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ABSTRACT
PIPEDANCE is a previously unknown Windows backdoor that was used in a targeted intrusion in Southeast Asia affecting 
a financial services organization. Unlike most traditional malware that leverages command-and-control communications 
using external infrastructure, PIPEDANCE communicates in a point-to-point fashion within the same network over 
Windows named pipes. This malware acts as a Swiss Army knife during the post-compromise stage, enabling lateral 
movement and execution of additional implants while allowing the adversary to remain under the radar.

In this talk, the audience will learn about PIPEDANCE’s features, components, structure, and how it’s deployed to achieve 
adversary goals. Attendees will benefit from learning about these capabilities from a code and behavioural analysis 
perspective and understand detection opportunities for process injection, network communication, and other PIPEDANCE 
features. 

PIPEDANCE provides an interesting glimpse into mature threat groups as they evolve to use custom tooling in 
combination with commercial off-the-shelf (COTS) tools while incorporating other techniques into their malware such as 
Heaven’s Gate. Based on our findings, previously discussed research, and context around an intrusion, we’ll share our 
perspective on likely attribution for PIPEDANCE. 

We’ll walk the audience through our method of reversing this malware and developing a custom malware client for 
interacting with PIPEDANCE, a tool that will be useful to other researchers. Along the way, we made some interesting 
findings about the developer’s decisions and gained an understanding of how the malware operates. A portion of the talk 
will be replaying different scenarios using PIPEDANCE and showing the benefits of building malware clients during the 
reversing process. A coordinated release of the client application will be planned around the time of the presentation.

INTRODUCTION
PIPEDANCE is a recently discovered multi-hop triggerable backdoor observed in state-sponsored activity within the 
Southeast Asia region. This malware’s unique characteristics are centred around enabling post-compromise activity with its 
command-and-control communications facilitated through Windows named pipes. 

In this paper we will provide the initial context around first acquiring the PIPEDANCE sample. We will then walk 
through PIPEDANCE’s control flow and how it handles its communication between two endpoints, detailing the different 
capabilities available in the sample, such as enumeration/discovery, network connectivity checks, and launching 
additional implants. After this capability review, we will provide suspected attribution for this tool and the campaign 
observed by our team.

Finally, we will discuss our findings gained throughout the process of building a Windows client application to interact with 
PIPEDANCE. This tool will be available for download at the time of the presentation and can be used by researchers to 
understand the malware in more depth.

BACKGROUND
While monitoring endpoint telemetry, our research team found an interesting self-injection shellcode alert triggering on a 
Windows server from a locally mounted Administrator share using Microsoft’s SysInternals DebugView (DbgView.exe). 

Acting process: C:\Windows\system32\makecab.exe
Parent process: \\127.0.0.1\C$\DbgView.exe

Figure 1: Unbacked executable.
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Our team detected PIPEDANCE being used during a self-injection of the Windows utility program (makecab.exe) while it 
was writing/reading to a named pipe. After reviewing subsequent events, an additional process injection event happened on 
the same endpoint, showing an injection into openfiles.exe with the parent process of the Windows performance data 
utility (typeperf.exe). This injection ended up launching a Cobalt Strike BEACON payload. With our suspicions raised, 
we collected the 32-bit unbacked executable from the ‘makecab.exe’ event, kicking off our analysis of this malware and 
the involved intrusion.

Setup / communication flow
PIPEDANCE leverages named pipes as a communication mechanism between different infected endpoints within a 
compromised network. Named pipes within Windows allow for inter-process communication on a single computer or between 
processes on separate machines within the same network. Named pipes can be set up for one-way or two-way communication 
between a pipe client and a pipe server. The data used within named pipes is all stored in memory where it is written and 
retrieved using standard Windows APIs (CreateFile/WriteFile/ReadFile) in the same way as reading/writing files.
The adversary uses this capability as a bidirectional layer of command and control through which they can dispatch 
commands and pass data between named pipes. This contrasts with other common forms of C2 such as inbound/outbound 
HTTP(S) or DNS. Utilizing named pipes provide adversaries with a built-in, widely used communications channel, which 
makes it difficult for organizations to discretely identify malicious communications, particularly in cases where native 
encryption capabilities reduce the scope of visibility available without advanced security monitoring tools.
PIPEDANCE is compiled with a hard-coded string that is used as the pipe name. It also serves as an RC4 key to encrypt/
decrypt data that is passed between the pipes. In Figure 2, our sample is setting the global variable with this hard-coded 
pipe name (u0hxc1q44vhhbj5oo4ohjieo8uh7ufxe).

Figure 2: The hard-coded u0hxc1q44vhhbj5oo4ohjieo8uh7ufxe string is used as the pipe name.

During the initial execution of PIPEDANCE, the malware will use the CreateNamedPipeA and ConnectNamedPipe 
Windows API functions to create the named pipe (‘\\.\pipe\u0hxc1q44vhhbj5oo4ohjieo8uh7ufxe’) and wait for an 
incoming client process to connect to the pipe. This activity happens on a victim machine within the compromised network 
and represents the server-side component.

Figure 3: Initial pipe creation and setup.

In our observed case, the attacker has already established initial access and uses a previously compromised endpoint that 
acts as the client sending commands. On initial check-in, PIPEDANCE will send the following items to the client:

•	 Process ID of the PIPEDANCE process
•	 Current working directory of the PIPEDANCE process
•	 Domain and username of the PIPEDANCE process.

PIPEDANCE passes this buffer and an eight-byte structure containing the result flag from a IsWow64Process evaluation and 
the buffer size for the subsequent WriteFile operation to the pipe. PIPEDANCE then encrypts the buffer containing the 
previous process details with RC4 using the previous hard-coded string, then writes the encrypted data back to the client pipe. 

Figure 4: Initial check in-structure.
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This communication/packet structure used to read/write data is used repeatedly throughout the PIPEDANCE binary, where 
an eight-byte structure is used as a union using different fields such as:

•	 Command ID
•	 IsWow64Check (discussed above)
•	 PID
•	 Buffer size
•	 Result
•	 Error code

Figure 5: PIPEDANCE writing buffer example.

At this stage, PIPEDANCE is set up and awaiting commands from an operator from a previously compromised endpoint 
within the same environment. Figure 6 is a high-level graphic that helps visualize the PIPEDANCE infection workflow 
between two endpoints, but it has the potential to support more clients. 

Figure 6: PIPEDANCE communication diagram.

During this stage, the machine now running PIPEDANCE can be thought of as a proxy/staging server for data exfiltration 
as well as internal victim-to-victim C2 server. This is a powerful combination on top of the additional PIPEDANCE 
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capabilities as it gives the adversary flexibility and strengthens their foothold in the compromised environment, allowing 
them to burrow into the network and set up redundant C2 communications.

COMMAND DISPATCHING
After an initial handshake, PIPEDANCE’s primary functionality consists of a while loop with a command dispatching 
function. This dispatching function will retrieve the provided command ID of its respective function, along with any 
arguments.

Figure 7: PIPEDANCE dispatching function.

The parsing function passes an eight-byte structure consisting of the command instruction and the buffer size for the 
command argument. The command argument is encrypted by the client using the previous RC4 key, written back to the 
pipe, then decrypted by the server.

Figure 8: PIPEDANCE parsing command function.

Once the command ID has been received, PIPEDANCE performs several conditional checks using if/else and switch 
statements to execute the corresponding function.

Figure 9: PIPEDANCE conditional checks.

The majority of the command functions return a result flag or error code to the operator. For some functions that may return 
large amounts of data, such as a list of running processes, the malware generates a new named pipe using the hard-coded 
string described earlier and the PID of the PIPEDANCE process. The client then sends or receives the data over this pipe. 
Figure 10 is an example showing the additional handle with the process ID concatenated. 
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Figure 10: PIPEDANCE sending data over new named pipe with process ID.

COMMAND FUNCTIONALITY
PIPEDANCE supports more than 20 different functions, each accessed using their command ID via if/then and switch/case 
logic. Figure 11 shows an example of the first four functions.

Figure 11: Example of PIPEDANCE functions (1-4).

COMMAND HANDLING TABLE
Below is the PIPEDANCE command handler table.

Command ID Description
0x1 Terminate process based on provided PID
0x2 Run a single command through cmd.exe, return output
0x3 Terminal shell using stdin/stdout redirection through named pipes
0x4 File enumeration on current working directory
0x6 Create a new file with content from pipe
0x7 Retrieve current working directory
0x8 Set current working directory
0x9 Get running processes
0x15 (x86) / 0x16 (x64) Perform injection (thread hijacking or Heaven’s Gate) with stdin/stdout option for the 

child process
0x17 (x86) / 0x18 (x64) Perform injection from hard-coded list (thread hijacking or Heaven’s Gate)
0x19 (x86) / 0x1A (x64) Perform injection on provided PID (thread hijacking or Heaven’s Gate)
0x3E Clear out global variable/pipe data
0x47 Connectivity check via HTTP Get Request
0x48 Connectivity check via DNS with DNS Server IP provided
0x49 Connectivity check via ICMP
0x4A Connectivity check via TCP
0x4B Connectivity check via DNS without providing DNS Server IP
0x63 Disconnect pipe, close handle, exit thread
0x64 Disconnect pipe, close handle, exit process, exit thread

In order to detail the significant capabilities, the analysis will be split into three different sections:
•	 Standard backdoor functionality
•	 Network connectivity checks
•	 Process injection techniques
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BACKDOOR FUNCTIONALITY
PIPEDANCE offers the traditional backdoor capabilities needed by an operator in order to perform discovery within a 
network and pivot through other compromised systems. This functionality includes process/file enumeration, writing files, 
terminating processes, disconnecting named pipes, and command line execution.

Command execution

There are two command handler options for the PIPEDANCE operator as it relates to standard command-line execution 
(functions 0x2 and 0x3). The first function (0x2) acts as a single shot command line execution where any Windows 
command-line argument is provided from the client, such as the command ipconfig, then the output from that execution 
is returned. This underlying functionality works by creating an anonymous named pipe with read and write handles. Before 
creating the process, PIPEDANCE will configure the STARTUPINFO structure using STARTF_USESTDHANDLES to pipe the 
command output (hStdOutput) for the new process.

Figure 12: Configuring the STARTUPINFO structure.

The new process is created without a window where a thread is then created passing the previous read pipe handle as an 
argument. Memory is allocated for the command output and read from this read pipe handle. The data is then looped over 
and encrypted in a similar manner to before and sent back through a new named pipe.

Figure 13: PIPEDANCE reading in the command output.

The second execution command (function 0x3) provides for a more interactive experience by piping STDIN and STDOUT 
using named pipes through a child process. It does this by creating a new cmd.exe process in a suspended state leveraging 
STARTF_USESTDHANDLES.
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Figure 14: PIPEDANCE setup of STDIN/STDOUT for the cmd.exe process.

After the process is created, a new thread is created, passing the previous STARTUPINFO structure where two named pipe 
server processes are created for input and output.

Figure 15: PIPEDANCE processing STDIN/STDOUT and resuming thread for execution.

At this point, these named pipes are hooked up to StdInput and StdOutput, which communicate over a new named pipe 
consisting of the previous hard-coded string and the malware’s process ID.

Figure 16: PIPEDANCE handles with function 0x3.

The PIPEDANCE client then sends the data to the named pipe responsible for StdInput then reads from the StdOutput 
named pipe and once finished the suspended thread is resumed. While we don’t have access to the PIPEDANCE client 
code, it’s possible that this function is paired with some kind of loop that allows the operator to constantly stream input/
output from the terminal and they can exit with their own pre-programmed keywords – or it’s possible that it’s linked to a 
graphical user interface (GUI) application.

Discovery and enumeration
PIPEDANCE also offers built-in capabilities related to discovery and enumeration. For process enumeration (function 0x9), it 
leverages the CreateToolhelp32Snapshot function to retrieve the process details. The function returns a custom string 
format using the process ID, the name of the process, the architecture of the process, whether a process is tied to a system 
(session represented as a 0) or user session (session represented as a 1), and the username associated with the process.
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Figure 17: Process enumeration function with custom string format.

PIPEDANCE implements a terminal-like concept, where it has a current or working directory for its own process. This enables 
the adversary to use functions directly tied to the working directory such as the file enumeration command handler. For 
directory/file enumeration, PIPEDANCE will use a wildcard to pull back file listing based on the current working directory. 

Figure 18: Process enumeration function with custom string format.

PIPEDANCE also offers functionality for creating files and writing content to files on the victim machine (function 0x6). 
It does this by first creating and naming a file on the victim machine, then it creates a new thread with a new instance of a 
named pipe that will then wait for and read incoming data over the pipe. This data is XOR’d with the previous hard-coded 
string that serves as RC4 key where then the data is written to the file.

Figure 19: Creating a file on the victim machine (function 0x6).

PIPEDANCE also offers various administrator/maintenance commands, such as utilities to terminate processes, terminate 
threads, disconnect named pipes, etc. 

Network connectivity checks
One of PIPEDANCE’s primary functions as a staging server is to ship data out of an organization’s network. In order to do 
this it must understand where the endpoint sits in the network and determine what protocols are available for shipping the 
data laterally or externally. PIPEDANCE is specifically built to identify exit points on an endpoint by performing 
connectivity checks over DNS, ICMP, TCP and HTTP protocols.

Figure 20: Protocol connectivity checks.
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As an example, PIPEDANCE will send a DNS request to bing.com; this DNS result will then be relayed back to the 
operator, indicating success or failure. In order to check for ICMP, PIPEDANCE will generate fake data for the ICMP 
request by looping over the alphabet and sending the request to a target IP address.

Figure 21: ICMP connectivity check (function 0x49).

To check HTTP connectivity, a PIPEDANCE operator can provide a target domain where the malicious software will then 
perform a vanilla GET request over port 80, returning a boolean value for success or not.

Figure 22: HTTP connectivity check (function 0x47).

While these functions aren’t complex, they provide great insight into this adversary’s mindset and the objectives they are 
trying to achieve during an intrusion. These checks have a very small detection footprint and would likely not trigger any 
alarm bells in most organizations. We believe these connectivity checks are integrated into a multi-stage post-compromise 
process where these protocols are verified first in a lightweight method then additional payloads are launched or data is 
transferred out of the network following these checks.

Process injection techniques

In a similar comparison to many post-exploitation frameworks, PIPEDANCE adopts techniques such as Heaven’s Gate, 
different styles of process injection to execute shellcode, and a unique masquerading technique used to hide its 
functionality. During the observed events, we observed the usage of commercial off-the-shelf (COTS) tooling such as 
Cobalt Strike BEACON being deployed from PIPEDANCE. 

PIPEDANCE ends up leveraging these different forms of process injection to execute shellcode and launch additional 
payloads. Depending on the process architecture, the malware will perform injection using a standard thread execution 
hijacking technique or the Heaven’s Gate technique [1].

https://www.zdnet.com/article/malware-authors-are-still-abusing-the-heavens-gate-technique/
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Figure 23: PIPEDANCE performing process injection.

PIPEDANCE utilizes defence evasions to obscure post-compromise behaviour by randomly picking a benign Windows program 
from a hard-coded list to use as an injection target. In this custom function, the malware generates a seed based on the current 
time and passes it to a pseudorandom number generator that returns a value between 0 and 5. This value determines which of six 
hard-coded binaries (makecab.exe, typeperf.exe, w32tm.exe, bootcfg.exe, diskperf.exe, esentutl.exe) is used.

Figure 24: Custom function used to randomly choose injection targets.

Figure 25 is an example of shellcode being launched from PIPEDANCE with one of the hard-coded processes 
(typeperf.exe) executing shellcode.

 

Figure 25: Shellcode launched from PIPEDANCE showing child process/network activity.

For the thread-hijacking injection techniques, when PIPEDANCE is running under a 32-bit architecture, it uses common 
Windows API functions (GetThreadContext, SetThreadContext, WriteProcessMemory).

Figure 26: Thread hijacking function.
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For process architectures that are 64-bit, PIPEDANCE leverages the Heaven’s Gate technique, calling native API functions 
(NtGetContextThread, NtWriteVirtualMemory, RtlCreateUserThread), switching the CPU to 64-bit, and 
executing shellcode. While this technique has been widely adopted by many different malware families and tooling, it’s 
still an effective technique that currently works against modern-day EDR solutions.

Figure 27: PIPEDANCE using Heaven’s Gate for 64-bit architectures. 

Figure 28: PIPEDANCE calling NtWriteVirtualMemory for injection.

PIPEDANCE also supports other methods of injection using CreateRemoteThread or through a Heaven’s Gate call to 
RtlCreateUserThread. With this function, instead of choosing from the previously hard-coded list, the operator provides 
the PID for the injection target.

Figure 29: Custom option for injection target for PIPEDANCE.

One of the more interesting techniques utilized by PIPEDANCE is integrating shellcode and pipes with StdInput and 
StdOutput to load any tooling of their choice into one of these hard-coded injection targets. Not only does this allow the 
adversary to stay stealthy and evade monitoring, it allows them to run shellcode without the fear of losing their main 
implant if anything were to go wrong. This kind of implementation is typically embedded in offensive frameworks such as 
Cobalt Strike. The technique starts where the adversary turns an executable such as Mimikatz into shellcode using 
something like the Donut framework [2]. The operator provides the shellcode and the paired command they want to pass 
via StdInput. A randomly selected injection target is spawned, hosting the shellcode/Mimikatz, which then gets executed 
with the provided command. The StdOutput is collected and shipped back over the named pipe. This process all occurs 
under the normal packet request protocol, so data is being encrypted/decrypted using RC4.

Figure 30: STDIN/STDOUT integration with shellcode.

ATTRIBUTION
Based on our analysis of the PIPEDANCE malware and telemetry observations in multiple environments, we assess with 
moderate confidence that PIPEDANCE is used to further Vietnamese state interests. The activity group involving 

https://github.com/TheWover/donut
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PIPEDANCE shares similarities with reporting from Microsoft, describing Canvas Cyclone, and Google Cloud’s Mandiant 
describing APT32.
During 2022, Elastic Security Labs observed a unique ICMP backdoor, known as PHOREAL or RIZZO, on two different 
servers in the same environment. This unique ICMP backdoor malware is well documented by Cylance Blackberry in a 
2018 whitepaper [3]. Near the end of December 2022, we observed new activity on two additional endpoints in this 
environment where PIPEDANCE was loaded and Cobalt Strike BEACON was executed afterwards. 
Moving forward into May 2023, our team observed new tooling [4] being dropped on one of these previously compromised 
endpoints with PIPEDANCE and saw other victims within Vietnam targeted with SPECTRALVIPER. We suspect that this 
threat group might be in the process of moving away from PHOREAL and upgrading their tooling to a newer implant like 
SPECTRALVIPER.

Figure 31: Intrusion timeline within same environment .

When it comes to public reporting, Microsoft’s coverage [5] of Canvas Cyclone in 2020 mentions TTPs related to coin 
miner installations. For example, the use of the Service Control Manager to launch Microsoft Sysinternals DbgView.exe to 
load a malicious DLL that verified network egress to yahoo.com. Microsoft mentions a capability to launch 
Base64‑encoded commands via a hard-coded list of Windows-native processes. 

Figure 32: Hard-coded injection targets from Canvas Cyclone report [5].

We also observed ‘dbgview.exe’ loading a malicious DLL and performing a similar behaviour via these same Windows 
processes (excluding systray.exe) which are hard-coded in PIPEDANCE. PIPEDANCE contains a custom function that 
attempts to inject code into one of these processes to disguise the activity, coincidentally. 

Figure 33: Hard-coded injection targets within PIPEDANCE.

In 2021, Secureworks CTU described their observations [6] of a threat group they call TIN WOODLAWN and associated it 
with previous reporting by Google Cloud’s Mandiant on APT32. They mention a similar methodology by which an 
RC4-encrypted payload is written to a named pipe and injected into a randomly selected hard-coded list; in their 
publication it was ‘esentutl.exe’. This very closely resembles a similar feature of PIPEDANCE.

Figure 34: TIN WOODLAWN details using RC4, named pipe and injection target esentutl.exe [6].

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections/blob/master/2018/2018.10.17.OceanLotus_SpyRATs/SpyRATsofOceanLotusMalwareWhitePaper.pdf
https://www.elastic.co/security-labs/elastic-charms-spectralviper
https://www.microsoft.com/en-us/security/blog/2020/11/30/threat-actor-leverages-coin-miner-techniques-to-stay-under-the-radar-heres-how-to-spot-them/
https://www.secureworks.com/blog/detecting-cobalt-strike-government-sponsored-threat-groups
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These two examples from public reporting describe very similar capabilities present in PIPEDANCE or intrusions where 
PIPEDANCE was used. We assess with moderate confidence that there are technical and procedural overlaps described in 
the reporting of APT32, OCEANLOTUS, TIN WOODLAWN and Canvas Cyclone. 
Every vendor has its own visibility and technical capabilities that result in how it identifies and names threats. So while we 
can’t say that PIPEDANCE is definitely a tool of APT32 or Canvas Cyclone, we can say that there are many unique 
similarities between these specific activity groups and threats.

PIPEDANCE CLIENT
In order to support the malware analysis process for PIPEDANCE, a client application was written using the C 
programming language [7]. This process is beneficial as it helps us understand PIPEDANCE’s features, control flow and 
structures in more depth.

Figure 35: PIPEDANCE client command listing.

The client has the majority of the PIPEDANCE handler functions carried over, including the standard backdoor commands, 
injection commands, and the network connectivity checks. In order to work with the client application, a previous 
PIPEDANCE sample can be paired using the same hard-coded string as is used as the named pipe and RC4 key. This string 
is hard-coded inside the binary, and is located near the main entrypoint. For example, in a publicly available sample [8], the 
RC4 key/pipe name is ‘qm2jhf6nqgfwqnhklt38ohwoskgddq77’.

Figure 36: Identifying hard-coded RC4 / named pipe.

Building any kind of client application to support malware analysis is very helpful in solidifying your understanding of the 
malware. By doing this, we were able to get deeper insight into how each command handler operates and the types of 
inputs/outputs that are required for each function. Through this instrumentation, we were able to reach different command 
handlers, allowing us to modify parameters and observe the different behaviours.
Another major benefit of building a client application is centred around unobserved functionality. With access to almost all 
of the functionality, we can reliably test other functions that we didn’t observe during the intrusion. This can end up 
creating a new cycle of threat research such as building new detections, validating prevention features or learning about 
new non-public techniques/capabilities from an established threat group.

https://www.virustotal.com/gui/file/9d3f739e35182992f1e3ade48b8999fb3a5049f48c14db20e38ee63eddc5a1e7
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During the reversing process, it’s also important to build out data structures as these can then be utilized during the client 
development process. It’s critical that the correct structure layout matches with what the server expects if we want to 
communicate with it.
For example, upon the first connection to the hard-coded named pipe, there is an initial check-in structure that is used in 
later functions. This structure contains three fields including the malware process identifier (PID) that it will use to 
communicate over a new named pipe.

struct CheckinStruct 
{ 
	 uint32_t PID; 
	 uint16_t DomainPlusUserName[512]; 
	 wchar_t CurrentDirectoryProcess[260]; 
};

Figure 37: PIPEDANCE check-in structure.

With this structure in hand, we can receive the data through the named pipe, such as in the example below.

CheckinStruct* ReceiveCheckInArgument(HANDLE pipe) 
{ 
	 CheckinStruct* p_mem = (CheckinStruct*)calloc(1, sizeof(CheckinStruct)); 
	 CheckinStruct* result = ReceiveCheckInData(pipe, p_mem); 
 
	 return result; 
}

Figure 38: ReceiveCheckinArgument function.

Another significant data structure passed throughout PIPEDANCE is an eight-byte packet request structure. This is used to 
send the respective command handler IDs, architecture check, malware PID, results, error codes, but most importantly it 
sends over the sizes of subsequent data buffers of the requests and pointers to the data buffers themselves.

struct Packet  
{ 
	 union 
	 { 
		  uint8_t buffer; 
		  uint32_t command_id; 
		  uint32_t is_wow64_check_flag; 
		  uint32_t pid; 
		  uint32_t result; 
 
	 } _0; 
	 union 
	 { 
		  uint32_t buffer_size; 
		  uint8_t buffer[]; 
		  uint32_t error_code; 
	 } _1; 
};

Figure 39: Packet structure.

This structure consists of two unions with their respective fields in each union. Overall, this provides a flexible data 
structure for the developer, allowing the data to be interpreted differently using the same memory space.
In this following section we will detail the request flow using the process termination function from PIPEDANCE; this 
function is used to end a process and all of its threads, based on a user-provided process identifier (PID). 
The following are the steps and (in Figure 40) a visualization for terminating a process from the client. This type of request 
flow is common within PIPEDANCE and used in many of the command handlers:

1.	 The client sends over an eight-byte structure consisting of command ID (0x1) and buffer size of command 
parameter (PID to terminate).

2.	 The server allocates memory based on the previously provided buffer size. This will be used by the server to catch 
the next WriteFile by the client.

3.	 The client encrypts the data buffer with RC4.
4.	 The client sends a buffer over the named pipe.
5.	 The server decrypts the data buffer from the named pipe with RC4.
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6.	 Based on the command ID, the correct function is selected, passing the corresponding arguments decrypted – in this 
case the PID.

7.	 For this specific function, upon success it will return the CloseHandle return value or error code from 
GetLastError as a result.

Figure 40: Process termination diagram.

Having now a clearer understanding of the steps and flow involved, we will walk through the process termination function 
from the client side, from the request generation to the initial function call. 
In order to get started, a new request is generated using the previous Packet structure. Below is an example in the client 
where memory is allocated using the Packet structure and assigned the command_id and buffer_size values.

Packet* NewRequest(uint32_t command_id, uint32_t buffer_size) 
{ 
	 Packet* new_request = (Packet*)calloc(1, sizeof(Packet)); 
	 new_request->_0.command_id = command_id; 
	 new_request->_1.buffer_size = buffer_size; 
 
	 return new_request; 
}

Figure 41: NewRequest function.

There are two options when sending packets to PIPEDANCE using the client. The first option (shown below) typically 
occurs in the initial request performing a WriteFile operation over the named pipe using the previously discussed Packet 
structure. In this example, the client is sending the command ID (0x1) of the command handler and the buffer size of the 
PID command argument (four bytes). 

bool SendPacket(Packet* packet, HANDLE pipe) 
{ 
	 uint32_t n_bytes = 0; 
	 bool result = WriteFile(pipe, packet, sizeof(Packet), (DWORD*)&n_bytes, NULL); 
	  
	 return packet; 
}

Figure 42: SendPacket function.

The second option when sending request packets depends if there are parameters that need to be sent to the command 
handler function. For this example, since a PID is required for termination, the SendArgument function is used. This 
function will allocate new memory based on the size of the passed parameter (PID), copy the buffer containing the PID, 
then perform RC4 encryption using the hard-coded string over this new buffer.
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bool SendArgument(HANDLE pipe, uint8_t* buffer, uint8_t buffer_size, uint8_t* key, uint32_t 
key_size) 
{ 
    uint8_t* encrypted_buffer = (uint8_t*)calloc(1, buffer_size); 
    memcpy(encrypted_buffer, buffer, buffer_size); 
    rc4(key, key_size, encrypted_buffer, buffer_size); 
 
    return SendArgumentPacket(encrypted_buffer, pipe, buffer_size); 
}

Figure 43: SendArgument function.

This previous function will return a new function call to SendArgumentPacket. This ends up being responsible for 
writing the encrypted buffer in block sizes.

bool SendArgumentPacket(uint8_t* buffer, HANDLE pipe, uint32_t buffer_size) 
{ 
 
	 uint32_t block_size = 0x1000; 
	 uint32_t total_size_sent = 0; 
	 bool result; 
 
	 while (total_size_sent < buffer_size) { 
		  uint32_t n_bytes = 0; 
		  result = WriteFile(pipe, &buffer[total_size_sent], block_size < (buffer_size - total_
size_sent) ? block_size : buffer_size - total_size_sent, (DWORD*)&n_bytes, NULL); 
 
	 if (result == FALSE) { 
		  DWORD errorCode = GetLastError(); 
		  printf("WriteFile failed with error code: %d\n", errorCode); 
		  break; 
		  } 
 
		  total_size_sent += n_bytes; 
	 } 
 
	 return result; 
}

Figure 44: SendArgumentPacket function.

At this point, PIPEDANCE will read in the encrypted buffer from the named pipe, decrypt it using the RC4 algorithm and 
assign a pointer to it. Next, the malware will navigate to the provided command ID (0x1) and execute the handler function 
passing the PID argument. 

In Figure 45, it’s a straightforward function using OpenProcess and TerminateProcess with the provided PID and 
returning the result of CloseHandle or GetLastError.

Figure 45: PIPEDANCE process termination function.



DANCING THE NIGHT AWAY WITH NAMED PIPES  STEPANIC

18 VIRUS BULLETIN CONFERENCE OCTOBER 2023

In order to receive data back from PIPEDANCE, there are a couple of different approaches. In this example with the 
process termination function, the results are immediately returned in the Packet eight-byte structure without any 
encryption/decryption. In our client, memory is allocated and a ReadFile operation is performed over the named pipe, 
collecting the result or error code.

Packet* ReceivePacket(Packet* packet, HANDLE pipe) 
{ 
	 uint32_t n_bytes = 0; 
	 bool result = ReadFile(pipe, packet, sizeof(Packet), (DWORD*)&n_bytes, NULL); 
 
	 return packet; 
}

Figure 46: ReceivePacket function.

In other functions where there is substantial data that needs to be returned, the previous function is used first, getting the 
buffer size of incoming data, then the ReceiveArgument function (below) is used to allocate memory for the buffer where 
the ReceiveArgData function is then called.

char* ReceiveArgument(HANDLE pipe, uint32_t buffer_size) 
{ 
	 char* p_mem = (char*)calloc(1, buffer_size); 
 
	 return ReceiveArgData(pipe, p_mem, buffer_size); 
}

Figure 47: ReceiveArgument function.

The ReceiveArgData function is then used to read the encrypted buffer from the named pipe. 

char* ReceiveArgData(HANDLE pipe, char* buffer, uint32_t buffer_size) 
{ 
	 uint32_t n_bytes = 0; 
	 bool result = ReadFile(pipe, buffer, buffer_size, (DWORD*)&n_bytes, NULL); 
 
	 return buffer; 
}

Figure 48: ReceiveArgData function.

At this stage, the client has a pointer to the encrypted data. The client will then decrypt this buffer with the same RC4 string 
and print out the results to the client.

void ReceiveData(HANDLE pipe, uint8_t* key, uint32_t key_size) 
{ 
	 Packet* initial_buffer = ReceiveRequest(pipe); 
	 char* data = ReceiveArgument(pipe, initial_buffer->_1.buffer_size); 
 
	 rc4(key, key_size, (unsigned char*)data, initial_buffer->_1.buffer_size); 
	 wprintf(L"\nResult: %s\n", data); 
 
}

Figure 49: ReceiveData function.

Figure 50 shows the output from the client side of a successful PID termination.

Figure 50: PIPEDANCE client output of process termination function.

For the network connectivity functions, these operate in the previously described manner, taking input such as a domain or 
an IP address. With the knowledge of the eight-byte structure, we can pass the result to the 
ReportConnectivityResults function and parse the output accordingly, providing a success or error code.
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void ReportConnectivityResults(Packet* result) 
{ 
	 if (result->_0.result == 1) { 
		  printf("\n\n\tConnectivity Check Status: Successful"); 
	 } 
	 else { 
		  printf("\n\n\tConnectivity Check Status: NOT Successful"); 
		  if (result->_1.error_code != NULL) 
		  printf("\n\n\tError Code: %d", result->_1.error_code); 
	 } 
}

Figure 51: ReportConnectivityResults.

Figure 52 shows an example highlighting the command output returned from a network connectivity check for yahoo.com.

Figure 52: PIPEDANCE command output from HTTP GET request.

PIPEDANCE heavily integrates innovative techniques to evade security monitoring and implements a wide variety of 
functionality that makes it an interesting tool to simulate attacker behaviour. With this project, we hope this can jumpstart 
research into PIPEDANCE and other similar malware techniques, helping defenders to learn about these threats and 
validate their own detection/prevention technologies against a mature and capable threat. 

CONCLUSION
In this paper, we have detailed a backdoor called PIPEDANCE that we suspect belongs to a Vietnamese state-affiliated 
threat group. This backdoor is packed with functionality that enables post-compromise and data exfiltration activity, turning 
a compromised endpoint into an internal C2 server. Along with this research, we are releasing a client application that was 
written during the reversing process. We hope this project will assist researchers and defenders in learning more about 
PIPEDANCE’s features and that they will use the tool to validate their own security tooling.
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