
LONDON

2023

ABUSING ELECTRON-BASED APPLICATIONS IN
TARGETED ATTACKS
Jaromír Hořejší
Trend Micro, Czechia

jaromir_horejsi@trendmicro.com

4 - 6 October, 2023 / London, United Kingdom

www.virusbulletin.com

ABUSING ELECTRON-BASED APPLICATIONS IN TARGETED ATTACKS HOŘEJŠÍ

2 VIRUS BULLETIN CONFERENCE OCTOBER 2023

ABSTRACT
Electron is a popular framework for creating pseudo-native applications with web technologies like JavaScript, HTML and
CSS. By packaging the application source codes with a particular version of Chromium (front-end part) and Node.js
(back-end part), Electron allows applications to have just one codebase, which can be run on different platforms (Windows,
macOS and Linux).
The Electron process inherits multi-process architecture from Chromium, where the single main process runs a Node.js
environment, manages application windows and controls the application lifecycle. For each browser window, a new
renderer process is run. Similarly to Chromium, additional processes like the GPU process (which handles graphics and
visual processing), network service, and storage service are spawned.

Figure 1: Multi-process architecture in an Electron application.

Nowadays, hundreds of applications are built with Electron – including, for example, productivity apps (GitHub Desktop),
social apps (Discord, Signal, Skype, WhatsApp), business apps (Teams, Slack), and even developer tools (Visual Studio
Code).
This versatility and popularity has attracted the attention of threat actors, and we have observed several attacks against
Electron-based applications, particularly supply chain ones.
In this paper we will look at the Electron framework (what it really is, from the developer’s, end-user’s, and defender’s
points of view) and discuss possible infection vectors – exploiting Chromium vulnerabilities, or trojanizing the Electron
applications by replacing/patching the app.asar archive (containing application sources) to embed malicious code.
We will follow with analyses of several real-world cases, which we recently researched. These include:

• A secure chat application (MiMi chat) trojanized by the Iron Tiger threat actor, targeting Windows, Linux and macOS
secure chat users. The trojanized chat application becomes the downloader of additional native backdoors (HyperBro
for Windows, rshell for Linux and macOS).

• Chat-based customer engagement platforms (Comm100 and LiveHelp100) trojanized by a currently unclassified threat
actor. The trojanized applications download a multi-stage JavaScript payload, which later downloads a native
multi-stage backdoor and stealer.

• A live chat application (MeiQia) vulnerable to CVE-2021-21220, which was trojanized and exploited by threat actor
Water Labbu. The trojanized application becomes the downloader of additional malware (custom batch scripts, Cobalt
Strike, or system monitoring tools).

1. OVERVIEW OF THE ELECTRON FRAMEWORK

1.1 Creating an Electron project
Electron framework documentation contains a simple tutorial on how to create an application. A simple ‘Hello World’
project in Electron framework may consist of the following files:

package.json metadata about the project, such as name, version, description, dependencies
index.html website template
main.js creates a browser window, controls the application life cycle
preload.js executed in renderer process before its web contents begin loading, has more privileges by

 having access to the Node.js API

Figure 2: Simple ‘Hello World’ application.

ABUSING ELECTRON-BASED APPLICATIONS IN TARGETED ATTACKS HOŘEJŠÍ

3VIRUS BULLETIN CONFERENCE OCTOBER 2023

Figure 3: Structure of Electron application folder.

1.2 Packaging the application for different platforms
After the source code has been tested and debugged, the developer needs to package the application (manually or using
special tools), and then distribute the package(s) to customers, who will run the application. The easiest way to package and
distribute an Electron application is using tools like Electron Forge or electron-builder. In our testing scenario, a simple
application developed in Electron framework (version 21.2.3), could be packaged with electron-builder by calling just a
single command: ‘npx electron-builder -mwl’, where ‘npx’ is a command to run an arbitrary command from a npm
package, and ‘mwl’ stands for the platforms macOS, Windows, Linux.
As a result, the developer obtains the following packages: Mac OS zip, Mac OS DMG, Linux snap, Linux AppImage,
Windows EXE (NSIS installer).
This simple experiment shows that modifying the source code and compiling it into executables running under several
platforms can be achieved by running a single command.

Figure 4: Packaging/building the project for different platforms.

1.3 ASAR archive
For a malware researcher, it is important to know where to look for potentially malicious code. Electron applications are
usually ‘big’ projects, consisting of thousands of files and consuming hundreds of megabytes. In many scenarios, the
application source code can be found in an ASAR (Atom Shell Archive Format) archive, which is a simple random access
storage format with no compression. At the beginning of the ASAR file there is a JSON object with information (size,
offset) about the files stored in the archive.

Figure 5: HEX view of ASAR archive, notice the JSON object with file information.

ABUSING ELECTRON-BASED APPLICATIONS IN TARGETED ATTACKS HOŘEJŠÍ

4 VIRUS BULLETIN CONFERENCE OCTOBER 2023

1.4 Tools for extracting ASAR archives
The researcher first needs to locate the ASAR archive (called app.asar), which is usually found in the ‘Resources’ directory
of previously built packages. Below we list a few examples of locations of ASAR archives:

electron-test-1.0.0-mac.zip\electron-test.app\Contents\Resources\app.asar
electron-test-1.0.0.dmg\electron-test 1.0.0\electron-test.app\Contents\Resources\app.asar
electron-test_1.0.0_amd64.snap\resources\app.asar
electron-test Setup 1.0.0.exe\$PLUGINSDIR\app-64.7z\resources\app.asar

Figure 6: 7-Zip plug-in for extracting ASAR archives.

The archive format is very simple, so researchers may write their own unpacking tool or use third-party solutions like the
7-Zip plug-in [1] or winasar utility [2].

2. METHODS OF ABUSING ELECTRON-BASED APPLICATIONS
Electron projects package source code (packed in an ASAR archive) together with Chromium (front-end) and Node.js
(back-end). If any of the packaged applications contains a vulnerability, the final Electron application will also be
vulnerable.

2.1 Exploiting vulnerabilities
For great information about Electron application vulnerabilities, we recommend the presentation from BlackHat USA 2022
by Aaditya Purani, Max Garrett and colleagues [3]. In the presentation, the authors find various vulnerabilities in popular
Electron desktop applications. These include incorrect settings of features like node integration, context isolation, and
sandboxing.
Node integration [4] is the ability to access Node.js resources from within the renderer process.
Context isolation [5] causes preload scripts and Electron’s internal logic to run in a separate context to the loaded website.
This prevents the website from accessing Electron internals or the powerful APIs the preload script has access to.
Sandboxing [6] is a Chromium feature that uses the operating system to significantly limit what renderer processes have
access to.
For purpose of this paper, we mention vulnerability CVE-2021-21220, which is also discussed in [3]. This vulnerability
affects Chromium versions prior to 89.0.4389.128, 64-bit architecture, and it exploits only those instances where
sandboxing is disabled. The source code of this vulnerability is available on online code hosting platform GitHub [7]. We
have seen this type of attack in the wild, and it will be discussed in section 3.3.

Figure 7: Publicly available exploit for CVE-2021-21220.

ABUSING ELECTRON-BASED APPLICATIONS IN TARGETED ATTACKS HOŘEJŠÍ

5VIRUS BULLETIN CONFERENCE OCTOBER 2023

2.2 Patching existing applications

A more straightforward method of abusing Electron applications is patching the existing application. We observed this
scenario in two cases of supply chain attacks (described in sections 3.1 and 3.2), where the threat actor gained access to the
backend of the application developer, then injected the JavaScript code inside the app.asar archive to include a backdoor/
downloader. The trojanized application was then distributed to unsuspecting users.

In the case of exploiting a vulnerable application (using the vulnerability mentioned in section 2.1), we observed the threat
actor sending a crafted document with an exploit, which may lead to executing scripts which patched (trojanized) the
running vulnerable application instances. These scripts searched for app.asar archives and performed several patches such
as disabling auto updates or changing domain URL addresses. This scenario will be described in section 3.3.

3. SELECTED APT CASES ABUSING ELECTRON-BASED APPLICATIONS
During 2022 and 2023 we tracked several threat actors who (during a particular period of time) had access to the build
environment of particular Electron-based applications, or actively exploited instances of running Electron-based
applications. We would classify the first two scenarios as supply chain attacks with the purpose of espionage, and the third
scenario as exploiting a vulnerable application with the purpose of financial gain.

3.1 MiMi secure chat (Iron Tiger threat actor)

Iron Tiger (also known as Emissary Panda, APT27, Bronze Union and Luckymouse) is an advanced persistent threat (APT)
group that has been performing cyber espionage for almost a decade [8].

We noticed that a chat application named MiMi retrieved the rshell executable and that Iron Tiger was controlling the
servers hosting MiMi’s app installers, suggesting a supply chain attack. Further investigation showed that MiMi chat
installers have been compromised to download and install HyperBro samples for the Windows platform and rshell samples
for the macOS platform.

MiMi (mì mì = 秘密 = secret in Chinese) is an instant messaging application designed specifically for Chinese users, with
implementations for major desktop and mobile operating systems: Windows, macOS, Android and iOS. The desktop
versions are developed with the help of the Electron framework. During our research we only noticed trojanized macOS
and Windows versions.

Figure 8: Official website of the MiMi chat application, offering downloads for desktop and mobile versions.

ABUSING ELECTRON-BASED APPLICATIONS IN TARGETED ATTACKS HOŘEJŠÍ

6 VIRUS BULLETIN CONFERENCE OCTOBER 2023

In June 2022, we downloaded the macOS installer for the 2.3.2 version of MiMi chat and verified it as genuine. When we
downloaded it again later the same day, we found that the installer had been replaced with a malicious version that retrieved
the rshell sample. This was proof that the attackers had direct access to the server hosting the installers, and that they were
monitoring the versions published by the MiMi app developers in order to quickly insert a backdoor.

Figure 9: Downloaded installer before (left) and after (right) malware embedding.

To quickly analyse the inserted backdoor, we first needed to localize the app.asar archive with application source codes. We
then checked the potentially suspicious JavaScript files and noticed that the modification occurred in the electron-main.js
file, which contains a block of code beginning with ‘eval(function(p,a,c,k,e,d)’, suggesting we are dealing with
Dean Edwards’ packer.

Figure 10: Malicious JavaScript code inserted into 2.2.0.exe targeting Windows OS.

Once deobfuscated, we saw that the inserted code downloads either HyperBro or rshell from the hard-coded IP address.
Both HyperBro and rshell backdoors are discussed in detail in [9].

3.2 Comm100 and LiveHelp100 customer engagement platforms
In late September 2022, researchers uncovered a supply-chain attack carried out by malicious actors using a trojanized
installer of Comm100, a chat-based customer engagement application. Data from our telemetry suggested that some
versions of a similar customer engagement software, LiveHelp100, have also been weaponized.
Findings from our investigation indicated that the client application had been loading backdoor scripts from the malicious actor’s
infrastructure since August 2022. Our telemetry detected requests made by some of LiveHelp100’s clients to load JavaScript
backdoors, likely the same ones that we had previously observed in the supply-chain attack on the Comm100 application.
The Windows and macOS versions of the LiveHelp100 client application are developed with the Electron framework. Data
from our telemetry revealed two versions of this application, 11.0.2 and 11.0.3, that have been attempting to communicate
with the malicious URL since 8 August 2022.
To begin the analysis, we first needed to locate the app.asar archive. Inside this archive, we examined JavaScript files and
noticed the main.js file appending the following piece of code (Figure 11). The highlighted code is a simple backdoor
which queries the C&C address (encrypted HEX string), receives second-stage JavaScript code and executes it.

Figure 11: Patched main.js file to include backdoor.

ABUSING ELECTRON-BASED APPLICATIONS IN TARGETED ATTACKS HOŘEJŠÍ

7VIRUS BULLETIN CONFERENCE OCTOBER 2023

Figure 12: Deobfuscated backdoor requests JavaScript code from the C&C server and executes it with eval function.

The later stages of the backdoor code implement functions like collecting OS information, running shell commands via
cmd.exe, executing additional JavaScript code, patching/trojanizing the LiveHelp100 app, and dropping additional malware
(a binary backdoor) with modules with various stealing capabilities – more about this malware and its plug-ins can be
found in [10].

3.3 MeiQia live chat (Water Labbu threat actor)
In this case our investigation started with a Cobalt Strike instance adding a persistence registry key to load an exploit file
from an online code repository controlled by the Water Labbu threat actor. The repository hosted multiple exploit files of
CVE-2021-21220 (a Chromium vulnerability affecting versions prior to 89.0.4389.128) to execute a Cobalt Strike stager. It
also contained files designed to target MeiQia (美洽), a Chinese live chat desktop app for online customer support that is
used on websites, developed with Electron framework.
The websites affected during this campaign used an outdated, vulnerable version of the MeiQia application as an option for
easy communication with potential visitors.
In order to compromise victims, the threat actor likely sends the exploit via the live chat box. In support of this theory, we
found an exploit HTML file sample containing a screenshot that looks like a withdrawal confirmation for cryptocurrency
funds. If website operators open the exploit page in a vulnerable version of the MeiQia management client application, it’s
possible that they might be infected by Water Labbu.

Figure 13: Screenshots of transaction results that are embedded into weaponized HTML pages.

ABUSING ELECTRON-BASED APPLICATIONS IN TARGETED ATTACKS HOŘEJŠÍ

8 VIRUS BULLETIN CONFERENCE OCTOBER 2023

Review of the code from an online repository shows that old versions of MeiQia open external links inside their Electron
applications and render the web page without sandboxing. The latest version of MeiQia is not vulnerable because it runs on
the newer version of Chromium core and opens the external links, not inside the Electron app, but via the default system
web browser.
As mentioned earlier, the research paper [3] on Electron security demonstrated a successful exploitation of an
Electron-based application using CVE-2021-21220.
When the weaponized HTML pages detect a vulnerable target, it will proceed with loading additional stages of the attack.
The last stage is a shellcode that is usually a Cobalt Strike stager. The Cobalt Strike instance may run additional
batch/PowerShell scripts to steal cookies and other important files, patch the MeiQia app, download additional spying
software, collect statistics about progress of the infection, install a malicious certificate, or modify the proxy URL address.
More detailed analysis of these scripts is shared in [11].
For the purpose of this paper, the most interesting task of those additional scripts is patching the MeiQia app in order to
disable auto updates, replace the default MeiQia application URL, and embed additional backdoor code to achieve
persistence or credential phishing. The script must locate the app.asar archive, find the JavaScript file to patch (in this case
create-window.js), and make the requested modifications.

Figure 14: Snippet from the PowerShell script to search and replace parts of scripts within the app.asar archive.

In some cases, the threat actor chose a much simpler solution – check the size of the app.asar archive, and if the size does
not match that of the patched malicious version, the script just downloads and replaces the whole app.asar archive with the
malicious one.

Figure 15: Snippet from the PowerShell script to download and replace the app.asar archive if its size does not match.

4. CONCLUSION
Electron is a great and popular framework for software developers. It has been used in hundreds of projects by many
developers. The big advantage of the framework is the possibility to have just one code base, which can be packaged by a
single command to executables running on all major platforms. The Electron projects are usually ‘big’, containing
thousands of files. The application source code is usually stored in the app.asar archive.
Threat actors noticed the popularity of Electron applications and in all three scenarios described in this paper, they
managed to abuse these applications by patching them. The result of the patching is embedding backdoors and
downloading additional malware to perform espionage or financial theft.

ABUSING ELECTRON-BASED APPLICATIONS IN TARGETED ATTACKS HOŘEJŠÍ

9VIRUS BULLETIN CONFERENCE OCTOBER 2023

The MiMi, Comm100 and LiveHelp100 applications have been trojanized by threat actors to cause supply chain attacks.
This means that the threat actor gained access to the build environment of these applications, then modified app.asar
archives and let application users download the trojanized applications. The trojanized application acted as a downloader,
downloading additional native backdoors.
In the case of the MeiQia application, the threat actor proactively identified websites which were embedding the MeiQia
live chat widget. The infection chain continued with the threat actor sending a crafted document with an exploit, causing
remote code execution of additional code, which patched the exploited MeiQia applications to establish persistence and
download additional malware.
All three in-the-wild cases present interesting situations where threat actors have modified existing software to inject
malicious capabilities. Supply chain attacks are usually very successful as they often defeat even cautious targets.

 REFERENCES
[1] Asar7z plugin. https://www.tc4shell.com/en/7zip/asar/.
[2] A Windows GUI utility to handle asar (electron archive) files. https://github.com/aardio/WinAsar.
[3] Sri Rama Krishna, M.; Garrett, M.; Purani, A.; Bowling, W. ElectroVolt: Pwning Popular Desktop apps while

uncovering new attack surface.on Electron. https://i.blackhat.com/USA-22/Thursday/US-22-Purani-ElectroVolt-
Pwning-Popular-Desktop-Apps.pdf.

[4] Electron documentation – Security. https://www.electronjs.org/docs/latest/tutorial/security.
[5] Electron documentation – Context Isolation. https://www.electronjs.org/docs/latest/tutorial/context-isolation.
[6] Electron documentation – Process Sandboxing. https://www.electronjs.org/docs/latest/tutorial/sandbox.
[7] Source code of the CVE-2021-21220 exploit. https://github.com/security-dbg/CVE-2021-21220/blob/main/exploit.js.
[8] Chang, Z.; Lu, K.; Luo, A.; Pernet, C.; Yaneza, J. Operation Iron Tiger: Exploring Chinese Cyber-Espionage

Attacks on United States Defense.Contractors. Trend Micro. https://www.erai.com/CustomUploads/ca/
wp/2015_12_wp_operation_iron_tiger.pdf.

[9] Lunghi, D.; Horejsi, J. Iron Tiger Compromises Chat Application Mimi, Targets Windows, Mac, and Linux Users.
Trend Micro. August 2022. https://www.trendmicro.com/en_us/research/22/h/irontiger-compromises-chat-app-
Mimi-targets-windows-mac-linux-users.html.

[10] Horejsi, J.; Chen, J.C. Probing Weaponized Chat Applications Abused in Supply-Chain Attacks. Trend Micro.
December 2022. https://www.trendmicro.com/en_us/research/22/l/probing-weaponized-chat-applications-abused-
in-supply-chain-atta.html.

[11] Chen, J.C. Horejsi, J. How Water Labbu Exploits Electron-Based Applications. Trend Micro. October 2022.
https://www.trendmicro.com/en_us/research/22/j/how-water-labbu-exploits-electron-based-applications.html.

https://i.blackhat.com/USA-22/Thursday/US-22-Purani-ElectroVolt-Pwning-Popular-Desktop-Apps.pdf.
https://i.blackhat.com/USA-22/Thursday/US-22-Purani-ElectroVolt-Pwning-Popular-Desktop-Apps.pdf.
https://www.erai.com/CustomUploads/ca/wp/2015_12_wp_operation_iron_tiger.pdf
https://www.erai.com/CustomUploads/ca/wp/2015_12_wp_operation_iron_tiger.pdf

