2022

PRAGUE

OPERATION DRAGON CASTLING:
APT GROUP TARGETING BETTING
COMPANIES

Luigino Camastra, Igor Morgenstern & Jan Holman
Avast, Czech Republic

luigino.camastra@avast.com
igor.morgenstern@avast.com

www.virusbulletin.com

OPERATION DRAGON CASTLING: APT GROUP...

ABSTRACT

Operation Dragon Castling is a suspected APT attack against East Asian betting companies that exploited a previously
unknown vulnerability in the WPS Olffice updater to deliver malware to target Microsoft Windows systems.

In this presentation, we will discuss how we saw strange DNS resolution requests for a domain related to WPS Office, but
that was not part of WPS Office’s infrastructure. Our investigation into these resolution requests showed they were being
made from devices running WPS Office, devices belonging to East Asian betting companies. Seeing this, we suspected we
had found a supply chain attack against WPS Office, though we were unable to identify the infection vectors at first.

We investigated further and found that one of the systems issuing the unusual DNS resolution requests contained several
malicious DLLs loaded by side-loading. One of these DLLs was a robust and modular core module written in C++. Aside
from being used for privilege escalation and persistence, it also provided backdoor access to infected devices.

After more investigating, we found two infection vectors. In the first case, the attacker sent an email with an infected
installer to the support team asking them to check for a bug in their software. The second case was more interesting — we
presume that the attacker hijacked the WPS updater by exploiting a previously unknown vulnerability. We discovered a new
vulnerability (CVE-2022-24934) in the WPS Office updater, wpsupdate.exe.

INTRODUCTION

We recently discovered an APT campaign we are calling Operation Dragon Castling. The campaign is targeting what
appears to be betting companies in South East Asia, more specifically companies located in Taiwan, the Philippines and
Hong Kong. With moderate confidence, we can attribute the campaign to a Chinese-speaking APT group, but unfortunately
we cannot attribute the attack to a specific group and are not sure what the attackers are after.

We found notable code similarity between one of the modules used by this APT group (the MulCom backdoor) and the FFRat
samples described by the BlackBerry Cylance Threat Research Team in their 2017 report [1] and Palo Alto Networks in their
2015 report [2]. Based on this, we suspect that the FFRat codebase is being shared between several Chinese adversary groups.
Unfortunately, this is not sufficient evidence for attribution as FFRat itself has not reliably been attributed.

In this paper we will describe the malware used in these attacks and the backdoor planted by the APT group, as well as
other malicious files used to gain persistence and access to the infected machines. We will also discuss the two infection
vectors we saw being used to deliver the malware: an infected installer and exploitation of a vulnerable legitimate
application, WPS Office.

We identified a new vulnerability (CVE-2022-24934) [3] in the WPS Office updater ‘wpsupdate.exe’, which we suspect the
attackers abused.

We would like to thank Taiwan’s TeamT5 [4] for providing us with IoCs related to the infection vector.

INFRASTRUCTURE AND TOOLSET

A Avast

Figure 1: Relationships between malicious files.

OPERATION DRAGON CASTLING: APT GROUP...

In Figure 1, we describe the relationships between the malicious files. Some of the relationships might not be accurate — for
example, we are not entirely sure if the MulCom backdoor is loaded by the Core plug-in. However, we strongly believe that
it is one of the malicious files used in this campaign.

INFECTION VECTOR

We’ve seen multiple infection vectors used in this campaign. Among others, an attacker sent an email with an infected
installer to the support team of one of the targeted companies asking to check for a bug in their software. In this paper, we
will describe another vector we’ve seen: a fake WPS Office update package. We suspect an attacker exploited a bug in the
WPS updater ‘wpsupdate.exe’, which is a part of the WPS Office installation package. We have contacted the WPS Office
team about the vulnerability, CVE-2022-24934, and it has since been fixed.

During our investigation we observed suspicious behaviour in the WPS updater process. When analysing the binary we
discovered a potential security issue that allows an attacker to use the updater to communicate with a server controlled by
the attacker to perform actions on the victim’s system, including downloading and running arbitrary executables. To exploit
the vulnerability, a registry key under HKEY_CURRENT_USER needs to be modified, and by doing this an attacker gains
persistence on the system and control over the update process. In the case we analysed, the malicious binary was
downloaded from the domain update.wps|[.]cn, which is a domain belonging to Kingsoft, but the serving IP
(103.140.187.16) has no relationship to the company, so we assume that it is a fake update server used by the attackers.

The downloaded binary (setup_CN_2052_11.1.0.8830_PersonalDownload_Triale.exe, BOBEA7D1822D9996E0F04
CB5BF5103C48828C5121B82E3EB9860E7C4577E2954) drops two files for sideloading: a signed
QMSpeedupRocketTrayInjectHelper64.exe - Tencent Technology (a3f3bc958107258b3aa6e9e¢959377dfa607534ccbad
26ee8ae193b463483c341) and a malicious DLL, QMSpeedupRocketTrayStub64.dll.

Dropper 1 (QMSpeedupRocketTrayStub64.dll)
76adf4fd93b70c4decedb536bdfac76793d9aa7d8d6eec1750c 1ad1f0ffa75491
The first stage is a backdoor communicating with a C&C (mirrors.centos.8788912[.]Jcom).

Before contacting the C&C server, the backdoor performs several preparative operations. It hooks three functions:
GetProcAddress, FreeLibrary and LdrUnloadDII.

To get the C&C domain, it maps itself to the memory and reads data starting at the offset 1064 from the end. The domain
name is not encrypted in any way and is stored as a wide string in clear text in the binary.

Then it initializes an object for a ‘JScript’ class with the named item ‘ScriptHelper’.

The dropper uses the ImpersonateLoggedOnUser API call to re-use a token from explorer.exe so it effectively runs under
the same user. Additionally, it uses RegOverridePredefKey to redirect the current HKEY_CURRENT_USER to the HKEY _
CURRENT _USER of an impersonated user.

For communication with the C&C it constructs a UserAgent string with some system information, e.g. ‘Mozilla/4.0
(compatible; MSIE 9.0; Windows NT 6.1;.NET CLR 2.0)’. The information that is exfiltrated is: Internet
Explorer version, Windows version, and the ‘User Agenf\Post Platform’ registry values.

After that, the sample constructs JScript code to execute. The header of the code contains definitions of two variables:
‘server’ with the C&C domain name and a hard-coded ‘key’. Then it sends an HTTP GET request to ‘/api/connect’. The
response should be encrypted JScript code that is decrypted, appended to the constructed header and executed using the
JScript class created previously.

VarServerHttpM 1:

Figure 2: Backdoor communicating with C&C.

At the time of analysis, the C&C was not responding, but from the telemetry data we can conclude that it was downloading
the next stage from htxp://mirrors.centos.8788912.com/upload/ea76ad28a3916£52a748a4f475700987.exe to
“YoProgramData%\icbc_logtmp.exe’ and executing it.

Dropper 2 (IcbcLog)
a428351dcb235b16dc5190c108e6734b09¢3b7be93c0ef3d838cf91641b328b3

The second dropper is a runner that, when executed, tries to escalate privileges via the COM Session Moniker Privilege
Escalation (MS17-012), then drops a few binaries, which are stored with the following resource IDs:

OPERATION DRAGON CASTLING: APT GROUP...

Resource ID Filename Description

1825 smcache.dat List of C&C domains

1832 log.dll Loader (CoreX) 64-bit

1840 bdservicehost.exe Signed PE for sideloading 64-bit

1841 N/A Filenames for sideloading

1817 inst.dat Working path

1816 hostcfg.dat Used in the Host header, in C&C communication
1833 bdservicehost.exe Signed PE for sideloading 32bit - N/A

1831 log.dll Loader (32bit) - N/A

The encrypted payloads have the following structure:

The encryption key is a wide string starting from offset 0x8. The encrypted data starts at the offset 0x528. To decrypt the
data, a SHA256 hash of the key is created using the CryptHashData API, and is then used with a hard-coded IV
‘0123456789abcde’ to decrypt the data using the CryptDecrypt API with the AES256 algorithm. After that, the decrypted
data is decompressed with RtIDecompressBuffer. To verify that the decryption went well, the CRC32 of the data is
computed and compared to the value at the offset 0x4 of the original resource data.

When all the payloads are dropped to the disk, bdservicehost.exe is executed to run the next stage.

Loader (CoreX)
97¢392ca71d11de76b69d8bf6cat06fa3802d0157257764a0e3d6f0159436¢42

The Loader (CoreX) DLL is sideloaded during the previous stage (Dropper 2) and acts as a dropper. Similarly to Dropper
1, it hooks the GetProcAddress and FreeLibrary API functions. These hooks execute the main code of this library.

The main code first checks whether it was loaded by regsvr32.exe and then it retrieves encrypted data from its resources.
This data is dropped into the same folder as syscfg.dat. The file is then loaded and decrypted using AES-256 with the
following options for setup:

e Key is the computer name and IV is ‘gwertyuil2345678’

e AES-256 setup parameters are embedded in the resource in the format ‘<key>#<IV>’. So, for example, you may see
cbfc2vyuzckloknf#803yfnOuee429m8d

':I L
':I
#

[=

Figure 3: Setup parameters in the resources.

The main code continues to check if the process ‘ekrn.exe’ is running. ‘ekrn.exe’ is an ESET kernel service. If the ESET
kernel service is running, it will try to remap ‘ntdll.dll’. We assume that this is used to bypass ntdll.dll hooking.

After a service check, it will decompress and execute shellcode, which in turn loads a DLL with the next stage. The DLL is
stored, unencrypted, as part of the shellcode.

The shellcode enumerates exports of ntdll.dll and builds an array with hashes of names of all Zw* functions (Windows
native API system calls) then sorts them by their RVA. By doing this, the shellcode exploits the fact that the order of RVAs
of Zw* functions equals the order of the corresponding syscalls, so an index of the Zw* function in this array is a syscall
number, which can be called using the syscall instruction. Security solutions can therefore be bypassed based on the
hooking of the API in user space. Finally, the embedded core module DLL is loaded and executed.

Proto8 (Core module)
f3ed09ee3fe869e76f34eee1ef974d1b24297a13a58ebtf20ead541b9a2d86¢7

The core module is a single DLL that is responsible for setting up the malware’s working directory, loading configuration
files, updating its code, loading plug-ins, beaconing to C&C servers and waiting for commands.

It has a cascading structure with four steps:

Step 1

The first part is dedicated to initial checks and a few evasion techniques.

OPERATION DRAGON CASTLING: APT GROUP...

At first, the core module verifies that the DLL is being run by spdlogd.exe (an executable used for persistence, see below)
or that it is not being run by rundll32.exe. If this check fails, the execution terminates. The DLL proceeds by hooking the
GetProcAddress and FreeLibrary functions in order to execute the main function, similarly to the previous infection stages.

v4 = hooking_structure_constructor();
if (v4->this_dl1_handle != dl1_handle)
return (v4->orig_ getprncaddre s)(dl1_handle, fcn_name_string);
(L"in googo");
vl = v4->vftable.get_vfunc_ 5?36_ptr;

if (vl)
(vi->get_vfunc_25736_ptr->j_create_core2_thread)(vl);

CurrentProcess = ();
(CurrentProcess, INFINITE);
return (v4->orig_getprocaddress)(dll_handle, fcn_name_string);

Figure 4: The GetProcAddress hook contains an interesting debug output ‘in googo’.

The malware then creates a new window (named Sample) with a custom callback function. A message with the ID 0x411 is
sent to the window via SendMessageW, which causes the aforementioned callback to execute the main function. The
callback function can also process the 0x412 message ID, even though no specific functionality is tied to it.

__int64 _ fastcall Core2(PVOID Parameter)
{
1nt64 v2; [/ [r,p+30h] [rbp-18h] BYREF

54 v3[2]; [/ [rsp+38h] [rbp-18h] BYREF

(oi64, 0i64, create_window, 0i64, 0, 0i64);
vz = Bi64;
sub_7FFE5DB8558C(v3, &v2);
sleep(v3);
(mal_window_handle, 0x411u, 0i64, 0i64);
(INFINITE);
return 8i64;

Figure 5: Exported function Core2 sends message Ox411.

__int64 Ldr2()

{
__int64 ul. I [r p+30h] [rbp-18Bh] BYREF
0 v2[2]; // [rsp+38h] [rbp-16h] BYREF

(oi64, 0i64, create_window, 8i64, 0, 0164);
vl = Bi64;
sub_7FFESDB8558C(v2, &v1);
sleep(v2);

(mal_window_handle, 8x412u, 0i64, 8164);
return 0i64;

Figure 6: Exported function Ldr2 sends message Ox412.

if (uMsg == 15)

vi = 0 rd
if (_bittest(&v4, uMsg))
return 0i64;

}
if (uMsg == Ox412)
return 6is4
if { uMsg != Ox411)
return (h_window, uMsg, wPara, 1Para);
Main();
return 8i64;

Figure 7: The window callback only contains implementation for message Ox411, but there is a check for 0x412 as well.

OPERATION DRAGON CASTLING: APT GROUP...

Step 2

In the second step, the module tries to self-update, load configuration files and set up its working directory (WD).

self update = load config

load config

smcache.dat

\W\EL

[victim_username]-{comment_string].

Figure 8: The module tries to self-update, load configuration files and set up its working directory (WD).

Self-update

The malware first looks for a file called new_version.dat. If the file exists, its content is loaded into memory, executed in a
new thread, and the debug string ‘run code ok’ is printed out. We did not come across this file, but based on its name and
context, it is most likely a self-update functionality.

W(L"run code ok™);

ject(Thread, INFINITE);

Figure 9: If the file exists, its content is loaded into memory, executed in a new thread, and the debug string ‘run code ok’ is
printed out.

Load configuration file inst.dat and set up working directory

First, the core module configuration file inst.dat is searched for in the following three locations:
e The directory in which the core module DLL is located
* The directory in which the EXE that loaded the core module DLL it is located
e C:\ProgramData\

The file contains the path to the malware’s working directory in plaintext. If it is not found, a hard-coded directory name is
used and the directory is created.

The working directory is a location the malware uses to drop or read any files it uses in subsequent execution phases.

Load configuration file smcache.dat

After the working directory is set up, the sample will load the configuration file smcache.dat from it. This file contains the
domains, protocols and port numbers used to communicate with C&C servers (details in Step 4) plus a ‘comment’ string.

OPERATION DRAGON CASTLING: APT GROUP...

This string is probably used to identify the campaign or individual victims. It is used to create an empty file on the victim’s
computer (see below) and is also sent as a part of the initial beacon when communicating with C&C servers. We refer to it
as the ‘comment string’ because we have seen a few versions of smcache.dat where the content of the string was ‘the
comment string here’ and it is also present in another configuration file with the name comment.dat, which has the INI file
format and contains this string under the key COMMENT.

Create a ‘log’ file

Right after the sample finds and reads smcache.dat, it creates a file based on the victim’s username and the comment string
from smcache.dat. If the comment string is not present, it will use a default hard-coded value (for example M86_99.Ick).
Based on the extension it could be a log of some sort, but we haven’t seen any part of the malware writing into it so it could
just serve as a lockfile.

Once the file is successfully created, the malware creates a mutex and goes on to the next step.

Step 3

Next, the malware collects information about the infected environment (such as username, DNS and NetBios computer
names, as well as OS version and architecture) and sets up its internal structures, most notably a list of ‘call objects’.

Call objects are structures that are each associated with a particular function and saved into a ‘dispatcher’ structure in a map
with hard-coded four-byte keys. These keys are later used to call the functions based on commands from C&C servers.

The key values (IDs) seem to be structured, where the first three bytes are always the same within a given sample, while the
last byte is always the same for a given usage across all the core module samples that we’ve seen. For example, the function
that calls the RevertToSelf function is identified by the number 0x20210326 in some versions of the core module that we’ve
seen and Ox19181726 in others. This suggests that the first three bytes of the ID number are tied to the core module version,
or more likely the infrastructure version, while the last byte is the actual ID of a function.

ID (last byte) | Function description
0x02 Unimplemented function
0x19 Retrieves content of smcache.dat and sends it to the C&C server
Ox1A Writes data to smcache.dat
0x25 Impersonates the logged on user or the explorer.exe process
0x26 Function that calls RevertToSelf
0x31 Receives data and copies it into a newly allocated executable buffer
0x33 Receives core plug-in code, drops it on disk and then loads and calls it
0x56 Writes a value into comment.dat

Webdav

While initializing the call objects the core module also tries to connect to the URL https://dav][.]jianguoyun.com/dav/ with
the username 72172 1jhksdf and password 121121212 by calling WNetAddConnection3W. This address was not responsive at
the time of analysis but jianguoyun[.]Jcom is a Chinese file-sharing service. Our hypothesis is that this is either a way to get
plug-in code or an updated version of the core module itself.

Plug-ins

The core module contains a function that receives a buffer with plug-in DLL data, saves it into a file with the name
kbg<tick_count>.dat in the malware working directory, loads it into memory and then calls its exported function
InitCorePlug. The plug-in file on disk is set to be deleted on reboot by calling MoveFileExW with the parameter
MOVEFILE_DELAY_UNTIL_REBOOT.

For more information about the plug-ins, see the dedicated Plug-ins section.

Step 4

In the final step, the malware will iterate over C&C servers contained in the smcache.dat configuration file and will try to
reach each one.

OPERATION DRAGON CASTLING: APT GROUP...

The structure of the smcache.dat config file is as follows:

struct smcache data struct
{
uint c2 count;
WCHAR comment string[260];
c2_data c2 data[c2 count];

bi

struct c2 data

{

WCHAR protocol[10];
WCHAR domain[260];
WCHAR port string[l10];

}i

The protocol string can have one of nine possible values:

* TCP

e HTTPS

» UDP

* DNS

* ICMP

 HTTPSIPV6

* WEB

* SSH

e HTTP

Depending on the protocol tied to the particular C&C domain, the malware sets up the connection, sends a beacon to the
C&C and waits for commands.

In this paper, we will mainly focus on the HTTP protocol option as we’ve seen it being used by the attackers.

const Httpconnectéessicn::‘vftable"dq offset hase::trace_eueht::HeapﬁrufilerEuentFilter::“scalar deleting destructor'(uint)

set get_string_nothing
t get_string_nothing
c close_internet_handles
- sub_180011354
c send_InternetWriteFile
t recv_InternetReadFile
= sub_18001D6D2
. w_InterlockedIncrement6d_o
c w_InterlockedDecrement64_o
c nullsub
= nullsub_1
. setup_connection_handles

Figure 10: Vftable of HttpConnectSession.

When using the HTTP protocol, the core module first opens two persistent request handles — one for POST and one for
GET requests, both to ‘/connect’. These handles are tested by sending an empty buffer in the POST request and checking
the HTTP status code of the GET request. Following this, the malware sends the initial beacon to the C&C server by
calling the InternetWriteFile API with the previously opened POST request handle and reads data from the GET request
handle by calling the InternetReadFile API.

Protocol TCPstream Length Info

HTTP 62 362 POST /connect HTTP/1.1

HTTP 62 54 HTTP/1.1 400 Bad Request (text/html)
HTTP 63 333 GET /connect HTTP/1.1

HTTP 63 312 HTTP/1.1 200 OK (text/html)

HTTP 62 374 Continuation

Figure 11: HTTP packet order.

OPERATION DRAGON CASTLING: APT GROUP...

POST /connect HTTP/1.1

Accept: */*

x-cid: {985FEACD-0D91-4BC3-9ACB-278D78EDCI11}

Pragma: no-cache

Cache-control: no-transform

User-Agent: Mozilla/4.@ (compatible; MSIE 9.©; Windows NT 10.0;.NET4.0C;.NET4.0E;Tablet PC 2.0)
Host: api.geming8888.com

Content-Length: 4294967295

Connection: Keep-Alive

HTTP/1.1 400 Bad Request
Content-Type: text/html

Connection: Close

Server: INetSim HTTP Server

Date: Thu, 16 Dec 2021 14:55:17 GMT

<html>
<head>
<title>480 Bad Request</title>
</head>
<body>
<hi1>Bad Request</hi>
<p>Your browser sent a request that this server could not understand.</p>
<p>Content-Length exceeds limit of 10006000.</p>
<hr />
<address>INetSim HTTP Server</address>
</body>
</html>
QAgAATADISAtwdNkgAgAANIWAFZNZNBMerRUAFekPkefcaoyQF IARQBNAPBBTQAAaQB jAHIAbWQACBAAZ gBOACBEAFTABGAAZMADAWFABSAAMQAWAC 7BWAAGADYANLBCPWC/PWA/ADBAPWA/
AAYAROCBAFMASWBUAEBAAFAALQAYAEMAGDMASQBRAEgQAVETAP8]/ wkfABBAHWD/E/8T//8J/wn/CT8IHWATABBA/ xMr /xMdADCgj DNGACOA+FOATNSFHWATABBAHWD / HWATABBAHWA T AABADWAPAHBPAABADWAPAABADWACAA==

Figure 12: HTTP POST beacon.
The core module uses the following (mostly hard-coded) HTTP headers:
* Accept: */*
* x-cid: {<uuid>} —new UUID is generated for each GET/POST request pair
* Pragma: no-cache
* Cache-control: no-transform
* User-Agent: <user agent> — generated from registry or hard coded (see below)
* Host: <host value>— C&C server domain or the value from hostcfg.dat (see below)
® Connection: Keep-Alive

* Content-Length: 4294967295 (max uint, only in the POST request)

User-Agent header

The User-Agent string is constructed from the registry in the same way as in the Dropper 1 module (including the
logged-on user impersonation when accessing the registry) or if the registry access fails a hard-coded string is used:

‘Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64,; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR
3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0)’.

Host header

When setting up this header, the malware looks for either a resource with the ID 1816 or a file called hostcfg.dat if the
resource is not found. If the resource or file is found, the content is used as the value in the Host HTTP header for all C&C
communication instead of the C&C domain found in smcache.dat. It does not change the actual C&C domain to which the
request is made — this suggests the possibility of the C&C server being behind a reverse proxy.

Initial beacon

The first data packet the malware sends to a C&C server contains a Base64-encoded LZNT1-compressed buffer,
including a newly generated UUID (different from the UUID used in the x-cid header), the victim’s username, OS
version and architecture, computer DNS and BIOS names and the comment string found in smcache.dat or comment.dat.
The value from comment.dat takes precedence if this file exists.

In the core module sample we analysed, there was actually a typo in the function that reads the value from comment.dat — it
looks for the key ‘COMMNET" instead of ‘COMMENT".

After this, the malware enters a loop waiting for commands from the C&C server in the form of the ID value of one of the
call objects.

Each message sent to the C&C server contains a hard-coded four-byte number value with the same structure as the
values used as keys in the call-object map. The ID numbers associated with messages sent to C&C servers that we’ve
seen are:

10

OPERATION DRAGON CASTLING: APT GROUP...

ID (last byte) Usage

0x1B Message to C&C which contains smcache.dat content
0x24 Message to C&C which contains a debug string

0x2F General message to C&C

0x30 Message to C&C, unknown specific purpose

0x32 Message to C&C related to plug-ins

0x80 Initial beacon to a C&C server

Some interesting observations about the protocols, other than the HTTP protocol are:
o HTTPS does not use persistent request handles
e HTTPS uses an HTTP GET request with data Base64-encoded in the cookie header to send the initial beacon
e HTTPS, TCP and UDP use a custom ‘magic’ header: Magic-Code: hhjjdfgh

General observations on the core module

get_string_nothing proc near

, aNothing

stdi:string::assign(char const * const,unsigned __int64)
get_string_nothing endp

Figure 13: Incomplete function.

The core samples we observed often output debug strings via OutputDebugStringA and OutputDebugStringW or by
sending them to the C&C server. Examples of debug strings used by the core module are: its filepath at the beginning of
execution, ‘run code ok’ after self-update, ‘In googo’ in the hook of GetProcAddress, ‘recv bomb’ and ‘sent bomb’ in the
main C&C communication function, etc.

String obfuscation

We came across samples of the core module with only cleartext strings but also samples with certain strings obfuscated by
XOR’ing them with a unique (per sample) hard-coded key.

Even within the samples that contain obfuscated strings, there are many cleartext strings present and there seems to be no
logic in deciding which string will be obfuscated and which won’t. For example, most format strings are obfuscated, but
important IoCs such as credentials or filenames are not.

To illustrate this: most strings in the function that retrieves a value from the comment.dat file are obfuscated and the call to
GetPrivateProfileStringW is dynamically resolved by the GetProcAddress API, but all the strings in the function that writes
into the same config file are in cleartext and there is a direct call to WritePrivateProfileStringW.

Overall, the core module code is quite robust and contains many failsafes and options for different scenarios (for example,
the number of possible protocols used for C&C communication), however, we probably only saw samples of this malware
that are still in active development as there are many functions that are not yet implemented and only serve as placeholders.

Plug-ins
In this section, we will describe the functionality of the plug-ins used by the Core Module (Proto8) to extend its functionality.
We will describe three plug-ins with various functionalities, such as:

* Achieving persistence

* Bypassing UAC

¢ Registering an RPC interface

 Creating a new account

* Backdoor capabilities

Core plug-in
0985D65FA981ABD57A4929D8ECD866FC72CE8C286BA9EB252CA180E280BD8755

This plug-in is a DLL binary loaded by the fileless core module (Proto8) as mentioned above. It extends the malware’s
functionality by adding methods for managing additional plug-ins. These additional plug-ins export the function
‘GetPlugin’, which the core plug-in executes.

OPERATION DRAGON CASTLING: APT GROUP...

This part uses the same command ID-based calling convention as the core module, adding three new methods:

ID (last byte) Function description

0x2B Send information about plug-in location to the to C&C server
0x2C Remove a plug-in

0x2A Load a plug-in

All plug-in binaries used by the core module are stored in the working directory under the name kbg<tick_count>.dat. After
the Core plug-in is loaded, it first removes all plug-ins from the working directory, as shown in Figure 14.

search_for file and push path to vector(Destination, &call struct);

. _Myend)

Figure 14: The Core plug-in removes all plug-ins from the working directory.

Zload (Atomx.dll, xps1.dll)

2ABC43865E49F8835844D30372697FDAS55992E5A6A 13808 CFEED1C37BASF7876

The DLL we call Zload is an example of a plug-in loaded by the Core plug-in. It exports four functions: ‘GetPlugin’,
‘Install’, ‘core_zload’ and ‘zload’. The main functionality of this plug-in is setting up persistence, creating a backdoor user
account, and concealing itself on the infected system. We will focus on the exported functions zload, core_zload and the
default DIIMain function, as they contain the most interesting functionality.

Zload (process starter)

This function is fairly simple, its main objective is to execute another binary.

It first retrieves the path to the directory in which the Zload plug-in binary is located (<root_folder>) and creates a new
subfolder called ‘mec’ in it. After this it renames and moves three files into it:

e The Zload plug-in binary itself as <root_folder>\mec\logexts.dll

» <root_folder>\spdlogd.exe as <root_folder>\mec\spdagent.exe

¢ <root_folder>\kb.ini as <root_folder>\mec\kb.ini
After the files are renamed and moved, it creates a new process by executing the binary <root_folder>\mec\spdagent.exe
(originally <root_folder>\spdlogd.exe).
core_zload (persistence setup)

This function is responsible for persistence, which it achieves by registering itself into the list of security support providers
(SSPs). Windows SSP DLLs are loaded into the Local Security Authority (LSA) process when the system boots.

The code of this function is notably similar to the mimikat_ssp/AddSecurityPackage_ RawRPC source code found on
GitHub [5].

11

12

OPERATION DRAGON CASTLING: APT GROUP...

DIIMain (sideloading, setup)

The default DIIMain function leverages several persistence and evasion techniques. It also allows the attacker to create a
backdoor account on the infected system and lower the overall system security.

Persistence

The plug-in first checks if its DLL was loaded either by the processes ‘Isass.exe’ or by ‘spdagent.exe’. If the DLL was
loaded by ‘spdagent.exe’, it will adjust the token privileges of the current process.

If it was loaded by ‘Isass.exe’, it will retrieve the path ‘kb<num>.dIl’ from the configuration file ‘kb.ini’ and write it under the
registry key HKEY_LOCAL_MACHINE\SY STEM\\CurrentControlSet\\Services\WinSock2\\Parameters Autodial DLL.
This ensures persistence, as it causes the DLL ‘kb<num>.dIl’ to be loaded each time the Winsock 2 library (ws2_32.dll) is
invoked.

Evasion

To avoid detection, the plug-in first checks the list of running processes for ‘avp.exe’ (Kaspersky Antivirus) and
‘NortonSecurity.exe’ and exits if either of them is found. If these processes are not found on the system, it goes on to
conceal itself by changing its own process name to ‘explorer.exe’.

The plug-in also has the ability to bypass the UAC mechanisms and to elevate its process privileges through CMSTP COM
interfaces, such as CMSTPLUA {3E5FC7F9-9A51-4367-9063-A120244FBEC7}.
Backdoor user account creation

Next, the plug-in carries out registry manipulation (details can be found in the Appendix), which lowers the system’s
protection by:

* Allowing local accounts to have full admin rights when they are authenticating via network logon.
e Enabling RDP connections to the machine without the user password.

* Disabling admin approval on an administrator account, which means that all applications run with full administrative
privileges.

* Enabling anonymous SID to be part of the everyone group in Windows.

e Allowing ‘Null Session’ users to list users and groups in the domain.

» Allowing ‘Null Session’ users to access shared folders.

* Setting the name of the pipe that will be accessible to ‘Null Session’ users.

After this step, the plug-in changes the WebClient service startup type to ‘Automatic’. It creates a new user with the name
‘DefaultAccount’ and the password ‘Admin@ 1999!”, which is then added to the ‘Administrator’ and ‘Remote Desktop
Users’ groups. It also hides the new account on the logon screen.

As the last step, the plug-in checks the list of running processes for process names ‘360tray.exe’ and ‘360sd.exe’, and
executes the file ‘spdlogd.exe’ if neither of them is found.

MecGame (kb%num%.dll)
4C73A62A9F19EEBB4FEFFAFDB88E4682EF852E37FFF957COE1CFF27C5ESD47AD

MecGame is another example of a plug-in that can be loaded by the Core plug-in. Its main purpose is similar to the
previously described Zload plug-in — it executes the binary ‘spdlogd.exe’ and achieves persistence by registering an RPC
interface with UUID {1052E375-2CE2-458E-AA80-F3B7D6EA23AF}. This RPC interface represents a function that
decodes and executes a Base64-encoded shellcode.

The MecGame plug-in has several methods for executing spdlogd.exe depending on the level of available privileges. It also
creates a lockfile with the name ‘MSSYS.Ick’ or ‘<UserName>-XPS.Ick’, depending on the name of the process that
loaded it, and deletes the files atomxd.dll and logexts.dll.

It can be installed as a service with the service name ‘inteloem’ or can be loaded by any executable that connects to the
Internet via the Winsock? library.

MulCom

ABA89668C6E9681671A95B3D7A08AAE2A067DEED2D835BA6FOFD18556C88ASE2

This DLL is a backdoor module which exports four functions: ‘OperateRoutineW’, ‘StartRoutineW’, ‘StopRoutineW’ and
‘WorkRoutineW’, the main malicious function being ‘StartRoutineW’.

For proper execution, the backdoor needs configuration data accessed through a shared object with the file mapping name
either ‘Globa\MEDSFD41-2D1B-4CC3-B874-02FOC60FFOCB’ or ‘Loca\MED8FD41-2D1B-4CC3-B874-02F0C60FFICB’.

OPERATION DRAGON CASTLING: APT GROUP...

Unfortunately we didn’t come across the configuration data, so we are missing some information such as the C&C server
domains this module uses.

There are 15 commands supported by this backdoor (although some of them are not implemented), referred to by the
following numerical identifiers:

Command ID Function description

1 Sends collected data from executed commands. It is used only if the authentication
with a proxy is done through NTLM.

2 Finds out information about the domain name, user name and security identifier of the
process explorer.exe.

Finds out the user name, domain name, and computer name of all Remote Desktop
sessions.

Enumerates root disks.

4 Enumerates files and finds out their creation time, last access time and last write time.

(9]

Creates a process with a duplicated token. The token is obtained from one of the
processes in the list.

6 Enumerates files and finds out creation time, last time access, last write time.

7 Renames files.

8 Deletes files.

9 Creates a directory.

101 Sends an error code obtained via the GetLastError API function.

102 Enumerates files in a specific folder and finds out their creation time, last access time
and last write time.

103 Uploads a file to the C&C server.

104 Not implemented (reserved).

Combination of 105/106/107 Creates a directory and downloads files from the C&C server.

Communication protocol

The MulCom backdoor is capable of communicating via HTTP and TCP protocols. The data it exchanges with the C&C
servers is encrypted and compressed by the RC4 and aPack algorithms respectively, using the RC4 key loaded from the
configuration data object.

It is also capable of proxy server authentication using schemes such as Basic, NTLM, Negotiate or to authenticate via either
the SOCKS4 and SOCKSS protocols.

After successful authentication with a proxy server, the backdoor sends data XOR’ed by the constant OxBC. This data is a
set with the following structure:

data.ty
data.num
data.unknown =

data _num =
1 tep 2 http
f prot :config data_offset 296.
config data_off '

Figure 15: Data sent.

Another interesting capability of this backdoor is the usage of layered C&C servers. If this option is enabled in the
configuration object (it is not the default option), the first request goes to the first layer C&C server, which returns the IP
address of the second layer. Any subsequent communication goes directly to the second layer.

As previously stated, we found several code similarities between the MulCom DLL and the FFRat (a.k.a. FormerFirstRAT).

CONCLUSION

We have described a robust and modular toolset used most likely by a Chinese-speaking APT group targeting
gambling-related companies in South East Asia. As we mentioned in this paper, there are notable code similarities between

13

OPERATION DRAGON CASTLING: APT GROUP...

FFRat samples and the MulCom backdoor. FFRat or ‘FormerFirstRAT’ has been publicly associated with the DragonOK
group according to the Palo Alto Networks report [2], which has in turn been associated with backdoors like Poisonlvy and
PlugX — tools commonly used by Chinese-speaking attackers.

We also described two different infection vectors, one of which weaponized a vulnerable WPS Office updater. We rate the
threat this infection vector represents as very high, as WPS Office claims to have 1.2 billion installations worldwide [6], and
this vulnerability potentially allows a simple way to execute arbitrary code on any of these devices. We have contacted WPS
Office about the vulnerability we discovered and it has since been fixed.

Our research points to some unanswered questions, such as reliable attribution and the attackers’ motivation.

REFERENCES

[1] The BlackBerry Cylance Threat Research Team. Threat Spotlight: Breaking Down FF-Rat Malware. BlackBerry.
June 2017. https://blogs.blackberry.com/en/2017/06/breaking-down-ff-rat-malware.

[2] Miller-Osborn, J.; Grunzweig, J. Unit 42 Identifies New DragonOK Backdoor Malware Deployed Against Japanese
Targets. Unit 42. April 2015. https://researchcenter.paloaltonetworks.com/2015/04/unit-42-identifies-new-
dragonok-backdoor-malware-deployed-against-japanese-targets/.

[3] https://nvd.nist.gov/vuln/detail/CVE-2022-24934.

[4] TeamTS5. https://teamt5.org/en/.

[5] https://github.com/jas502n/mimikat_ssp/blob/master/AddSecurityPackage_RawRPC.cpp.

[6] WPS. WPS Office is dedicated to unleashing ‘“Workplace Productivity”. https://www.wps.com/about-us/.

INDICATORS OF COMPROMISE (I0CS)

Samples

setup_CN_2052_11.1.0.8830_PersonalDownload_Triale.exe
b9bea7d1822d9996e0£04cb5b£5103c48828c5121b82e3eb9860e7c4577€2954

QMSpeedupRocketTrayInjectHelper64.exe
a3f3bc958107258b3aa6e9e959377dfa607534ccb6ad26ee8ael93b463483c341

QMSpeedupRocketTrayStub64.dll
76adf4£d93b70c4decedb536b4fae76793d%aa7d8dbeel750cladlf0££fa75491

IcbcLog

FFylbet0825.exe, icbc_logtmp.exe
a428351dcb235b16dc5190c108e6734b09¢c3b7be93c0ef3d838cf91641b328b3
£95441b1cd6399887e99dbebaalceb0cad907e8175192e71£f8fladccad9e8£c82
a428351dcb235b16dc5190c108e6734b09¢c3b7be93c0e£3d838cf91641b328b3
21lecldd34d4b7e13a474a1£31373ad041486111eb490527b6533ae2£5a38b73¢c
1099523¢c5509db1lc60c9c5d57aa625636cfd820db4ac60e08e881c256d20eb72
e97c242c5a520f3¢c34e844032d9545e40492d45643ed16£4e4884382769c75f2
21£20033ad20070bccdb4502a50844172ebb0707b8a2f17£573417¢c861cdde33
07e9a7732890cf06e479fee41218eefe404eff1bb29£888d9384752ec8d51lebe

log.dllLlogexts.dll, xps1.dll, kwsui64.dll, MainLdr.dll
97¢392ca71d11de76b69d8bf6caf06£a3802d0157257764a0e3d6£0159436c42
e5adbe232c40ebc8fb01eb255e53780£8d2802917dac3bff46c891532766c43f
cad70balf6d84f24c9fdfdeddedb7ba30eafbldf0£d44d31£5¢7fe79¢3101d5¢
97¢392ca71d11de76b69d8bf6caf06£23802d0157257764a0e3d6£0159436c42
8597851af00c45643b32385£087d4£738b646db99b7d7blclde347441513bell
50a02323e184ce986338c32£22017045432179%beb5ae23£f3154ac214b7966a7fe
0de5029181ae2a9%e20bf63afb27bbf0badc4b99ed042780a£0dfd3c568f3c8aa

Proto8RAT
725e252b9%9a759587bffe569832c002108b57127dbdcd4ed7bddfec04coaleld4dl
£c79292d018d012a862d£f3410843d46c0ed98c7bd31d6dl4a6fe37e31£029854
2dcaB8979132502986£63ac%9ea31bc97b94£057767445ac13£f4e973c8d6c41dc9
24cb273098e09256bcd512daa980c1260533ea7133ebf1d8£2169c059431f2fb
598cb15cd9238505£52254e4fb21820ea7778c370d2be7e3b85502d89b2e07bd
ee0f0728298d82d776d8aeabacb74b05b0fc0662b54702808a21b96102d491f4
2039388615e2e23bladl8bab3325610blefa384cd9bbb35046b18fb6c8c9434f

https://www.wps.com/about-us/
https://github.com/jas502n/mimikat_ssp/blob/master/AddSecurityPackage_RawRPC.cpp
https://teamt5.org/en/
https://nvd.nist.gov/vuln/detail/CVE-2022-24934
https://researchcenter.paloaltonetworks.com/2015/04/unit-42-identifies-new-dragonok-backdoor-malware-deployed-against-japanese-targets/
https://blogs.blackberry.com/en/2017/06/breaking-down-ff-rat-malware

OPERATION DRAGON CASTLING: APT GROUP...

98cdab8e5b0ed2£36£02b3b4b8dcb7c87a64e6295166£9055324463cb327a454
48f11027e£15d68c3e6d943f21b948d346efl6bec3e0£3e0e658929c96505275
63acbca38798b7c22bce921625aa6698bfc83lac78b62d4el7a%c56e224d1a4d6
0a7b22d9736964187ffe62b90e94024ec877351089%ab08de21e617dc1b412087
6d0c6985409fa2be2a22e187877¢8318914a53dbdb760561e1d8162db7e29371
c7£5d2e0c9e70b850ecd49e817a5018dad6676c77d50dcel3b1b4292156486¢57f
3361e03ad94152f1b7823£8256f4dcb857a43bb84dcbb44e6e84a5338d5029d1
93318870a3£f07e37da24d779599ea49d678599a90bb853dffc9a5680320886£04
ea5fd29fd8bde88061£96£009fa7c2£34b128d9p471377902£8d2bb33b42£db7
9f1cfc0c76527627e05ed9a4517861173309d30b624baaddb0e2d105c3c47960
0fc8216bed72b8cad5aaac5ac0bc50ddb9655b5fd8chbfe743482f4c9cbha27de?
88a55aeb2a66e71ed20c5e852¢c7af04686c1d9%9alc36769£5094fb68d2047f8ea
elc6a75bcbl0f2f058£8896fb30fal3087£3f39%e1b26cal567a8092165dbcebfc
f3ed09ee3feB869e76f34eecelef974d1b24297a13a58ebff20ead4541b9%a2d86¢c7
573423da0efa9b5e46948c75d1bb9552e2723bad4fa075e65bf0cd4blfed1441c
£f£556c45bb1734bc2£29d7465291a3a4c209ef4deb91aebff81634934466c00d
8c6762907239¢cc90bf35b7b37708d98d25b374a3bba8ebdad5caal2785050224
ddb2edb9096674a916c0cd88c81be333defc7d01d0c36848e57246debccc6odd?
edc0e6b563a0££923399fa001797d634dbddba83e6b7240190e£f6d07943bce87
c834c78£38e6bed8af2d28777d9d2abec06b665307da78c31f652edal9ab2ffe
2dfde7fad4f4dbe0dfac3e62al8cff7a8ebl48dccll4idc9a641lb7cbd7715ed252
6101£635240ee5805c29%ec2cb3a%ac0d34f7£7e05d021fbc55eeal3e0b8d4d55f
e074da895e4c030d047¢c7785d3dc95b9256ee40albdf16d58e5690e421901e0d
1c8f486475a433b9085994a38ded1293a492421e9c476£62c0d499066076904

MulCom
aba89668c6e9681671a95b3d7a08aae2a067deed2d835ba6f6£d18556c88a5£f2
f1b96bd59cdf8£180dddb7£374777ala%9c34faa6fcld4aal3fleeb5a185702£888

Atomx.dllLxps1.dll
2abc43865e49£8835844d30372697£da55992e5a6a13808cfeedlc37ba8f7876
3988d3£fc02£3139d16536e5e7b34fd0fbe8cd19102a2¢c8ed56c2d77d105b3119
ealbd2a%a76ce691£729f3alb71e35abe68e2150£72538fa31ef9d5183e8alod

kb%num%.dll
4c73a62a9f19%eebbdfeff4fdb88e4682ef852e37£££957c9%elcff27c5e5d47ad
2152cfc0ba%efebl0efdbl1578bf75c507503e7c8falcddd7d21080e£f6327c69f
ae357£0965758777950£8554c69£836eba20be0568eea98cd714£6d16411277f
b1d0ec3a0779132afe3b4f9caB8b84c59ebf036a40e64d85deec2b21call344a85
c5e53e3d485fdda982cd5949eal25482256bfd76d4e725a874ddbe89dd06e9d0
2d80b1562cc68d68fflebf9046d901ad5db12464bb4c8533432d30aba608b896
fc4c4d523708432defdf7£68d3cl3efbac06d57173feb45bbbd76442ba37cdaa
652f4ac2143f£d69366caf53c26bdf5a5197£0145d86cb8chb7fbfc97b7facle?d
ee21e0964bf4609a5fcfab0b207e550£14e434567352e81flabd08ee794eadal
7dfab9618fdcd46fcf9c072a2bb93be8360c90a6705e21da0359b636387955d82
8cdfb7c4bf1102bd7cbc5806bddc983b8babazl58d2efd31d76eblbdebel08fdc
99553649c24af7d5e72c26ea50302fb165£c2407985a536284a52670eb02b625
0adc108340ec513£f0£73991ff1f60952be7f9%08a8448f4663b711blc9c8acb73
3d29a00£fe8c3b79efbb7452169712860331e5791959%9ef£92a6a2064506e2fdc2
€9990aa62a587ddd5b33fb1f251d3c4a8de3alcd5d5e99a326dd70ce2245£f9fe
176b5808fb0e8de31912121aec8802898ca648149ec5del830c64c283bebecdl
2b946ceed774dd9961e8cf60£633144fca5c558d4b4922102daa3b3cade2db6b
547c6a00c623fadd88bacbbed6ffff076d6e35dc20£f9%9ab91327a6bc5f5dedf9e
66e7f55a02a53ce43272ae3fabbbd47191d02292d8b4ffd2aa5£590ed6£2245e
a2celfl19522ce3a88b4c90b8db5£fd688e18366ad3a7d18311410449¢c1e854305
5676f1a9de017dafff2dab09a8££269945d900bea6d2ce7d53fdb7d4d7e5311a
£f94ec386cedlcd5e480b4ad483a5¢c55586d157be69808£83afab0c75150c5dald
88658ald5e6758c098ac7eb5ab7284ff53el72aaadf4a6adbf8b0f0e7feffflda
77890e3c6£1228408abda3722e69a0c43c4517b£f060734850878af144724fala
263e7da3d34b1753b75£3423a52790e8f666fe5c9f9c8cbbaccdecl86d50d24c
796accd99b52b646cc6622792d7fa08baf53c741lac5fe88fbl1£f9b51de7b5de51
5a42d03593d17£6440be019b55e54b11fbcff74aa02b9399%b23fafd6£2d7310
7Tacc7c25cfeded4c7a30185d61853b887£799773e5d6ad4251260871bbc68131f

4c73a62a9fl9%eebbdfeffdfdb88ed682ef852e37£££957c9%elcff27c5e5d47ad

15

OPERATION DRAGON CASTLING: APT GROUP...

C&Cs

103.140.187[.]16 - DNS resolution on htxp://update.wps[.]Jcn/newupdatel 11111111111111111111/2052/bigpatch/setup_
CN_2052_11.1.0.8830_PersonalDownload_Triale.exe

23.106.123[.]196
207.148.125[.197 - in smcache.dat
server.avastbusines[.]com
api.gpk-demol.]Jcom
api.geming8888[.]Jcom
cdn2.twmicrosoft[.]Jcom
http://www.ffyl-bet[.]Jcom/
help.tiger266[.]Jcom
www.animal777[.]com
mirrors.centos.8788912[.]com
themerecord.com
yd.full-subscription[.]com
zk.full-subscription[.]Jcom
¢dn.1685810[.]com
static.1685810[.]Jcom
login.good-enough-8fe4[.]Jcom
http://23.106.124[.]1136:7865
time.daytimegamers[.]Jcom
static.daytodayupl.]Jcom
http://cache.download.banner.dragonfish88[.]Jcom

cachedownload.goldenrose88[.Jcom

APPENDIX

List of processes:
360sd.exe

360rp.exe
360Tray.exe
360Safe.exe
360rps.exe
ZhuDongFangYu.exe
kxetray.exe
kxescore.exe
KSafeTray.exe
KSafe.exe
audiodg.exe
iexplore.exe
MicrosoftEdge.exe
MicrosoftEdgeCP.exe

chrome.exe

OPERATION DRAGON CASTLING: APT GROUP...

Registry values changed by the Zload plug-in:

Registry path in HKEY_LOCAL_MACHINE Registry key
SOFTWARE\\Microsoft\Windows\\Current Version\\ LocalAccountTokenFilterPolicy = 1
Policies\System FilterAdministratorToken = 0
SYSTEM\\CurrentControlSet\\Control\\Lsa LimitBlankPasswordUse = 0

EveryonelncludesAnonymous = 1
RestrictAnonymous = 0

System\\CurrentControlSet\\Services\LanManServer\\ RestrictNullSessAccess = 0
Parameters

NullSessionPipes = RpcServices

Core module working directory (WD)
Default hard-coded WD names (created either in C:\ProgramData\ or in % TEMP%):
* spptools
¢ NewGame
e TspSoft
* InstallAtomx
File used to test permissions: game_<tick_count>.log — the WD path is written into it and then the file is deleted.
Hard-coded security descriptor used for WD access: ‘D:(A;;GA;;;WD)(A; OICIIO;GA;;;WD)’.

Lockfile name format: ‘<working_dir>\<victim_username>-<comment_string>.log’.

Core module mutexes
Global\sysmon-windows-%x (%x is a CRC32 of an MD5 hash of the victim’s username)
Global\IntelGameSpeed-%x (%x is a CRC32 of an MDS5 hash of the victim’s username)

Global\TencentSecuriry Agent-PO1-%s (%s is the victim’s username)

