
TRACKING THE ENTIRE ICEBERG –
LONG-TERM APT MALWARE C2 PROTOCOL
EMULATION AND SCANNING
Takahiro Haruyama
VMware, Japan

tharuyama@vmware.com

28 - 30 September, 2022 / Prague, Czech Republic

www.virusbulletin.com

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

2 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

ABSTRACT
Malware analysts normally obtain the IP addresses of malware’s command-and-control (C2) servers by analysing samples.
This approach works in commoditized attacks or campaigns. However, with targeted attacks using APT malware, it’s
difficult to acquire a sufficient number of samples for organizations other than anti-virus companies. As a result, malware
C2 IOCs collected by a single organization are just the tip of the iceberg.

For years, I have reversed the C2 protocols of high-profile APT malware families then, by emulating the protocols,
discovered the active C2 servers on the Internet. In this presentation I will explain how to emulate the protocols of two
long-term pieces of malware used by PRC-linked cyber espionage threat actors: Winnti 4.0 and ShadowPad.

Both pieces of malware support multiple C2 protocols, such as TCP / TLS / HTTP / HTTPS / UDP. It’s also common to
have different data formats and encoding algorithms for each protocol in the same piece of malware. I’ll cover the protocol
details while referring to unique functions such as server mode in Winnti 4.0 and multiple protocol listening at a single port
in ShadowPad. Additionally, I’ll share the findings for the Internet-wide C2 scanning.

After the presentation, I will publish over 120 C2 IOCs with the date ranges in which they were discovered. These dates are
more helpful than IP address information alone since the C2s are typically found on hosted servers, meaning that the C2
could sometimes exist on a specific IP only for a very limited time. 65% of these IOCs have 0 detection on VirusTotal at the
time of writing this paper.

INTRODUCTION
Security practitioners often rely on the reputation of IP addresses to determine if traffic to and from that indicator of
compromise (IOC) is malicious. However, reputation is not effective for catching new malware C2 servers, especially when the
APT actors limit their malware deployments to specific targets. In the example shown in Figure 1, anti-virus (AV) engines
detected an IP address as harmless (0/90) on VirusTotal in June 2022, but I was able to identify it as a Winnti 4.0 C2 server.

Figure 1: VirusTotal result against one IP address.

I looked at the TLS protocol, which I had reversed, and saw the protocols of high-profile malware families were emulated,
in particular those used for cyber espionage to discover real-time C2 instances on the Internet. The following section
describes how I created this intelligence for two pieces of long-term APT malware: Winnti 4.0 and ShadowPad.

SELECTION OF LONG-TERM APT MALWARE
Both Winnti 4.0 and ShadowPad are utilized by PRC-linked cyber espionage threat actors. Table 1 shows a summary of
each malware as the target of C2 scanning research.

Winnti 4.0 ShadowPad

Prevalence Low High

First-observed year 2016 (start-up sequence), 2018 (new C2 protocol) 2015

Scanning start year 2019 2021

Supported protocols TCP / TLS / HTTP(S) / UDP TCP / SSL / HTTP(S) / UDP / DNS

Unique feature Server mode Multiple protocol listening at a single port

Table 1: Summmary of scanning targets.

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

3VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

There has been minimal reporting on Winnti 4.0 so far, while ShadowPad threat analysis information has been published by
many organizations. Multiple C2 protocols are supported by both. I will detail the C2 protocols (especially focusing on the
initial handshake), scanner implementations, and the scanning results.

Winnti 4.0

Winnti is a family of malware that has been seen in many large-scale attacks and has been attributed to, at least, the APT41
Chinese threat actor [1]. The malware was reported by Kaspersky for the first time in 2013 (version 1.0-2.0) [2]. Novetta
analysed the start-up sequence and C2 protocol of version 3.0 in detail [3].

I observed that the version 3.0 implementation (in particular the start-up sequence) has changed since 2016, which has
guided this research into categorizing Winnti as multiple variants. Macnica Networks first described the new
implementation at JSAC 2018 [4]. Here we refer to the new variants as version 4.0 to differentiate from previous versions.
The differences from version 3.0 are shown in Table 2.

Version 3.0 Version 4.0

Initial component Dropper Loader and DAT file

Initial encryption algorithm DES AES

Initial encryption key cracking Easy Hard

Worker encryption 1-byte XOR and nibble swap DPAPI or AES with host-specific key

Table 2: Difference between Winnti versions 3.0 and 4.0.

Winnti 3.0 was composed of multiple components: Dropper, Service and Worker. The Dropper component initially decrypts
and saves both the Service component and the Worker component then sets the persistence for Service. After that, the Service
component runs the main payload, called Worker. Version 4.0 is more carefully implemented to make code acquisition for the
Worker component harder. As a result, there has been limited information publicly available about this variant since it was first
observed. If the reader is interested in the version 4.0 installation behaviour, check the blog post at [5].

In the process of analysing the Winnti 4.0 samples, I identified the new Worker component from 2018 whose code has less
than 50% similarity with the existing version 3.0. The Worker configuration block structure is detailed below:

struct __unaligned __declspec(align(2)) struc_work_config
{
 char campaignID[64];
 char MAC_addr[6];
 int c2_proto;
 char c2_host_port[128];
 char c2_active_table[672];
 struc_proxy proxy;
 struc_server_ports server_ports;
 int httpapi_mode_imm4;
 int httpapi_proto;
 int httpapi_port;
 int field_56A;
 int field_56E;
 int field_572;
 int field_576;
 int field_57A;
 int field_57E;
 wchar_t httpapi_url[256];
 char field_782[16];
 int server_cert_size;
 int server_privkey_size;
 char server_cert_der[655]; // flexible according to the size
 char server_privkey_der[609]; // flexible according to the size
 char padding[2832];
};

struct struc_proxy
{
 int proxy_proto;
 char proxy_host[256];

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

4 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

 char proxy_user[64];
 char proxy_pass[32];
 char proxy_realm[128];
};

struct struc_server_ports
{
 __int16 tcp;
 __int16 udp;
 __int16 unk;
 __int16 unk_0;
 __int16 unk_1;
 __int16 http;
 __int16 https;
 __int16 tls;
};

enum enum_proto // specified by c2_proto and proxy_proto values
{
 none = 0x0,
 TCP = 0x1,
 HTTP = 0x2,
 HTTPS = 0x3,
 TLS = 0x4,
 UDP = 0x5,
};

The C2 protocol of the sample is completely different from the existing understanding of the 3.0 protocol. It will be
detailed in the sections that follow.

C2 protocol

As the configuration structure shows, the Worker component supports five C2 protocols: TCP, HTTP, HTTPS, TLS and
UDP. While the same customized packet is included in every protocol (e.g. as a raw payload in TCP, as POST data in
HTTP, and so on), there are minor differences between the protocols. The following analysis will detail the customized
packet format and then the differences between the protocols.

Winnti 4.0 also supports the server-mode function, which accepts incoming packets such as a C2 server for lateral
movement. The function was helpful to verify the correctness of the protocol format and encryption handled by the
implemented scanner.

Packet format and encryption

The customized packet is separated into the header and payload.

struct struc_custom_header
{
 __int16 temp_key_seed;
 __int16 unk_word; // initial value is 2
 __int16 signature; // 0x45DB
 int payload_len;
};

The protocol encrypts both the header and payload, except for a temp_key_seed value that is provided in the header. The
signature value is validated after the decryption on the receiver side.

struct struc_custom_payload_init
{
 int payload_type; // request:0xEE775BAA/0x4563CEFA/0x5633CBAD, response:0xFACEB007/0x5633CBAD
 int unk_dword; // request:0, response:0xC350/0xC352
 GUID guid;
 char null_bytes[14];
 __int16 seq_num; // starting from 1
 __int16 null_word;
};

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

5VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

The initial packet payload contains a payload type, random GUID value, and packet sequence number. The payload type
should be one of the following values:

• 0xEE775BAA

• 0x5633CBAD

• 0x4563CEFA

• 0xFACEB007

Typically, the request payload type will be 0xEE775BAA and the response will be 0xFACEB007.

The encryption algorithm is unknown at this time, but it appears to be a stream cipher with no constant values that requires
two kinds of keys:

• A dynamically generated key from the temp_key_seed value in the header.

• A portion of the SHA1 value of the hard-coded string ‘host_key’.

The generation algorithm is implemented in Python:

Figure 2: Key generation from a temp_key_seed value.

The unknown encryption/decryption routine can be emulated by IDA Appcall [6]. (The routine will be detailed in the
‘Scanner implementation’ section later in this paper.)

HTTP protocol

The customized packet data itself is the only information transmitted in the TCP/UDP protocols. In the HTTP protocol, this
customized packet is sent through a POST request with several HTTP headers, which are depicted in Figure 3.

Figure 3: HTTP POST request including the customized packet.

It should be noted that the number ‘333959650’ after the ‘POST /’ is randomly generated. The cookie value is made up
of five DWORD hex values, which contain information about the customized packet size. The size information is
embedded as the XOR key. A Python script was written to parse this data. Figure 4 shows the relevant code from the
Python script, which validates the cookie value.

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

6 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 4: Cookie value validation code.

The following shows the output of the Python script, and that the customized packet size is 0x34:

$ python validate_cookie.py 640ABEFB16D2CE36E7E83E1B8BEF31B2500ABEFB
dw0=0xfbbe0a64, dw1=0x36ced216, dw2=0x1b3ee8e7, dw3=0xb231ef8b, dw4=0xfbbe0a50
The cookie value validated. dword key = 0x34

Prior to the POST request an initial GET request will be made between the client and server. An example of this is shown
in Figure 5.

Figure 5: HTTP GET request.

The GET request and response do not contain the customized packet, and subsequently upon decoding the cookie value the
size will be shown as zero. The output below shows the decoded cookie value from Figure 5:

$ python validate_cookie.py 420F0DABD80FC8F34050B58A5AB00FCE420F0DAB
dw0=0xab0d0f42, dw1=0xf3c80fd8, dw2=0x8ab55040, dw3=0xce0fb05a, dw4=0xab0d0f42
The cookie value validated. dword key = 0x0
$ python validate_cookie.py D66EEE1927424A0C7A30387777FC6B9ED66EEE19
dw0=0x19ee6ed6, dw1=0xc4a4227, dw2=0x7738307a, dw3=0x9e6bfc77, dw4=0x19ee6ed6
The cookie value validated. dword key = 0x0

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

7VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

The purpose of the GET request is unknown – it seems redundant, but it could be in place as an initial handshake without
revealing the custom packets.

Additionally, it was determined from the configuration that the server-mode code provides two kinds of HTTP server
functions:

• A normal HTTP server replying to any request.

• A ‘Reuse’ HTTP server only replying to requests with correct URLs.

The latter HTTP server is implemented by Windows HTTP Server APIs and appears to be the same as the passive HTTP
listening function of PortReuse reported upon by ESET [7]. However, in this implementation the URL is not fixed but
rather specified in the configuration block.

Figure 6: Reuse HTTP server code.

Additional SSL encryption

The customized packet is also encrypted with SSL when the protocol is HTTPS or TLS. Aside from the added layer of
encryption they are identical to HTTP and TCP.

Behaviour after the initial handshake

After the initial handshake, the packet payload contains the command ID and dispatcher ID in a nested structure to control
the infected host.

struct __declspec(align(4)) struc_custom_payload_next
{
 __int16 messageID;
 __unaligned __declspec(align(1)) int sessionID_src;
 __int16 messageID_0;
 int sessionID_dst; // copied from data sent by C2
 __int16 field_C;
 __int16 field_E;
 __int16 field_10;
 __unaligned __declspec(align(1)) int field_12;
 __unaligned __declspec(align(1)) int field_16;
 __unaligned __declspec(align(1)) int sessionID_dst_0;
 __unaligned __declspec(align(1)) int sessionID_src_0;
 char imm0;
 char unk_byte_from_C2;
 __int16 field_24;
 __unaligned __declspec(align(1)) int field_26;
 __int16 field_2A;
 __int16 field_2C;
 __int16 signature; // 0x45db
 int nested_payload_len;
 struc_nested_payload nested_payload;
};

struct __unaligned __declspec(align(1)) struc_nested_payload // at least 0x14 bytes
{

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

8 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

 // e.g., cmd_ID=5 & dispatch_ID=1 order to send victim info
 __int16 cmd_ID;
 __int16 dispatch_ID;
 __int16 field_4;
 char field_6;
 char field_7;
 char field_8;
 char field_9;
 char field_A;
 char field_B;
 int ret_value; // -1 or 0 or 1 or 2
 int additional_data_len;
 struc_data_cmd1 additional_data; // flexible size
};

However, the Worker component looks to have few built-in remote access trojan (RAT) functionalities other than collecting
the host information and executing a PE module plug-in downloaded from the C2. Therefore, I hypothesize either that
Winnti 4.0 with the new Worker component must load a plug-in for each desired function like Winnti 3.0, or that the
acquired sample was in an early development stage. I haven’t acquired any plug-in samples for the Worker yet.

Scanner implementation

I initially had to decide which ports the scanner should focus on. I only had one Winnti 4.0 sample with the new C2
protocol. Therefore, I targeted the following ports based not only on the sample but also on other Winnti malware
information reported by ESET [7] and Trend Micro [8], though neither of these referred to the 4.0 protocols.

• TCP/443

• TCP/80

• UDP/443

• UDP/53

The rough scanning workflow is shown in Figure 7.

Figure 7: Discovery workflow.

In both TCP-based and UDP protocols, ZMap [9] is first utilized to discover open or respondent IP addresses on the
Internet. HTTP/HTTPS GET requests are sent to the hosts with open TCP ports 80/443, then an additional TCP/TLS
custom packet transmission with fixed data will be completed for port 443. The TCP/TLS results will be validated by IDA
Appcall, based on the decrypted header values (payload size and signature) of the responses. The UDP protocol case can be
handled in the same way while the result from ZMap will be filtered out to reduce the noise.

Two scripts were implemented for this discovery. One is a stand-alone Python script validating the HTTP/HTTPS
Set-Cookie header values of responses and identifying suspicious respondents to the TCP/TLS customized packets. The

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

9VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

other is an IDAPython script with the Appcall functions encrypting and decrypting the TCP/TLS/UDP packets. Both scripts
were tested against the sample where I modified configuration values to enable arbitrary server-mode functions.

The stand-alone script detects not only active hosts returning correct Set-Cookie header values, but also suspicious ones
handling different protocols (potential TCP/TLS servers), as below:

$ python internet_c2_scan.py -l test.txt -p 80 -d winnti http
[DEBUG] target is "http://172.16.24.127:80"
[DEBUG] validating the Set-Cookie value: 26A3F6E045EC98AD6732D27EFC1C9CCE26A3F6E0
[+] 172.16.24.127,active
[*] 1 scanned in 0:00:00.454756
[*] 1 active servers found

$ python internet_c2_scan.py -l test.txt -p 443 -d winnti tcp
[DEBUG] target is "tcp://172.16.24.127:443"
[+] 172.16.24.127,suspicious,bbef1f956f778eabd17d26b6eb0893658bc896c91a0cdd3fda32c70ba3e6
d9ab3ef9fecee0673537e1e53e6b2e747dce20630e67
[*] 1 scanned in 0:00:00.231333
[*] 1 active servers found

The second of the above execution examples should be passed to the IDAPython script as the stand-alone script only
checks that the response size is the same and the content is different from the data sent to the IP address.

The IDAPython script validates values in the respondent’s packet such as header signature and payload size after the
decryption.

[*] start
[*] selected: protocol = TCP, port = 443
[DEBUG] created GUID: 0b8212dc-e364-4c18-ac0b-26382beb1387
[DEBUG] client header: unknown word = 0x2, header signature = 0x45db, payload length = 0x2a
[*] client payload: payload type = 0xee775baa, unknown dword = 0x0, GUID = 0b8212dc-e364-4c18-
ac0b-26382beb1387, sequence number = 1
[DEBUG] a request packet sent (52 bytes)
[DEBUG] a response packet received (52 bytes)
[DEBUG] server header: unknown word = 0x2, header signature = 0x45db, payload length = 0x2a
[*] server payload: payload type = 0xfaceb007, unknown dword = 0xc352, GUID = 0b8212dc-e364-4c18-
ac0b-26382beb1387, sequence number = 2
[+] 172.16.24.127: server is active (custom packet validated)
[+] 1 active servers found
[*] done

Additionally, we can differentiate between C2s and victim hosts infected with server-mode variants by checking the GUID
and sequence number values. As displayed above, the server-mode variants respond with the same GUID (0b8212dc-
e364-4c18-ac0b-26382beb1387) as the client while incrementing the sequence number. On the other hand, the C2
servers respond with the null GUID and reset the sequence number to 1.

[*] start
[*] selected: protocol = TCP, port = 443
[DEBUG] created GUID: 346dfd36-a776-4a2e-9765-a0bcc2524fc9
[DEBUG] client header: unknown word = 0x2, header signature = 0x45db, payload length = 0x2a
[*] client payload: payload type = 0xee775baa, unknown dword = 0x0, GUID = 346dfd36-a776-4a2e-
9765-a0bcc2524fc9, sequence number = 1
[DEBUG] a request packet sent (52 bytes)
[DEBUG] a response packet received (52 bytes)
[DEBUG] server header: unknown word = 0x2, header signature = 0x45db, payload length = 0x2a
[*] server payload: payload type = 0xfaceb007, unknown dword = 0x0, GUID = 00000000-0000-0000-
0000-000000000000, sequence number = 1
[+] 185.161.211.97: server is active (custom packet validated)
[DEBUG] a request packet sent (52 bytes)
[DEBUG] a response packet received (52 bytes)
[DEBUG] server header: unknown word = 0x2, header signature = 0x45db, payload length = 0x2a
[*] server payload: payload type = 0xfaceb007, unknown dword = 0x0, GUID = 00000000-0000-0000-
0000-000000000000, sequence number = 1
[+] 80.82.67.6: server is active (custom packet validated)
[+] 2 active servers found
[*] done

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

10 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

The difference in the values can be observed in other protocols like TLS and UDP.

Result

Between December 2019 and May 2022 I discovered 51 Winnti 4.0 C2 servers (39 unique IPs) on the Internet. The
percentage of each protocol is shown in Figure 8.

Figure 8: Winnti 4.0 population by protocol.

Based on the GUID and packet sequence number values that I mentioned in the previous section, I conclude that all TLS/
TCP/UDP servers were C2s, not infected hosts with the server-mode variants. Unlike these protocols, the HTTP/HTTPS
scanners just decode and validate the cookie value. There is no difference in the value between C2s and server-mode
infections. However, these were also likely C2s because all servers were hosted by VPS providers and most of the providers
overlapped with those hosting TLS/TCP/UDP C2s.

The change in the number of active Winnti 4.0 C2s is shown in Figure 9.

Figure 9: Change in number of active Winnti 4.0 C2s.

I disclosed the discovered Winnti 4.0 C2 information twice (in February 2020 [10] and November 2021 [11]). I suspect that’s
why the number in November 2021 dropped sharply. However, the new C2 servers are still observed as of the time of writing
this paper. To the best of my knowledge, there have been only two public reports – by Trellix [12] and Recorded Future [13]
– on this threat. In order to alert the cybersecurity community, I will continue to track the C2 servers in the future.

ShadowPad

ShadowPad is a modular malware platform privately shared with multiple PRC-linked threat actors since 2015. According
to SentinelOne [14], ShadowPad is highly likely the successor to PlugX. Due to its prevalence in the cyber espionage field,
I was motivated to analyse the C2 protocol to create a scanner.

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

11VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

C2 protocol

ShadowPad supports six C2 protocols: TCP, SSL, HTTP, HTTPS, UDP and DNS. In this research, I focus on TCP/
HTTP(S)/UDP protocols, as others like SSL and DNS are not likely utilized by the recent ShadowPad samples.

The format and encoding algorithm are different between TCP and HTTP(S)/UDP.

TCP HTTP(S)/UDP

Key size 4 2

Header size 0x14 8

Payload size in the initial handshake
packet

Up to 0x3F HTTP(S): Up to 0x1F, UDP: 0x10

Table 3: Difference in packet format.

The key for the encoding is included in the header. Every integer value in the header is big endian. Randomly sized data
will be appended as the payload to the initial handshake packet in both cases.

The immediate values used by the encoding algorithms are different per variant (probably per ShadowPad builder version).
I analysed three ShadowPad variants, which I was able to collect in August 2021, as displayed in Table 4. (The SHA256
hash values are included in the Indicators of Compromise section.)

Variant name C2 protocol Config size Attribution Source

Variant1 (aka
ScatterBee [15])

TCP/UDP 0x896 APT41 Positive
Technologies [16]

Variant2 HTTP(S) 0x85C Tonto Team ESET [17]

Variant3 HTTP(S) 0x85C unknown VirusTotal [18]

Table 4: Analysed ShadowPad variants.

The C2 protocol is further detailed below.

TCP protocol

The TCP protocol header format is displayed as follows:

struct struc_common_header
{
 int session_key;
 int plugin_and_cmd_id; // plugin_id (0x68) << 16 + cmd_id (0x51)
 int module_code; // 0
 int payload_size_compressed;
 int payload_size_original;
};

The header format has been the same since 2015. The session_key is randomly generated then used for encoding both
the header and the payload. The plugin_id and cmd_id values included in the plugin_and_cmd_id field have been
updated by variants, some of which are covered in this paper. The values in the initial packet created by Variant1 should be
0x68 (Online plug-in) and 0x51 (check-in). The module_code of the initial packet generated by the sender is always 0.

If any payload data exists, it will be compressed with the QuickLZ [19] algorithm. QuickLZ is an older, publicly available
compression routine that is not commonly seen. The client generates randomly sized null bytes (up to 0x3F bytes) for the
initial packet payload.

Variant1’s encoding algorithm for the TCP packet in Python is shown in Figure 10. Based on the protocol analysis experience
of Variants 2 and 3, another variant may use a different immediate value from 0x22F4B1BA for the TCP packet encoding.

Figure 10: TCP packet encoding by Variant1.

After the initial handshake, Variant1 executes the commands of the plug-ins specified by the C2 server. For more details,
review the Dr.Web white paper [20] explaining the individual command IDs and payload formats. The variant analysed in
the paper is older than Variant1 but the formats should be similar.

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

12 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

HTTP(S) and UDP protocols

The header format for the HTTP(S) and UDP protocols is listed below. In HTTP(S), the data is sent through the POST
method.

struct struc_proto_header
{
 __int16 session_key;
 __int16 type; // 0 in HTTP, req=0x1001/res=(0x2002|0x5005) in UDP
 __int16 session_src_id; // random 2 bytes, generated by both client/server
 __int16 session_dst_id; // req=0, res=client’s session_src_id
};

The session_key has the same role as the TCP session_key, though the key size is different. The second field type is
always 0 (zero) in the HTTP initial packet, while UDP client and server send 0x1001/0x2002/0x5005. The session_src_
id field is randomly generated by both client and server. The value sent by the client will be set in the session_dst_id
field on the server side.

The initial packet payload data are randomly generated based on QueryPerformanceCounter and other APIs. The HTTP
payload size is also random with a length of up to 31 (0x1F) bytes, while the UDP one is fixed at 16 (0x10) bytes.

Figures 11-13 show each variant’s encoding algorithm in Python. The immediate values in the code are different, but the
algorithm itself is identical.

Figure 11: UDP packet encoding by Variant1.

Figure 12: HTTP(S) packet encoding by Variant2.

Figure 13: HTTP(S) packet encoding by Variant3.

After the initial handshake, the payload will contain the same data structure as the TCP packet (struc_common_header and
its QuickLZ-compressed payload) explained in the previous section, while the type field in struc_proto_header will be
incremented.

Scanner implementation

I decided the following target protocols/ports based on the configurations extracted from recent ShadowPad samples. As
explained earlier, the scanner per variant had to be implemented due to the difference in immediate values used in the
encoding.

Scanning start period Target protocol/port/variant

September 2021 HTTP/443 (Variant2 & Variant3)

October 2021 TCP/443 & UDP/53 (Variant1)

June 2022 UDP/443 (Variant1), HTTP/80 (Variant3)

The flow chart in Figure 14 shows how the ShadowPad C2 servers are detected by the scanners.

Like Winnti 4.0 C2 scanning, first the list of hosts open at targeted ports is created by ZMap. Then the scanner sends the
ShadowPad-formatted packets to all IP addresses on the list. Next, the scanner checks that the response packet size is at
least greater than the header size and the session_key is different from the sending one to exclude honeypots. If the size

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

13VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

and key look to be valid, the scanner decodes the response packet. In TCP protocol, the scanner validates the payload size
fields (payload_size_compressed and payload_size_original). In HTTP(S) and UDP protocols, the code verifies
if the type field value is correct and the response’s session_dst_id is matched with the session_src_id created by
the scanner.

The following output log shows that eight Variant1 TCP servers were discovered by scanning the list of TCP/443 open
hosts generated by ZMap. The command_id 0x53 from the C2s is a request to send system information of the infected
host.

2022/06/xx xx:00:02,log file opened: scan_results/sp_scan_auto_202206xx_xxxxxx.csv
2022/06/xx xx:00:05,malware options: family = ShadowPad; targeted protocol = tcp (version =
Variant1)
2022/06/xx xx:00:09,ShadowPad specific options: version = Variant1; key size = 4; key endian =
big; header size = 0x14; Online plugin ID = 0x68; CMD ID = 0x51; module code = 0x0
2022/06/xx xx:00:16,51576779 open hosts read from corpus/2022-xx-xx_zmap22000ppsVPN_tcp_443.saddr
2022/06/xx xx:43:46,45.137.10.3,active,compressed payload size matched (plugin_id=0x68, command_
id=0x53, payload=None)
2022/06/xx xx:40:28,45.32.248.92,active,compressed payload size matched (plugin_id=0x68, command_
id=0x53, payload=None)

Figure 14: ShadowPad C2 detection flow.

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

14 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

..[SKIPPED]..
2022/06/xx xx:01:05,43.129.188.223,active,compressed payload size matched (plugin_id=0x68,
command_id=0x53, payload=None)
2022/06/xx xx:48:35,51576779 scanned in 1 day, 17:48:32.497550
2022/06/xx xx:48:35,8 suspicious/active servers found (DB new=4 update=4)

In order to detect the Variant2/Variant3 C2 servers I just use the HTTP protocol scanner, not the HTTPS one, because the
ShadowPad C2s can accept multiple protocol requests at a single port. I noticed the unique feature by extracting the C2 server
configurations from the sample (SHA256: d011130defd8b988ab78043b30a9f7e0cada5751064b3975a19f4de92d2c0025).

[*] config size = 0x85c
..
[+] C2 Entry 0 (offset 0xbc): 'HTTPS://wwa1we.wbew.amazon-corp.wikaba.com:443'
[+] C2 Entry 1 (offset 0xed): 'HTTP://wwa1we.wbew.amazon-corp.wikaba.com:443'
..

The hostnames and ports in the entries matched exactly but the protocols were different. In fact, I was able to verify that
another active ShadowPad C2 can accept both protocols at the same port.

$./c2fs.py -d -l corpus/query.txt -p 443 -f sp http Variant2
..
[*] malware options: family = ShadowPad; targeted protocol = http (version = Variant2)
[*] ShadowPad specific options: version = Variant2; key size = 2; key endian = big; header size =
0x8; header type = 0x0; client session ID = 53978
[D] POST: http://137.220.185.203:443/ (proxy={}, stream=True, timeout=30)
[+] 137.220.185.203,active,client session ID matched (type=0x0)
..

$./c2fs.py -d -l corpus/query.txt -p 443 -f sp https Variant2
..
[*] malware options: family = ShadowPad; targeted protocol = https (version = Variant2)
[*] ShadowPad specific options: version = Variant2; key size = 2; key endian = big; header size =
0x8; header type = 0x0; client session ID = 52256
[D] POST: https://137.220.185.203:443/ (proxy={}, stream=True, timeout=30)
[+] 137.220.185.203,active,client session ID matched (type=0x0)
..

The same behaviour may be seen in other protocol combinations such as TCP/SSL and UDP/DNS. However, it’s
impossible to test because I have not yet obtained any samples of the variants with multiple C2 protocol plug-ins.

Result

Between September 2021 and June 2022 I identified 72 ShadowPad C2 servers (67 unique IPs) on the Internet. The
percentage of each variant is shown in Figure 15. Through the tracking period, Variant1 had become more active.

Figure 15: ShadowPad population by variant.

The change in the number of active ShadowPad C2s is shown in Figure 16.

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

15VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Figure 16: Change in number of active ShadowPad C2s.

Compared with 2021, the active C2s in 2022 have been on a declining trend, though the sharp drop in February 2022 was
due to a system issue. The scanner may have missed a new variant lately as ShadowPad changes the immediate values used
in the packet encoding per variant. I will continue to improve the scanner as I obtain new variant samples.

As ShadowPad is more prevalent than Winnti 4.0, I was able to identify three samples communicating with the C2 IP
addresses on VirusTotal. The sample information is listed in Table 5.

Sample malware
family

C2 IP address C2 protocol/port
used by sample

Sample
submission date

C2 first-seen
date by scanner

C2 last-seen date
by scanner

Spyder [21] 156.240.104.149 TLS/443 2021/10/26 2021/10/16 2021/10/16

ReverseWindow
[22]

43.129.188.223 TCP/10333 2022/02/27 2021/10/17 2022/06/14

ShadowPad 213.59.118.124 UDP/443 2022/03/20 2022/03/06 2022/06/13

Table 5: Samples communicating with the ShadowPad C2 IPs.

Spyder and ReverseWindow are APT malware utilized by PRC-linked cyber espionage threat actors (respectively APT41
and LuoYu). All C2s were discovered by the TCP/443 Variant1 scanner, but the samples communicated with a different
protocol or port. With the exception of the Spyder sample case, the C2s had accepted multiple protocols/ports at that time.
The scanning system caught the C2s prior to the sample submissions.

Additionally, last year the discovery of the use of a discovered C2 IP (107.155.50.198) triggered an incident response. The
advanced and sophisticated attack had bypassed many methods of detection but was ultimately alerted upon simply because
of the pre-identified C2 IP.

Figure 17: Alert based on the ShadowPad C2.

NOTES FOR INTERNET-WIDE C2 SCANNING

How to get input data

As explained in the ‘Scanner Implementation’ sections, the scanner system needs lists of the IP addresses open at targeted
ports (in short, port scan data) as the input because it is not realistic to scan full ranges of IPs on the Internet with the

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

16 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

Python-based system. The lists can be obtained by purchasing from commercial services such as Shodan [23] and CenSys
[24], but I generate them myself using ZMap for the following reasons:

• For UDP-based protocols, we must scan hosts with the customized protocol formats. For instance, ShadowPad C2s
binding to UDP/53 will not answer to the DNS query packets. Commercial services normally don’t provide an option
to scan with a customized packet.

• As shown in Table 6, commercial services don’t scan minor ports actively. For example, Shodan has published the
scanning target ports [25] on its website. If threat actors avoid using these ports, we will not be able to get the effective
input data from Shodan.

ZMap Shodan CenSys

TCP/10333 4,940,037 4 1,306

TCP/55555 3,199,856 86 486,497

Table 6: The number of IPs open at minor ports (November 2021).

Anonymization

Today, a lot of organizations – not only criminals but also companies/institutes – scan the Internet for various purposes.
Even if the purpose is legitimate, the scanning operations are sometimes forcibly terminated by ISPs and VPS providers
due to abuse reports by external network administrators. In order to sustain the C2 scanning research, the source address
should be anonymized.

There are two methods for the anonymization: using Tor or commercial VPN services. A comparison between the two
methods is shown in Table 7.

Tor Commercial VPN service

Supported protocols TCP TCP/UDP

Cost Free Non-free

Risk of being blocked High Low

Table 7: Comparison between anonymization methods.

Tor is free and open-source software to enable anonymous communication in TCP-based protocols. Tor has a cost
advantage, but it also has a risk of being blocked easily because the Tor exit relay list is published [26]. On the other hand,
commercial VPN services like Mullvad [27] have a cost attached, but support UDP-based protocols. Additionally, it’s hard
for threat actors to block all commercial VPN servers. Therefore, I utilize one of the commercial VPN services for the
anonymization.

We must use the ‘-X’ option in ZMap for non-Ethernet interfaces like VPN. However, ZMap contains a bug causing a
segmentation fault when using this option. I have reported this bug and provided a patch within a ZMap issue [28]. While the
bug has not yet been patched, I highly recommend performing your own patch by using the code explained on that issue page.

CONCLUSION
By emulating the Winnti 4.0 and ShadowPad C2 protocols then scanning the C2 servers on the Internet, I’ve discovered
over 120 C2 servers. The IOCs have been published on GitHub [29] with discovered date ranges which are more helpful
than just IP address information since the C2s are typically found on hosted servers.

65% of these IOCs have zero detections on VirusTotal. Approximately 10 C2s have always been active in both malware
families. I see little possibility of false positives because the C2 protocol formats and encoding algorithms are fairly unique.
In fact, I’ve never received false positive feedback regarding the malware families since the IOCs came into use for
endpoint detection while I could identify both internal and external infection cases.

Scanning APT malware C2s on the Internet is sometimes as hard as finding a needle in a haystack. However, once the C2
scanning works, it can become a game changer as one of the most proactive threat detection approaches.

ACKNOWLEDGEMENT
I appreciate Tadashi Kobayashi’s insight and advice. Kobayashi provided tactics for the scalable scanner implementation
and troubleshooting.

I also appreciate Leon Chang’s expertise and advice regarding ShadowPad. Chang shared his knowledge to get a smart, big
picture of the variants.

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

17VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

INDICATORS OF COMPROMISE (IOC)

Indicator Type Context

0a3279bb86ff0de24c2a4b646f24ffa196ee639cc23c64a044e20f50b93bda21 SHA256 Winnti 4.0 dat file

03b7b511716c074e9f6ef37318638337fd7449897be999505d4a3219572829b4 SHA256 ShadowPad Variant1

aef610b66b9efd1fa916a38f8ffea8b988c20c5deebf4db83b6be63f7ada2cc0 SHA256 ShadowPad Variant2

d011130defd8b988ab78043b30a9f7e0cada5751064b3975a19f4de92d2c0025 SHA256 ShadowPad Variant3

1ded9878f8680e1d91354cbb5ad8a6960efd6ddca2da157eb4c1ef0f0430fd5f SHA256 Spyder communicating with
the ShadowPad C2
(156.240.104.149)

536def339fefa0c259cf34f809393322cdece06fc4f2b37f06136375b073dff3 SHA256 ReverseWindow
communicating with the
ShadowPad C2
(43.129.188.223)

9447b75af497e5a7f99f1ded1c1d87c53b5b59fce224a325932ad55eef9e0e4a SHA256 ShadowPad Variant1
communicating with the
ShadowPad C2
(213.59.118.124)

REFERENCES
[1] FireEye. Double Dragon: APT41, a dual espionage and cyber crime operation. https://content.fireeye.com/apt-41/

rpt-apt41/.

[2] Kaspersky Lab Global Research and Analysis Team. “Winnti” More than just a game. April 2013.
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/20134508/winnti-more-than-just-a-
game-130410.pdf.

[3] Novetta. WINNTI ANALYSIS. https://www.novetta.com/wp-content/uploads/2015/04/novetta_winntianalysis.pdf.

[4] Macnica Networks. APTマルウェアに見る不易流行. Japan Security Analyst Conference 2018.
https://www.jpcert.or.jp/present/2018/JSAC2018_09_yanagishita-takeuchi.pdf.

[5] Threat Analysis Unit. CB TAU Threat Intelligence Notification: Winnti Malware 4.0. VMware Security Blog.
September 2019. https://blogs.vmware.com/security/2019/09/cb-tau-threat-intelligence-notification-winnti-
malware-4-0.html.

[6] Hex-Rays. IDA Pro 5.6 Appcall user guide. 2010. https://www.hex-rays.com/wp-content/uploads/2019/12/
debugging_appcall.pdf.

[7] M.Léveillé, M.-E.; Tartare, M. Connecting the dots: Exposing the arsenal and methods of the Winnti Group. We
Live Security. October 2019. https://www.welivesecurity.com/2019/10/14/connecting-dots-exposing-arsenal-
methods-winnti/.

[8] Trend Micro. Winnti Abuses GitHub for C&C Communications. March 2017. https://www.trendmicro.com/en_us/
research/17/c/winnti-abuses-github.html.

[9] Zmap. https://github.com/zmap/zmap.

[10] Threat Analysis Unit. Threat Analysis: Active C2 Discovery Using Protocol Emulation Part2 (Winnti 4.0). VMware
Security Blog. February 2020. https://blogs.vmware.com/security/2020/02/threat-analysis-active-c2-discovery-
using-protocol-emulation-part2-winnti-4-0.html.

[11] Haruyama, T. Monitoring Winnti 4.0 C2 Servers for Two Years. VMware Security Blog. November 2021.
https://blogs.vmware.com/security/2021/11/monitoring-winnti-4-0-c2-servers-for-two-years.html.

[12] Beek, C. Operation ‘Harvest’: A Deep Dive into a Long-term Campaign. Trellix. September 2021.
https://www.trellix.com/en-us/about/newsroom/stories/threat-labs/operation-harvest-a-deep-dive-into-a-long-term-
campaign.html.

[13] Insikt Group. China-Linked Group TAG-28 Targets India’s “The Times Group” and UIDAI (Aadhaar) Government
Agency With Winnti Malware. Recorded Future. September 2021. https://go.recordedfuture.com/hubfs/reports/
cta-2021-0921.pdf.

[14] Hsieh, Y-J. ShadowPad | A Masterpiece of Privately Sold Malware in Chinese Espionage. SentinelOne. August
2021. https://www.sentinelone.com/labs/shadowpad-a-masterpiece-of-privately-sold-malware-in-chinese-
espionage/.

https://www.sentinelone.com/labs/shadowpad-a-masterpiece-of-privately-sold-malware-in-chinese-espionage/
https://go.recordedfuture.com/hubfs/reports/cta-2021-0921.pdf
https://www.trellix.com/en-us/about/newsroom/stories/threat-labs/operation-harvest-a-deep-dive-into-a-long-term-campaign.html
https://blogs.vmware.com/security/2021/11/monitoring-winnti-4-0-c2-servers-for-two-years.html
https://blogs.vmware.com/security/2020/02/threat-analysis-active-c2-discovery-using-protocol-emulation-part2-winnti-4-0.html
https://github.com/zmap/zmap
https://www.trendmicro.com/en_us/research/17/c/winnti-abuses-github.html
https://www.welivesecurity.com/2019/10/14/connecting-dots-exposing-arsenal-methods-winnti/
https://www.hex-rays.com/wp-content/uploads/2019/12/debugging_appcall.pdf
https://blogs.vmware.com/security/2019/09/cb-tau-threat-intelligence-notification-winnti-malware-4-0.html
https://www.jpcert.or.jp/present/2018/JSAC2018_09_yanagishita-takeuchi.pdf
https://www.novetta.com/wp-content/uploads/2015/04/novetta_winntianalysis.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/20134508/winnti-more-than-just-a-game-130410.pdf
https://content.fireeye.com/apt-41/rpt-apt41/

TRACKING THE ENTIRE ICEBERG – LONG-TERM APT MALWARE C2... HARUYAMA

18 VIRUS BULLETIN CONFERENCE SEPTEMBER 2022

[15] Prescott, A. Chasing Shadows: A deep dive into the latest obfuscation methods being used by ShadowPad. PwC.
December 2021. https://www.pwc.co.uk/issues/cyber-security-services/research/chasing-shadows.html.

[16] Positive Technologies. Higaisa or Winnti? APT41 backdoors, old and new. January 2021.
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-
and-new/.

[17] Faou, M.; Tartare, M.; Dupuy, T. Exchange servers under siege from at least 10 APT groups. We Live Security.
March 2021. https://www.welivesecurity.com/2021/03/10/exchange-servers-under-siege-10-apt-groups/.

[18] VirusTotal. https://www.virustotal.com/gui/file/
d011130defd8b988ab78043b30a9f7e0cada5751064b3975a19f4de92d2c0025.

[19] QuickLZ. http://www.quicklz.com/.

[20] Dr.Web. Study of the ShadowPad APT backdoor and its relation to PlugX. October 2020. https://st.drweb.com/
static/new-www/news/2020/october/Study_of_the_ShadowPad_APT_backdoor_and_its_relation_to_PlugX_en.
pdf.

[21] Dr.Web. Study of the Spyder modular backdoor for targeted attacks. March 2021. https://st.drweb.com/static/
new-www/news/2021/march/BackDoor.Spyder.1_en.pdf.

[22] Leon; Shui. “LuoYu” The eavesdropper sneaking in multiple platforms. TeamT5. https://jsac.jpcert.or.jp/
archive/2021/pdf/JSAC2021_301_shui-leon_en.pdf.

[23] Shodan. https://www.shodan.io/.

[24] CenSys. https://censys.io/.

[25] https://api.shodan.io/shodan/ports.

[26] Tor. I want to ban the Tor network from my service. https://support.torproject.org/abuse/i-want-to-ban-tor/.

[27] Mullvad. https://mullvad.net/en/.

[28] Haruyama, T. Segmentation fault when sending IP layer packets #580. https://github.com/zmap/zmap/issues/580.

[29] https://github.com/carbonblack/active_c2_ioc_public.

https://github.com/carbonblack/active_c2_ioc_public
https://github.com/zmap/zmap/issues/580
https://mullvad.net/en/
https://support.torproject.org/abuse/i-want-to-ban-tor/
https://api.shodan.io/shodan/ports
https://censys.io/
https://www.shodan.io/
https://jsac.jpcert.or.jp/archive/2021/pdf/JSAC2021_301_shui-leon_en.pdf
https://st.drweb.com/static/new-www/news/2021/march/BackDoor.Spyder.1_en.pdf
https://st.drweb.com/static/new-www/news/2020/october/Study_of_the_ShadowPad_APT_backdoor_and_its_relation_to_PlugX_en.pdf
http://www.quicklz.com/
https://www.virustotal.com/gui/file/d011130defd8b988ab78043b30a9f7e0cada5751064b3975a19f4de92d2c0025
https://www.welivesecurity.com/2021/03/10/exchange-servers-under-siege-10-apt-groups/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://www.pwc.co.uk/issues/cyber-security-services/research/chasing-shadows.html

