
Dr. Bramwell Brizendine
Jake Hince
Austin Babcock
Shelby VandenHoek
Sascha Walker
Tarek Abdelmotaleb

SHAREM:
Shellcode Analysis Framework with
Emulation, a Disassembler, and
Timeless Debugging

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

▪ Dr. Bramwell Brizendine is an Assistant Professor at University of
Alabama in Huntsville

▪ Former Director of the VERONA Lab
▪ Vulnerability and Exploitation Research for Offensive and Novel

Attacks Lab

▪ Creator of the JOP ROCKET:

▪ http://www.joprocket.com

▪ Framework for code-reuse attacks utilizing jump-oriented
programming, i.e. low-level software exploitation.

▪ Interests: software exploitation, reverse engineering, code-reuse
attacks, malware analysis, and offensive security

▪ PI on NCAE/NSA research grant, $300,000 from 2020-2022.

▪ Presenter at DEF CON, Black Hat Asia, Hack in the Box Amsterdam,
Wild West Hackin’ Fest, National Cyber Summit, @Hack Riyadh.

▪ Education:

▪ 2019 Ph.D in Cyber Operations

▪ 2016: M.S. in Applied Computer Science

▪ 2014: M.S. in Information Assurance

▪ Contact: Bramwell.Brizendine@gmail.com,
Bramwell.Brizendine@uah.edu

Dr. Bramwell Brizendine

http://www.joprocket.com/

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

SHAREM Team

• SHAREM was led by Dr. Bramwell Brizendine.

• His co-authors include Jake Hince, Austin Babcock,
Shelby VandenHoek, Sascha Walker, and Tarek
Abdelmotaleb.

• Several other researchers have worked on SHAREM, including
Evan Read, Dylan Park, and Kade Brost.

Bramwell Jake Austin Shelby Sascha Tarek

• SHAREM is a framework designed to analyze
Windows shellcode or position-independent
code.

• SHAREM was developed over two years
funded by a $300,000 NCAE/NSA research
grant at VERONA Labs, @ DSU.

• Numerous features:
• Emulates shellcode, WinAPis & Windows syscalls
• Custom Disassembler, with unprecedented

features
• Timeless debugging
• Brute-force deobfuscation

Art: Ledious

SHAREM

https://github.com/Bw3ll/sharem

https://github.com/Bw3ll/sharem

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

SHAREM’s Emulator

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

SHAREM’s Emulator

• Supports emulation for 32-bit and 64-bit shellcode.

• Supports emulation of over 12,000 WinAPI functions.

• Supports emulation of 99% of all user-mode Windows
syscalls

• Enumerates parameter values for WinAPI functions and
Windows syscalls.
• Enumerates values for complete structures.
• Simulates appropriate return values.

• Emulation data can integrate with disassembler
• Nearly flawless disassembly!

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Initial Setup of SHAREM

• SHAREM copies and harvests required DLLs from SysWow64 and
System32 directories.
• Each must be inflated a precise amount before being placed in process

memory.
• This step is completed only once in a Windows OS.
• 31 common DLLs are placed into the emulated process memory.
• For Linux OS, these DLLs must be supplied directly, as they cannot be

harvested.

• Pefile, the Python library, parses each DLL, identifying function
address.
• These are saved in a dictionary.
• Each will map to the API when the DLLs are placed into memory.

Emulated
Process
Memory

DLL on
disk

DLL in
memory

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Windows Internal Structures

• Several Windows internal
structures are implemented into
memory.
• E.g., PEB,TEB/TIB, doubly linked lists,

etc.

• This is done for 32- and 64-bit
architectures – different offsets, etc. for
each.
• The actual 64-bit and 32-bit files must be

present as well, after having been inflated.

• Recall the PE file format differs slightly for
64-bit.

www.vergiliusproject.com

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Using Real DLLs for Emulation

• PEB walking is a central feature of shellcode.
• When the shellcode traverses the exports directory to

find a function’s runtime address, it is searching through
an actual, inflated DLL.

• Simply simulating aspects of it is inadequate, as this will
cause more complex, advanced shellcode samples
to fail.
• Thus, the actual, inflated DLL must be in process memory.

• If the shellcode attempts to go to a function’s
runtime address, it is intercepted.
• It is logged and a suitable response is simulated.

SHAREM intercepts,
logs, and simulates

a response

KERNEL32.DLL

The actual VirtualAlloc in
Kernel32 is untouched.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Lookup Dictionaries for Functions

• Custom lookup dictionaries are used for APIs based on DLLs.
• Each contains function prototype information:

• Number of parameters, parameter types, parameter names, return type,
successful return value to simulate.

• These can be used to identify thousands of potential functions,
which may not have custom implementations.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Human-Readable Output

• SHAREM logs human-readable equivalents to hexadecimal
values whenever possible.
• There are 100s of instances of SHAREM doing this across 100s of

functions.
• E.g. PAGE_EXECUTE_READWRITE is logged instead of 0x40 for

flProtect of VirtualAlloc.
• The actual hexadecimal bytes are used in the emulation.

• This is done via custom implementations of APIs.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Custom Implementations of Functions

• SHAREM maintains 100’s of custom implementations of the
most security-relevant WinAPI functions and Windows syscalls.
• These supersede those that are found in the lookup dictionaries.

• Custom implementations of functions allows SHAREM to log
human-readable equivalents to hexadecimal values.

• Custom implementations can allow for highly specific actions to be
undertaken to simulate success.
• Config file settings can also be used to allow user customization of some

simulated response.

• Custom implementations support the use of structures.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

• The code for custom
implementations is
highly modular.

• There are hundreds of
unique implementations
of custom functions.

Custom Implementation of CreateRemoteThread

Structure

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Windows Syscalls

• Windows syscalls have almost never been used in shellcode with
the exception of Egghunters.
• They are extremely rare in shellcode in non-Egghunter form!

• After an influential report on malware with Windows syscalls in
2018, many offensive security tools and techniques followed.

• In August 2022, at DEF CON 30, we released a tool,
ShellWasp, to help develop syscall shellcode.
• Demo of a complex shellcode with several syscalls (no WinAPIs).
• Syscall shellcodes are coming? ☺

• GitHub: https://github.com/Bw3ll/ShellWasp

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Emulation of Syscalls

• Nearly all user-mode Windows syscalls are emulated.

• Function prototypes for each were laboriously searched for,
one by one, until around 99% were accounted for.
• Many of these are “undocumented” – and indeed are not

documented in common places, such as Undocumented NTDLL
Functions.

• 32-bit: We initialize fs:0xc0 to point to a designated location
which we hook.

• 64-bit: We hook the syscall instruction.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Emulation of Syscalls

• SHAREM’s stack cleanup for syscalls is different than with
WinAPIs – there is none.
• The shellcode author is responsible for their own stack clean up.

• The user must specify the target OS build, or “release,” to
emulate syscalls successfully.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Emulation: Discovery of Structures

• Very important parameters are passed to
WinAPIs or Windows syscalls as structures.

• SHAREM can apply structures to
parameters that it emulates.
• The structures must be instantiated and created

for the supported functions.

• Structures are displayed automatically if
supported.

• No other tool supports discovery of structures via
emulation.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Structures

• Two structures are
passed as parameters
for CreateProcessA.
• Instead of just a

pointer to the
structure, we see all
the members of
the structure.

Structure #1

Structure #2

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Structures within
Structures

Inner
Structure #1

Inner
Structure #2

• GetTimeZoneInformation has only
one paramater!
• It is a structure, which has two

structures as parameters.

• We see all three of the structures,
including the nested structures.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Unions

• SHAREM can display a
union of parameters.

• The parameters
share the same
memory.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Simulating Function Success

• Sophisticated shellcode utilizes both output parameters and
return values in subsequent functions.
• SHAREM always simulates function success.

• Implementation details vary greatly from function to function.

• Shellcode may check for ‘S_OK’ (0x00); others have more specific checks!

• Output parameters are simulated too.
• E.g. the PHANDLE ModuleHandle for LdrLoadDll receives the

address of the loaded DLL.

Handle for DLL
--> DLL name

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Breaking Out of Loops

• Not a novel concept, but very important.
• Discovers additional functionality.

• SHAREM has a config option to break out of (potentially
infininte) loops.
• User can specify upper threshold.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Complete Code Coverage

• SHAREM emulates complete code coverage.
• Optional feature.
• Inspired by evolutionary fuzzers, e.g. AFL, SHAREM records all control

flow paths taken and not taken.
• Each byte traversed is logged.
• SHAREM uses a list of objects for unvisited code paths.

• Objects contain original location, registers, and stack values.

• Temporary files are used to dump shellcode’s memory.

• Original CPU context thus can be restored when revisiting the code path.

• Helps discover additional functionality and capture more
emulation data for disassembly.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Complete Code Coverage

Without Complete Code Coverage With Complete Code Coverage

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Self-Modifying Code

• SHAREM using fuzzy hashing to determine if a shellcode is
self-modifying – i.e. it is perhaps decrypting itself.
• SSDeep

• If shellcode is encoded and decrypts itself, its decoded form
is what is analyzed and sent to the disassembler.
• Its APIs or Windows syscalls are already logged without needing to

do anything special.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Encoded Shellcode

• SHAREM displays the
deobfuscated form of
encoded shellcode.
• The disassembly here

clearly is not encoded,
although the shellcode is.

• If it can decode it, we will
see its deobfuscated form.

• SHAREM is a game
changer for dealing with
encoded shellcode.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Same Shellcode In
IDA Pro

• We are viewing a similar
portion of the shellcode.

• We would not expect a
traditional disassembler
to be able to disassemble
a shellcode’s decoded
form.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Handles and Memory Management

• SHAREM Memory Manger (SMM) ensures memory is
allocated at correct locations without collisions.

• SHAREM Handle Manager (SHM) generates and maintains
handles.
• Some correspond to specific resources, registry keys, filename, etc.

• SHM can log what the handle maps to – e.g. a specific registry key
– rather than just a hexadecimal value.
• This makes it easier for the human analyst to understand what is being done,

without needing to trace different handles.

• Each handle has a name field in the class.
• This name can be displayed in lieu of the hexadecimal value.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Handles to Registry Keys

• For handles, instead
of hex values, we
see the actual
registry keys.
• This makes

understanding what

is happening easier.

Actual key, not hex

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

SHAREM Registry Manager

• SHAREM Registry Manager (SRM) allows for values written to
registry to be used and retrieved subsequently.

• All registry WinAPIs are managed by SRM—each is monitored for
behaivors that are logged.
• Most registry Windows syscalls are as well.

• SRM stores a list of registry values and handles to key paths.

• When an HKEY handle is used, SHAREM logs the key and
handle ID.

• SHAREM simulates success – e.g. if a WinAPI tries to read a
registry value not yet created.
• Some dummy values are customizable via config.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Registry Actions

• During emulation, SHAREM
logs additions,
modifications, deletions
to the registry.

• SHAREM discovers some
known MITRE techniques
using the registry.
• E.g. Persistence,

credentials, etc.

• SHAREM records registry
hierarchy information.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Registry Syscalls

• Windows syscalls involving
registry can be emulated.
• POBJECT_ATTRIBUTES

struct supported.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Emulation Artifacts

• SHAREM uses regular expressions to discover numerous
categories and subcategories of artifacts.
• All API parameters are subjected to regular expressions.

• Categories include command line instructions, URLs, domains, registry, files,
executables, DLLs, etc.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

•

Emulation Artifacts

• Other artifacts are shown,
such as commands, web
artifacts, etc.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Downloading Live Files via Shellcode

• SHAREM can download live samples from the Internet.
• Shellcode often downloads live files as part of operations.

• If the shellcode attempts a download a file via
UrlDownloadToFileA/W, that file is actually downloaded into
the emulated process memory.

• An md5 hash is taken of the downloaded binary.

• This feature can be enabled or disabled in the config.

Downloading Live Files via Shellcode

What the file was originally – and what the
shellcode saved it as after downloading it

Paths used in downloading

File created

Md5 hash of downloaded file

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Heap Manager
• SHAREM has a heap manager to allocate and keep track of

memory allocations and handles.
• In the below, a heap is created, given a handle to the address,

0x25000000.

• The handle is then used for HeapAlloc.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

64-bit Shellcode

• Though uncommon,
SHAREM can emulate 64-bit
shellcode.
• It retains all the features it

has for 32-bit, such as
enumerating APIs, etc.
• WSASocketA and setsockopt

are shown.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

SHAREM’s Disassembler

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Disassembly

• Using IDA Pro, Ghidra, etc., I noticed that often there would
be very significant portions of the disassembly that were
wrong.
• Root cause? Misclassifying data as instructions, starting

disassembly at incorrect offsets.
• Some data misclassified can have a cascading effect, causing subsequent

instructions to be disassembled at incorrect offsets.

• Even simple strings would be misclassified as instructions!

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

SHAREM’s Disassembly Analysis Engine

• SHAREM’s Disassembly Analysis Engine (DAE) uses custom
analysis phases to classify each byte as instructions or data.
• In x86, data and instructions can be freely intermixed.

• Data can exist at unusual locations in shellcode.

• SHAREM utilizes multiple analysis phases to try to achieve
more accurate disassembly of shellcode.

• If we can accurately distinguish between instructions and
data, we get superior disassembly.

• SHAREM maintains complex metadata about each byte.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Disassembly

• SHAREM deals exclusively with shellcode—hence, its
approach is more empirical and based on
experimentation.

• Numerous modern Windows shellcode samples were closely
scrutinized and used as guides.
• Flaws in disassembly could be analyzed—their root causes

discovered and then remediated.
• Once the root cause was found, all future flaws would, thus, be eradicated.

• End result? The disassembly generated was vastly
improved, up to 95% accurate – still not perfect!

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

SHAREM Disassembly Analysis Phases

• Several disassembly analysis phases were developed. Some of
the highlights of this include:
• Finding repeating data bytes

• Checking for valid jump destinations
• Is it possible for the indicated destination to exist?

• Locating hidden calls and jumps
• Searching for all short jumps or calls—if found, check to see if potential

branching destination is plausible.

• Finding Strings
• Unicode and ASCII strings are searched for.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Identifying Functions in Disassembly

• SHAREM is able to identify
WinAPIs and parameters used in
disassembly.
• This data is obtained via emulation

and integrated into the disassembly.

• More than 12,000 WinAPIs can be
identified in this fashion.

• Rather than just call eax, we see the
actual function.

API identified

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Disassembly Annotations

• One of SHAREM’s extraordinary features is its unrivalled
shellcode disassembly annotations.
• GetPC instructions, e.g. Call xxx / Pop xxx, Fstenv

• Self-locate in memory

• Push xxx / Ret’s
• This is a way for shellcode to discretely move itself in memory by modifying

control flow in a less obvious fashion.

• Heaven’s Gate
• Switching code from 32-bit to 64-bit.

• This is a way to obscure what is happening.

• SHAREM not only detects but labels all the above.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Disassembly Annotations

• PEB identification
• All features of the PEB identified

• Loading the TIB at FS:0x30, GS:0x60

• The PEB_LDR_DATA LoaderData

• The LIST_ENTRY for the doubly linked module list used,

• Advancing DLL flink

PEB walking features

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Disassembly Annotations

• API Tables
• Shellcode uses API table to store pointers to functions.

• The shellcode will store the API’s runtime address at each.

• SHAREM analyzes memory after emulation, labelling pointers to the
function in the disassembly.

• This is more meaningful – the data is not misclassified as
instructions, causing incorrect disassembly.

•

SHAREM determines much
invaluable data about shellcode.

API Identified

API Not
Identified

PEB features identifiedPEB Not
Identified

IDA cannot
determine APIs.

• The same shellcode is seen in both
disassemblers.

IDA Pro vs. SHAREM

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Disassembly: Strings
• SHAREM has its own algorithms to discover strings.

• ASCII

• These bytes are classified as data – a comment denotes the value

• Unicode

• These bytes are classified as data – a comment denotes the value

• Push Stack Strings

• Stack strings that formed by a series of pushes.

• These are instructions—a comment follows at the end.

Push stack string identified

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Using Emulation Data to Enhance Disassembly

• SHAREM is able to merge emulation data with the disassembler to achieve
potentially flawless disassembly.
• This can be used to override what the disassembly engine may have found via static

analysis.

• If instructions were successfully emulated, we definitively know where each
emulated instruction begins and ends.
• We know that it was, in fact, an instruction and not data.

• SHAREM can track data by logging locations for memory reads and writes.
• If not used as instructions, these bytes are classified as data.

• SHAREM can identify dword arrays – i.e. placeholders that later store runtime
addresses of functions.
• The corresponding function name is provided.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Pairing Emulation Data with DAE

• With self-modifying code, bytes can be both data and
instructions.
• SHAREM accounts for this by using fuzzy hashing – if it is self-

modifying code, then it only counts a byte as data if accessed more
than once.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Distinguishing between Data and Instructions

•

String

Instructions

Data

Checksums

API Pointers

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Disassembly of Encoded Shellcode

• Typically, looking at encoded shellcode in a IDA/Ghidra is not
fruitful.
• You see a decoder stub and then encoded bytes.

• The encoded bytes are misinterpreted as incorrect instructions or are
presented as a series of bytes.

• With SHAREM, we instead present the disassembly of the
decoded instructions.
• The decoder stub remains the same – the encoded bytes, however,

are presented in their original form.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Integrating Emulation Data

• SHAREM uses emulation data to obtain the decoded form of the
shellcode.

• Intermediate stages of the shellcode are saved and merged.

• Starting form – the initial encoded form

• Executed form – After each instruction is executed, its
starting location, the size of the instruction, and the
bytes that constitute the instruction are saved.

• Final form – After emulation SHAREM, takes a snapshot of
the final form of each byte.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Merging Intermediate Stages of the Shellcode

• SHAREM doesn’t just grab the final form of the shellcode. It has a
a novel algorithm for merging.

• The executed form is prioritized first.
• If the shellcode reencodes itself after execution, this allows its “original”

form still to be preserved.

• The final form is prioritized second.
• This allows us to see the original form of data – which is not executed, as

they are not instructions.
• Could be identical to the executed form.

• The starting form is prioritized last.
• This allows us to retain the original decoder stub.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Decoded Shellcode

• The shellcode shown here is
actually encoded.
• It was decoded via emulation.

• SHAREM displays its decoded
form automatically in the
disassembler.
• URLDownloadToFileA,

WinExec, and ExitProcess are
shown with parameters.

• PEB features are given as
comments.

Emulation let’s
us reveal its
decrypted form.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

• SHAREM’s timeless debugging
captures all instructions
executed and the CPU state
before and after.

• Potentially millions of
instructions could be logged.
• The limit can be set in config or UI.

• Saves to emulationLog.txt file,
allowing for the user to easily
search through the results.
• Visual Code works well for very

large files.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Timeless Debugging Emulation Log
• Process memory address, instructions executed, and CPU

state are given in the emulation log, a simple text file.

Instruction executed

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Integrating SHAREM with Web Services

• SHAREM is designed to be both a standalone tool, but can be
integrated and deployed on web services.

• SHAREM has a config option to run without input.
• startup_enabled should be set to True

• All data is automatically output in all formats, including .txt and
JSON.
• The JSON can be imported and used be web services.

• SHAREM can be customized via config file with desired settings.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Integrating SHAREM with Web Services

• SHAREM has been successfully integrated into SubParse.
• SubParse is a framework by Aaron Baker, et al., presented at Black

Hat Arsenal 2022, to parse many types of files and discover
correlations

• Thus, SHAREM can serve as a parser for shellcode.

SHAREM used as a shellcode
parser on a web service

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Reporting

• SHAREM aggregates and reports on numerous features related to
shellcode in an extreme amount of detail.
• For each shellcode feature, such as PEB walking, Call/Pop (GetPC), Fstenv

(GetPC), Heaven’s gate, etc., several unique data points are provided.
• APIs and syscalls found are enumerated with relevant data.
• Determination on if binary sample is shellcode.

• SHAREM has highly complex evaluation criteria.
• Hashes
• Determination if shellcode is self-modifying code
• And much more!

• SHAREM delights in minutia. No detail is too small to report on.

• PE file – SHAREM also analyzes PE files
• Reports on numerous, traditional PE file features.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

SHAREM Outputs

Prints to screen
Text format

output
JSON output

For each
shellcode, a C

tester is
generated.

This can be
compiled,

allowing it to be
easily debugged.

SHAREM: Shellcode Analysis Framework with Emulation, a Disassembler, and Timeless Debugging

Thank You!

•Download and try out SHAREM!
•https://github.com/Bw3ll/sharem

This research and some co-authors have been
supported by NSA Grant H98230-20-1-0326.

https://github.com/Bw3ll/sharem

