), we can deduce that X1BFovEdxME9D.HbkAc6Pu is an
integer decryption function.

Depending on the value of the decrypted integer, we can either:

• Go to line 15 (if the integer equals 13)

• Go to line 18 (if the integer equals 121)

• Go to the next iteration of the loop (if the integer is neither 13 nor 121).

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

3VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 1: A snippet of DoubleZero’s Main function.

Figure 2: Obfuscated code.

By looking at this snippet of code, we can conclude that this obfuscation technique rearranges lines of code in a random
order. During execution, the program uses an array of integer arrays to determine the correct order in which lines should be
executed. This exact type of obfuscation is called control flow flattening.

If we examine the code that is executed if the variable num is equals 121 (which has been omitted from Figure 2), we
encounter another layer of flattening that looks more complex (Figure 3).

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

4 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 3: Another example of flattened code.

In this sample we are also dealing with nested flattening: a layer of flattened code may contain another layer of flattened
code inside it.

MANUALLY DEOBFUSCATING CONTROL FLOW FLATTENING
As we have just noted, functions in the DoubleZero sample contain multiple flattening layers that make the process of
manually removing flattening from the code quite tedious. However, before trying to remove control flow flattening in an
automated way, we first need to understand how to get rid of flattening manually. As an example, we will remove flattening
from the code shown in Figure 3.

First, we need to get the order in which flattened lines of code are executed. Recall from the previous section that this
execution sequence is stored in the array2 variable. This variable contains 15 integer arrays. To extract the execution
sequence, we need to pass each one of the 15 arrays into the X1BFovEdxME9D.HbkAc6Pu function that performs integer
decryption. By doing that, we will obtain 15 integers that encode the execution order.

The easiest way to decrypt the integers is via dnSpy’s C# interactive console, which can be opened via the ‘View’ menu. In
order for the decryption to work, we need to paste the contents of the decryption function and the encrypted integers into
the console. Then, we need to invoke the decryption function for every encrypted integer, as shown in Figure 4.

Figure 4: Decrypting the execution order array using dnSpy’s C# interactive console feature.

As a result, we get the following execution order list: {542, 98, 204, 579, 200, 559, 234, 492, 423, 581,
544, 179, 140, 495, 220}.

If we match the execution order list with the code in Figure 3, we will notice that some numbers from the list are missing in
the code (for example, the number 98 at index 1 of the list cannot be seen in any of the if conditions). As these numbers do

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

5VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

not correspond to any lines of flattened code, we will have to remove them from our list. After doing that, we get the
following list: {542, 559, 581, 544}.

Finally, we should place the flattened code lines in the correct order by copying and pasting them. By doing that, we obtain
the following unflattened code (Chinese characters were omitted from the code for clarity):

_9f6717951b3535fb.RtlAdjustPrivilege(9UL, true, false, ref flag);

_9f6717951b3535fb.RtlAdjustPrivilege(17UL, true, false, ref flag);

_9f6717951b3535fb.RtlAdjustPrivilege(18UL, true, false, ref flag);

_9f6717951b3535fb.RtlAdjustPrivilege(19UL, true, false, ref flag);

DISCUSSING HOW TO AUTOMATE CONTROL FLOW UNFLATTENING

In the previous section, we performed the following operations in order to get rid of control flow flattening:

1. Extracted the execution order of flattened code from an array.

2. Reordered lines of flattened useful code in accordance with the execution order.

Now we need to think of a way to automate these two actions. Extracting the execution order does not look difficult to do.
As we remember, the execution order is stored as an array (with type object []) of integer arrays (int []). This
combination of two types can be used as a pattern to detect arrays containing the execution sequence. As we will see in the
next section, such a pattern matching algorithm is efficient enough and can be implemented in a few lines of code.

Line reordering is trickier to automate. Before being able to perform the reordering itself, we should first think of how to
match a number from the execution order to the lines of code that correspond to this number. For example, we should be
able to determine programmatically that in the case of Figure 3, number 542 corresponds to the line
_9f6717951b3535fb.RtlAdjustPrivilege(9UL, true, false, ref flag);.

A solution that perhaps seems obvious is to implement the number-to-code matching algorithm at the source code level. We
can decompile the binary into C# and then extract lines of code by matching the following pattern:

if (num == EXECUTION_ORDER_NUMBER) {

 <code to extract>

}

Unfortunately, this solution has a problem. To understand what is wrong with it, we will take another look at the code in
Figure 2. If num == 13, then we jump to line 24 via the goto statement on line 15. If we apply the pattern that we
described above, we will not be able to detect code at lines 23-25 and include it into the deobfuscated code. While it is
possible to devise an algorithm that would process these goto statements correctly, implementing such an algorithm could
be tricky.

Figure 5: Flattened code from Figure 2 with a problematic if statement.

Maybe a less intuitive but a more efficient algorithm can be devised if we visualize flattened code as a graph. This
graph, which is commonly referred to as a control flow graph, consists of code blocks that are called basic blocks. This
graph also contains arrows that are drawn whenever there is a branch (an if statement or a loop) in the code. To better
understand what a control flow graph looks like, study the code in Figure 6 and its corresponding control flow graph in
Figure 7.

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

6 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 6: Flattened code with conditions and loops.

Figure 7: Control flow graph of the code in Figure 6. Flattened code is highlighted.

With control flow graphs, solving the problem of matching execution order numbers to code is easier. If we construct a
control flow graph of a flattened function, we can use the following algorithm to perform matching:

1. Locate a basic block that contains a comparison of a num variable used for flattening (e.g. if (num2 == 73)).

2. Locate the block that is executed if the condition in step 1 is true. In the case of num == 73, this block contains the
code if (Program.F2()).

3. Recursively traverse all blocks that can be reached from the block in step 2. When we reach an unvisited block, we
assign it an execution order number from the comparison in step 1. If num == 73, we would visit the blocks that
are highlighted in light blue in Figure 7.

4. If we reach the block that increments the index variable used for flattening (e.g. j++ in Figure 7), we stop the
traversal from step 3 in order not to fall into infinite recursion.

Once we match every number in the execution order to a set of blocks, we need to place all the blocks with flattened code
in the correct order. As can be seen in Figure 7, some coloured blocks are connected to the block with j++. To perform

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

7VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

reordering, we will iterate over all blocks that are directly connected to the j++ block. We will disconnect every such block
from the j++ block and instead connect it to the next coloured block in the execution order. For example, if the execution
order array is {67, 11, 73}, we will connect the block with Program.F4() to the block with while (Program.
F1()). As a result, we will get the following unflattened control flow graph:

Figure 8: Unflattened control flow graph.

After reconnecting the blocks, all we have to do is convert the control flow graph back to C# code. The following is the
unflattened code that corresponds to the control flow graph shown in Figure 8:

Program.F4();
while (Program.F1()) {
 Thread.Sleep(1000);
}
if (Program.F2()) {
 Program.F3(0);
}
return;

Now that we have discussed all the algorithms required to perform unflattening, we will proceed to the most interesting
part: implementing the code that unflattens DoubleZero’s code.

IMPLEMENTING CONTROL FLOW UNFLATTENING WITH DE4DOT

In order to implement control flow unflattening, we will use de4dot, an open source C# framework used for deobfuscation
of .NET binaries. As we will see in this section, de4dot has all the capabilities that we need to implement unflattening
algorithms. It is able to construct control flow graphs of functions, as well as perform reconnection of basic blocks, code
patching and many other useful things. While explaining how to implement unflattening, we will provide a thorough
description of de4dot’s components that come in useful for deobfuscation of .NET binaries. We also advise the reader to
download the deobfuscator code from [3] and look at the code to better understand the concepts described in this section.

Adding our own deobfuscator to de4dot

To start working with de4dot, we first need to install a recent version of Visual Studio with the .NET desktop development
package (the free Community edition suffices). Then, we need to download de4dot’s source code from its official
repository, https://github.com/de4dot/de4dot. Finally, we need to open either the de4dot.netcore.sln or
de4dot.netframework.sln file in Visual Studio.

In order to extend de4dot, we will add a new deobfuscator to the framework. To do that, we need to locate the Solution
Explorer window, open the de4dot.code project and navigate to the deobfuscators folder. As we can see, this folder
contains other folders with many deobfuscator implementations. To add our own deobfuscator, we need to create a
subfolder called DoubleZero in the deobfuscators folder.

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

8 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 9: The Solution Explorer window with a new folder for DoubleZero’s deobfuscator.

Once we create the folder, we need to add a code file that contains a description of our deobfuscator. To do that, we will use
a template file that can be downloaded from [4]. This file should be placed in the created DoubleZero folder under the
name Deobfuscator.cs. In order for the deobfuscator to work, we need to make the following changes to this file:

• Specify a unique namespace name for the deobfuscator (e.g. de4dot.code.deobfuscators.DoubleZero)

• Assign long (e.g. DoubleZero Obfuscator) and short (dblz) names to the deobfuscator. These names should be
assigned to the THE_NAME and THE_TYPE variables, respectively.

The template file also defines the following functions that should be defined, but may not contain any useful code:

• ScanForObfuscator: a function that should check for the presence of the obfuscator that we are combating.

• DetectInternal: a function that should return a positive number if the binary is obfuscated, and zero if it isn’t.

• GetStringDecryptorMethods: a function that should return methods that perform string decryption. We will not be
dealing with string decryption while performing unflattening, so we make this function return an empty list.

Once we are done with filling the Deobfuscator.cs file, we should head to the Program.cs file located in the
de4dot.cui project. In this file, we are interested in a function called CreateDeobfuscatorInfos. This function has
a list called local that contains many calls to DeobfuscatorInfo(). In order for de4dot to recognize our newly created
deobfuscator, we need to place the line new de4dot.code.deobfuscators.DoubleZero.DeobfuscatorInfo()
into the list initializer.

Figure 10: How the code of the CreateDeobfuscatorInfos function should look after adding our deobfuscator to the list.

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

9VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

If everything is done correctly, the code should now compile. If we launch the compiled de4dot executable without any
arguments, it should display information about our newly created deobfuscator.

Figure 11: Information about the deobfuscator that should be displayed by de4dot if everything so far has been done
correctly.

De4dot’s block deobfuscators

As our code unflattening algorithm relies on working with control flow graphs and basic blocks, the first thing we need is a
function that can construct control flow graphs of functions. Luckily for us, we will not need to code everything from
scratch. De4dot implements the IBlocksDeobfuscator interface, which allows control flow graphs of functions to be
traversed and edited. The interface has the following functions:

public interface IBlocksDeobfuscator {
 bool ExecuteIfNotModified { get; }
 void DeobfuscateBegin(Blocks blocks);
 bool Deobfuscate(List<Block> allBlocks);
}

To use this interface, we should create a class that implements the IBlocksDeobfuscator interface. In particular, we are
interested in the Deobfuscate method of the interface. This method is called for every function in the executable that we
are deobfuscating. Its argument, allBlocks, contains a list of all basic blocks that the function has. In this function, we
may edit the control flow graph as much as we want. In case we decide to modify our control flow graph, the function
Deobfuscate should return true. Otherwise, it should return false.

Aside from our own block deobfuscator, de4dot implements its own block deobfuscators that perform optimizations such
as unreachable code removal. While working on a function, de4dot calls all available block deobfuscators in a loop. If any
available deobfuscator modifies the control flow graph, de4dot calls every deobfuscator again. The loop continues until all
deobfuscators stop making changes to the control flow graph. The code snippet below should give additional understanding
of how block deobfuscation works in de4dot.

Figure 12: A snippet of de4dot’s source code that calls available block deobfuscators in a loop.

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

10 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

In order to add a block deobfuscator, we need to head to our Deobfuscator.cs class and override the
BlockDeobfuscators member inside the Deobfuscator class, as shown below:

public override IEnumerable<IBlocksDeobfuscator> BlocksDeobfuscators {
 get {
 var list = new List<IBlocksDeobfuscator>();
 list.Add(new Unflattener(this));
 return list;
 }
}

In the code above, Unflattener is a class that implements the IBlocksDeobfuscator interface.

After defining the DeobfuscateBegin method (which does nothing in our case) and the ExecuteNotModified variable
(we set its get accessor to return false), we start working on the most important Deobfuscate method. This method will
iterate over all basic blocks in the function code and try to locate flattened code and unflatten it.

Extracting the execution order array

As we remember from Figure 7, a layer of flattened code starts with an assignment to the execution order variable with type
object []. In our code, we will iterate over all basic blocks with a range-based for loop and detect assignments to a
variable with type object []. An important point to mention is that de4dot’s basic blocks contain not lines of code but
Intermediate Language (IL) instructions. Intermediate Language can be thought of as a special assembly language for .NET
binaries. Having to deal with IL instructions rather than lines of C# code is not much of a problem because we can match
code lines to IL instructions with dnSpy. We can browse IL code by selecting IL in dnSpy’s top panel.

Figure 13: Switching to IL code in dnSpy.

If we compare the decompiled C# code and IL instructions, we will notice that the line object [] array = new
object [] {…} is transformed into two IL instructions:

ldc.i4.s <number of members in the object [] array>
newarr [mscorlib]System.Object.

In order to detect assignments to the execution order array in de4dot, we will be looking for all newarr instructions with
the System.Object operand. We can iterate over instructions in a block with the following code:

foreach (var instr in block.Instructions) {
 ...
}

De4dot allows us to examine the instruction opcodes and operands through the instr.OpCode and instr.Operand
fields, respectively. Knowing that, we can write the following condition to detect the assignments we need:

instr.OpCode == OpCodes.Newarr && instr.Operand.ToString() == "System.Object"

Once we detect an assignment with the code above, we will attempt to extract the execution order from the object []
array. By looking at the IL code, we will notice that int [] arrays are added to the object [] array with the following
IL instructions:

ldtoken field valuetype <long line omitted>
call System.Runtime.CompilerServices.RuntimeHelpers::InitializeArray
stelem.ref

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

11VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

If we look at the documentation for the ldtoken instruction [5], we will find out that its operand contains a token. A token
can be viewed as an analogy for an address of a global variable. In our case, this token references an int [] array. We can
get the array value with de4dot by accessing the InitialValue field of the instruction operand. The array that we get
through InitialField has the type byte [], however, we need to get an array with type int []. To convert a byte []
array to an int [] array, we need to group every four bytes into a 32-bit little-endian integer. We should also recall that
this array of integers represents an encrypted execution order number. To decrypt it, we can use the same strategy as we did
while performing manual unflattening. We can copy the integer decryption function from de4dot, paste it in our code and
then invoke it for the extracted integer array. By iterating over all instructions in the basic block and finding the pattern with
the ldtoken instruction in it, we can successfully get all the other execution order numbers.

Matching execution order numbers to flattened code

Once we extract the execution order array from IL instructions, we can proceed to the second step: locating flattened code
and matching it to numbers from the execution order. In order to do that, we need to understand how to traverse control
flow graphs in de4dot. Apart from the Instructions list that we used earlier, the Block class has the following useful
fields:

• Block FallThrough: the block that can be reached directly from the current block through an unconditional jump or
a false branch of a condition.

• List <Block> Targets: a list of blocks that can be reached from the current block through a conditional jump.

• List<Block> Sources: a list of blocks that fall through or branch to the current block.

The illustration shown in Figure 14 helps to understand the relationship between these class fields.

Figure 14: Relationship between blocks and their fallthrough blocks, sources and targets.

As we discussed in the previous section, flattened blocks of code branch out of blocks with if conditions that have the
template if (num == XX). If we look around DoubleZero’s code, we will notice that the C# template we are looking for
matches one of the three following IL instruction patterns:

Pattern 1 Pattern 2 Pattern 3 (if num == 0)
ldloc.s <variable>

ldc.i4.s <number from the
execution order>

beq <flattened code>

ldloc.s <variable>

ldc.i4.s <number from the
execution order>

bne <not flattened code>

ldloc.s <variable>

brfalse <flattened code>

In order to locate such if conditions, we create a function that traverses our control flow graph recursively. For every block
that we visit, we first check whether it contains one of the three patterns above. Just like in the case with the execution
order array, we handle pattern detection with the help of the Instructions field. If we get a match, we:

1. Extract the number from the execution order from the operand of the ldc.i4.s instruction (in the case of Pattern 1
or 2). In the case of Pattern 3, this number is 0.

2. Go either to the true (in case the of Pattern 1 or 3) or false (in case the of Pattern 2) branch of the matched block.

3. Add the block that we reached and its execution order number to a dictionary that we will call the dictionary with if
condition targets. We will need this dictionary later when performing block reconnection.

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

12 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

4. Do another recursive traversal of the control flow graph, starting from the if condition target block. In this new
traversal, we do not look for any patterns. Rather, we simply add every block and its execution order number from
step 1 into another dictionary. From now on we will call this dictionary the dictionary with all flattened blocks.

In both cases, we have to stop the recursion every time we reach a block that increments the variable used for indexing the
execution order array. To locate this block with de4dot, in accordance with Figure 7, we have to:

1. Go to the fallthrough block of the block that initializes the execution order array. By doing that, we reach the block
that checks the condition of the while loop.

2. Iterate over the Sources list of the block that we reached in step 1. As we can see from Figure 7, this block has
exactly two source blocks: the block with the assignment and the block with the increment.

3. Filter out the block with the assignment. By doing that, we will be left only with the block containing the increment.

After completing the recursion, we will have gathered two dictionaries:

• The dictionary with all flattened blocks

• The dictionary with if condition target blocks.

We will now use these two dictionaries to perform block reconnection.

Reconnecting flattened blocks

Surprisingly enough, it is very simple to implement block reconnection with de4dot. If, for example, we were to connect
two blocks in a disassembler like IDA or Ghidra, we would need write a script that could inject jump instructions into
blocks. With de4dot, we can implement reconnection with just one of the two lines of code:

• sourceBlock.SetNewFallthrough(targetBlock) (if we want the blocks to be connected through an
unconditional jump)

• sourceBlock.SetNewTarget(i, targetBlock) (if we want the blocks to be connected through a conditional
jump). In this code, i should be a valid index in the Targets list.

We will start the process of block reordering by connecting the block that initializes the execution order array to the first
block in the execution order. In order to get the first block in the execution order, we have to:

1. Extract the number at index 0 from the execution order array.

2. Find the block in the if condition targets dictionary that corresponds to the number we have just extracted.

Then, we will iterate over the Sources list of the block responsible for incrementing the index variable that is used with the
execution order array (reminder: in Figure 7, this block does the j++ increment). For every block in this array, we:

1. Locate the execution order number of the current block through the dictionary with all flattened blocks.

2. Locate the index i that corresponds to this number in the execution order array.

3. Get the number at index i + 1 of the execution order array.

4. Locate the block in the if condition targets dictionary that has the execution number from step 3.

5. Connect the current block with the block that we found in step 4.

Note that if the number in step 3 doesn’t exist (this happens when i is the maximum available index in the execution order
array), instead of performing steps 4 and 5 we need to connect the current block with the block executed after the flattening
loop. In Figure 7, this block executes the return statement.

Once we are done with reconnecting blocks, we are finished with the unflattening process. We can now call our
deobfuscator via the de4dot.exe <path to the flattened DoubleZero sample> -p dblz command line.
De4dot should store the deobfuscated file at the <path to the flattened DoubleZero sample>-cleaned file. If
we open it in dnSpy, we should see no flattened code in it.

CONCLUSION
In this paper, we looked at how we can perform control flow unflattening of the DoubleZero wiper. We described the
unflattening algorithm and then implemented it using the de4dot framework. We also discussed how to create deobfuscators
for de4dot, construct and traverse control flow graphs, as well as reorder basic blocks in them. Thanks to the fact that
de4dot supports all these features out of the box, the implementation of the unflattening algorithm contains about 300 lines
of code, which can be considered quite compact.

REFERENCES
[1] Rolles, R. Hex-Rays Microcode API vs. Obfuscating Compiler. Hey-Rays. September 2018. https://hex-rays.com/

blog/hex-rays-microcode-api-vs-obfuscating-compiler/.

https://hex-rays.com/blog/hex-rays-microcode-api-vs-obfuscating-compiler/

COMBATING CONTROL FLOW FLATTENING IN .NET MALWARE KUCHERIN

13VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

[2] DoubleZero sample. https://samples.vx-underground.org/APTs/2022/2022.03.22/
Samples/30b3cbe8817ed75d8221059e4be35d5624bd6b5dc921d4991a7adc4c3eb5de4a.7z.

[3] De4dot code with the DoubleZero deobfuscator. https://github.com/gkucherin/de4dot.

[4] Deobfuscator template file. https://github.com/gkucherin/de4dot/blob/master/DeobfuscatorTemplate.cs.

[5] Documentation for the ldtoken instruction. https://docs.microsoft.com/dotnet/api/system.reflection.emit.opcodes.
ldtoken.

https://docs.microsoft.com/dotnet/api/system.reflection.emit.opcodes.ldtoken
https://github.com/gkucherin/de4dot/blob/master/DeobfuscatorTemplate.cs
https://github.com/gkucherin/de4dot
https://samples.vx-underground.org/APTs/2022/2022.03.22/Samples/30b3cbe8817ed75d8221059e4be35d5624bd6b5dc921d4991a7adc4c3eb5de4a.7z

