
LONDON

2023

DARKBIT DECODED: ANALYSIS OF AN
IRANIAN-SPONSORED ATTACK
Itay Cohen & Ben Herzog
Check Point, Israel

itayc@checkpoint.com
benhe@checkpoint.com

4 - 6 October, 2023 / London, United Kingdom

www.virusbulletin.com

DARKBIT DECODED: ANALYSIS OF AN IRANIAN-SPONSORED ATTACK COHEN & HERZOG

2 VIRUS BULLETIN CONFERENCE OCTOBER 2023

ABSTRACT
In February 2023, Israel’s Technion University was targeted by a ransomware attack, resulting in a complete shutdown of
its IT systems. A new group calling itself DarkBit claimed responsibility for the attack and demanded a payment of $1.7
million. Further analysis revealed that ‘DarkBit’ was a facade: the attack was carried out by MuddyWater, an Iranian
government-sponsored threat actor. The attack was not only designed to encrypt servers and endpoints but also to
disseminate anti-Israeli content as part of an influence campaign.

THE TECHNION ATTACK
The Technion is one of Israel’s leading public research universities. It is the professional home of Prof. Dan Shechtman,
who received the Nobel prize in Chemistry for spending nearly 30 years of his life trying to tell the scientific community
that quasiperiodic crystals existed, to no avail (Pauli, the theory’s most high-profile opponent, famously said: ‘there are no
quasi-crystals, only quasi-scientists’). It is also where one of the present text’s authors completed his B.Sc. in mathematics,
an experience that he miraculously survived. During the 2000s and the early 2010s, the Technion established no fewer than
seven different internal committees to survey students’ excessive workload, then summarily rejected all their conclusions.
Finally, in 2013, the recommendations of one of the committees were implemented, and legend has it that things have
improved since then.

One way or another, on a seemingly ordinary Sunday, the Technion became the target of a ransomware attack, orchestrated
by a group calling itself DarkBit. The attack forced the university to proactively block all communication networks as
DarkBit infiltrated the system. In a ransom note, the attackers wrote ‘All your files are encrypted using AES-256 military
grade algorithm’. The group then demanded a ransom of 80 bitcoins, the equivalent of approximately $1.7 million, and
threatened a 30% increase in the ransom if the amount was not paid within 48 hours. They also warned that any attempt to
recover the data without the decryption key would cause permanent damage.

In addition to the attack, DarkBit took a political stance in its communications, tying the cyber attack to larger geopolitical
and economic issues, including the ongoing conflicts in the Middle East and tech layoffs.

The group’s activities extended beyond the ransomware attack itself. Its presence was noted across social media platforms
such as Telegram, Twitter, Reddit, YouTube and Facebook, with its messages often carrying political undertones and
advising companies to be cautious about their treatment of employees.

THE MUDDYWATER CONNECTION
In March 2023, a few weeks after the attack against the Technion, the Israel National Cyber Directorate (INCD) attributed
[1] the attack to MuddyWater, a nation-state actor linked to the Iranian government. The group presented its attacks as
ransomware and posted data for sale on the dark web using the cyber persona DarkBit, a move that was likely intended to
bolster Iran’s plausible deniability in the face of international scrutiny. The ransomware included a ransom note under the file
name ‘RECOVERY_DARKBIT.txt’. The ransom note, delivered under the same cyber persona, echoed the exact message
that DarkBit had previously posted on the messaging platform Telegram. Israel was denounced as ‘an apartheid regime’,
urged to ‘pay for occupation, war crimes against humanity, [and] killing the people’, specifically referring to Palestinians.
Such provocative messaging had formerly been a staple among groups that were assessed to have carried out cyber-enabled
information operations (IO) on behalf of the Islamic Revolutionary Guard Corps (IRGC). The INCD also reported that an
additional variant of the DarkBit ransomware was deployed in the attack, not for Windows machines but for VMware ESXI
servers. Sadly, we failed to obtain a sample of that variant as it is not available on public malware repositories.

Simultaneously, Microsoft, a leader in global cybersecurity, was tracking MuddyWater under its own moniker, ‘Mango
Sandstorm’ (previously known as Mercury). The tech giant was also diligently investigating the incident, piecing together a
clearer picture of the cyber attack. Come April 2023, Microsoft unveiled a comprehensive report that shed light on the
intricate collaboration between MuddyWater and a group it classified as STORM-1084.

According to Microsoft’s findings, STORM-1084 was instrumental in initiating the destructive ransomware attack against
the Technion. The group exploited a vulnerability in the Log4j2 logging library, thereby gaining access to the university’s
network. Upon breaching the network, STORM-1084 utilized an array of techniques to escalate privileges and secure
access to sensitive data. Once they had achieved this, they collaborated with MuddyWater to deploy the ransomware and
subsequently wipe out files.

TECHNICAL DETAILS
The ransomware deployed against the Technion was named 8thcurse.exe. This is a tacky reference to Israel’s ‘historical
curse of the 8th decade’, a term we had never heard of and which only appeared around the time of the attack on esoteric
Iranian websites in what looks like an information-operation effort; let us tactfully say that if you asked a Technion student
or faculty member how this ‘curse of the 8th decade’ has manifested itself lately in the state’s geopolitical situation, their
answer would not revolve around this ransomware.

https://www.gov.il/en/departments/news/_muddywater

DARKBIT DECODED: ANALYSIS OF AN IRANIAN-SPONSORED ATTACK COHEN & HERZOG

3VIRUS BULLETIN CONFERENCE OCTOBER 2023

The malware was written in the Go programming language and was obfuscated using the open-source Go obfuscator,
Garble. Due to its obfuscated nature, reverse engineering the binary was not a straightforward task. To overcome this
obstacle we wrote several deobfuscation scripts to provide a cleaner binary, allowing us to track the flow of the
ransomware much more efficiently.
Unlike other ransomware, the ransomware deployed by DarkBit supports command-line arguments and even greets the
confused operator with detailed help messages, just in case they forgot the syntax:

> Usage of 8thcurse.exe:
 -all
 run on all without timeout counter
 -domain string
 domain
 -force
 force blacklisted computers
 -list string
 list
 -nomutex
 force not checking mutex
 -noransom
 Just spread/No Encryption
 -password string
 password
 -path string
 path
 -t int
 threads (default -1)
 -username string
 username

Worry not: if executed with no command-line arguments, the ransomware will default to its hard-coded configuration
values. Speaking of hard-coded configuration, embedded inside the ransomware is a JSON configuration that instructs the
malware which file extensions to ignore, which file names to skip, and so on. Interestingly, the config also contains a list of
machines from the Technion network which it should skip encrypting. This shows that the attackers had prior knowledge of
the victim network.
Another thing that stood out to us in the malware’s list of supported command-line arguments is the -noransom argument.
The help message suggests that, if this argument is enabled, the ransomware will not encrypt the machine, but only ‘spread’
to it or from it. Does the ransomware support a secondary functionality in which it does not encrypt the user’s most
important data and just spreads to the machine? Well, no. Even though the feature exists in the help message, the malware
doesn’t really support it and ignores this argument.
After parsing its command-line arguments, if it has admin privileges the malware will create a new thread to execute
Microsoft’s legitimate vssadmin.exe utility and delete shadow copies from the hard drive. This makes it harder for
forensics folks to recover any of the encrypted data, and has long since become extremely common knowledge among
malware professionals – so much so that we heaved a sigh writing it down for the millionth time. Having checked this box,
the malware will then check what drives are available on the machine and start encrypting, with the first directory
encrypted being C:\\Users. The ransomware will use two encryption threads by default, or as many threads as specified
in its command-line arguments.
Just before starting, it builds up the tension and starts counting down from 10.

Encryption will run on all files in 10
Encryption will run on all files in 9
Encryption will run on all files in 8
...

The malware then achieves liftoff, and begins encrypting files.

CRYPTOGRAPHIC ANALYSIS
When faced with this ransomware, our first and immediate concern was to verify that it was, in fact, functional ransomware.
There are two ways ransomware can fail to be functional: via encryption failure or via decryption failure.

• By ‘encryption failure’ we mean that the encryption scheme’s design enables trivial file recovery by the victim; last
decade’s slew of ransomware shouting ‘ALL YOUR FILES ARE ENCRYPTED USING MILITARY-GRADE

DARKBIT DECODED: ANALYSIS OF AN IRANIAN-SPONSORED ATTACK COHEN & HERZOG

4 VIRUS BULLETIN CONFERENCE OCTOBER 2023

RSA-32768 ALGORITHMS!’ while actually XOR’ing all victim files with 0x55 all fall into this category. This has
since become a very rare sighting, nevertheless, we have to check.

• By ‘decryption failure’, we mean bluntly that the piece of ‘ransomware’ in question is functionally a wiper. Whether
intentionally or not, the fancy diagram of hashes, public keys, private keys, symmetric keys and other primitives
doesn’t commute. The malware can mangle victim data beyond recognition into a high-entropy state, but the process
cannot be reversed to obtain the original data at the other end, even with the attackers’ hypothetical goodwill. This
latter scenario can happen by accident, but recent history has seen several high-profile security incidents (NotPetya,
Azov [2]) where it was done entirely on purpose, to sow confusion and camouflage a politically motivated campaign
of destruction as a mere botched cybercrime op.

We couldn’t proceed with cryptographic analysis until we had answered the fundamental question: is this proper
ransomware? After some hectic work, we were able to answer the question in the positive beyond a reasonable doubt.
The encryption scheme is visualized in Figure 1, with the encryption path in red and the decryption path in blue. ‘Blind’
means the piece of data never reaches the victim machine at all; ‘Ephemeral’ means the piece of data exists on the victim
machine at some point, but is deleted later; and ‘victim-known’ means that the piece of data is accessible to the victim even
once the machine reaches a fully encrypted state (for example, the implementation of AES-GCM is in this category; one
can look it up online).

Figure 1: Encryption scheme.

Why ‘beyond a reasonable doubt’? These conclusions were drawn using dynamic analysis – not a static full reverse, which
would have consumed orders of magnitude more time. We ran the malware on a great many files using our own mock RSA
keypair that we spliced into the malicious process in order to verify that the full encryption and decryption loop checks out;

https://research.checkpoint.com/2022/pulling-the-curtains-on-azov-ransomware-not-a-skidsware-but-polymorphic-wiper/

DARKBIT DECODED: ANALYSIS OF AN IRANIAN-SPONSORED ATTACK COHEN & HERZOG

5VIRUS BULLETIN CONFERENCE OCTOBER 2023

but technically, this still leaves possible the theory that the malware mangles one bit of the AES key of the 700,000th file of
every run, or that it behaves as a wiper if activated on 11 August. Decide for yourself if you see this as healthy scepticism
or tin-foil-hat paranoia, but we must note that, objectively, one skill of an effective reverse-engineer is ignoring this sort of
caveat with prejudice.

Let’s talk a bit about the implementation details of this hefty diagram. When encrypting a file, the malware generates eight
random ASCII characters and checks the local time of the computer. It then takes the random eight characters and an ASCII
representation of the EPOCH time and concatenates them together to create a new file name for the file-to-be-encrypted,
not before it adds its ‘.Darkcrypt’ signature to the end of the new file name.

The encrypted file format itself is relatively standard. First the encrypted contents, then a magic marker (‘DARK_BIT_
ENCRYPTED_FILES’), then the original file name, AES-encrypted with the key and IV used to encrypt the file, then
another magic marker (‘DARKBIT’), and finally, the RSA-encrypted parameters for AES (key and IV). A more concise
description is given below:

[encrypted content]DARK_BIT_ENCRYPTED_FILES|[encrypted file name]DARKBIT[encrypted key and IV]

A peculiar point of interest that we were motivated to research in depth is the way that the PRNG output is distributed to
produce the AES keys and IVs. The simplest thing would be for these AES parameters to appear in the PRNG output
contiguously and in sequential order, but it quickly became clear that this was not the case. We wrote a script to capture the
stream of keys and IVs used in the repeated AES encryption of system files of a monitored ransomware run using one
encryption thread, and compared the result to the corresponding vanilla PRNG output. The result of one such comparison is
shown in Figure 2.

Figure 2a: Key+IV stream. Figure 2b: Vanilla random stream.

While the first 32 bytes (that is: the first AES key and IV generated) are taken from the PRNG output directly, a divergence
can be seen as early as offset 0x23 where the Key-IV stream has 0x22 whereas the plain PRNG output has 0x07.
Curiously, the divergence is not total: looking closely, one can see that the continuation of the Key-IV stream can be found
further down in the vanilla PRNG stream (to be precise, 0x38 bytes later, at offset 0x5b). Intrigued by this, we created a
script to compare a Key+IV stream to the corresponding vanilla random stream and record the locations and sizes of these
‘lapses’.

At the start, we used a naive forward search that would look inductively for the next closest byte of the PRNG output
matching the next Key-IV stream byte, but this was a kludge; the required byte could appear in the ‘skipped-over’ PRNG
bytes by accident, which would cause the comparison script to go off the rails. At first we thought ‘what’s the chance of
that happening?’ (one minus one over 256 to the power of… etc.) and then when inevitably it did happen, we created a
more sophisticated script that ranked prospective points of re-entry in the vanilla PRNG stream based on how much
‘creative interpretation’ was required to see the remaining Key-IV stream as a subsequence of the PRNG stream following
that point. We reproduce the load-bearing part of the code as follows:

DARKBIT DECODED: ANALYSIS OF AN IRANIAN-SPONSORED ATTACK COHEN & HERZOG

6 VIRUS BULLETIN CONFERENCE OCTOBER 2023

def score(deltas: List[int]) -> int:

 i = 0

 _sum = 0

 participants = 0

 sums = []

 while i < len(deltas):

 _sum += deltas[i]

 participants += 1

 if deltas[i] == 0 or i == len(deltas)-1:

 if _sum != 0:

 sums.append((_sum, participants))

 _sum = 0

 participants = 0

 i += 1

 score = 0

 for (s, participants) in sums:

 score -= participants

 if s==56:

 pass

 elif s % 16 in [0, 8]:

 score -= 4

 else:

 score -= 16

 return score

A ‘delta’ in this context is the least distance to the desired Key-IV byte. Technically, the least distance minus one – this is
an aesthetic choice; we wanted ‘no anomaly – just proceed to the next byte’ to be represented by a delta of 0. This proved
handy when we later ran the script on actual Key-IV streams and corresponding PRNG streams and looked for patterns in
these ‘deltas’ – places where the one-to-one match between the two streams lapsed, and resumed only later in the PRNG
stream. This was done using the following Python code:

if __name__ == "__main__":

 with open(sys.argv[1], "rb") as fh:

 full_stream = fh.read()

 with open(sys.argv[2], "rb") as fh:

 substream = fh.read()

 skip = 0

 while(substream):

 block, substream = substream[:32], substream[32:]

 if block == b"\\xff"*32:

 skip += 32

 continue

 else:

 if skip > 0:

 print("Skip ", skip)

 skip = 0

 sbs = subsequences_by_feasibility(block,full_stream[:32*40])

 if sbs == []:

 break

 guess = sbs[0]

 anomaly_vector = offsets_to_anomalies(guess._list)

 print(anomaly_vector)

 jump_ahead = sum(anomaly_vector) + 32

 full_stream = full_stream[jump_ahead:]

It resulted in the following typical kind of output:

DARKBIT DECODED: ANALYSIS OF AN IRANIAN-SPONSORED ATTACK COHEN & HERZOG

7VIRUS BULLETIN CONFERENCE OCTOBER 2023

[0, 0]
[0, 0, 0, 56, 0]
[0, 0, 0, 0, 0, 0, 56, 0]
[0, 0, 56, 0]
[0, 0, 0, 0, 0, 56, 0]
[0, 56, 0]
[0, 0, 0, 0, 56, 0]
[56, 0]
[0, 0, 0, 56, 0]
[0, 0, 0, 0, 0, 0, 56, 0]
[0, 0, 56, 0]
[0, 0, 0, 0, 0, 56, 0]

Each line represents 32 bytes, which is one AES Key+IV pair. It would go on like this for a while, until very rarely we
would get one line like this:

[0, 0, 0, 0, 0, 43, 13, 0]

Or even:

[9, 12, 35, 0

We were able to determine that these lapses came in succession one after the other, and would always sum to 56 – probably
as an artifact of how the PRNG was invoked by the key-generation routine and other routines of this malware. Running two
encryption threads and then looking at the behaviour per thread, we noticed that the presence of the other thread introduced
lapses of lengths that were multiples of eight, but other than this the Key+IV stream vs. PRNG stream behaviour remained
similar.
In particular, the relatively deterministic way Key+IV pairs are derived from a given PRNG state implies that AES+IV
pairs can feasibly be located by a process of trial and error if hypothetically given the (ephemeral, non-victim-visible)
PRNG output. As a proof of concept for this fact, we created a Golang program that locates key pairs in PRNG output. The
load-bearing part of the Golang code is reproduced below, with some function and variable names changed:

func (fbf *KeyInPrngLocator) locate_keys(file_path string) ([]byte, []byte, bool) {
 //compute anomaly vectors
 anomaly_vectors := [][]int{}
 it := &AnomalyIndexSpreadIterator{has_anomaly: false, anomaly_spread: 1, anomaly_index: 0}
 for {
 anomaly_index_spread_vec, ok := it.next()
 if !ok {
 break
 }
 var spread int
 for _, val := range anomaly_index_spread_vec {
 if val != 0 {
 spread = val
 break
 }
 }
 new_vectors := getModifiedVectors(anomaly_index_spread_vec[:], positiveSums(56, spread))
 anomaly_vectors = append(anomaly_vectors, new_vectors...)
 }

 for _, anomaly_vec := range anomaly_vectors {
 offsets_vec := anomaly_vector_to_offsets(anomaly_vec, fbf.offset)
 keyiv := fbf.stream.at_positions(offsets_vec)
 key, iv := keyiv[0:16], keyiv[16:32]
 name, _file, success := attempt_verify_key_iv(file_path, key, iv)
 sum := 0
 for _, val := range anomaly_vec {
 sum += val
 }
 if success == true {
 fbf.offset += sum + 32
 return name, _file, true
 }
 }
 return []byte{}, []byte{}, false

}

DARKBIT DECODED: ANALYSIS OF AN IRANIAN-SPONSORED ATTACK COHEN & HERZOG

8 VIRUS BULLETIN CONFERENCE OCTOBER 2023

The function of getModifiedVectors, AnomalyIndexSpreadIterator, etc. should be more or less clear from the
context, but in case you are curious about the exact implementation, we include it in the Appendix.

CONCLUSION
The vulnerability that wasn’t patched, and which the attackers used to gain entry into the Technion’s network, was a Log4j
vulnerability. We all remember the two weeks when it was impossible to exist in the information security sphere without
hearing about Log4Shell 17 times a day. At its height, the discourse surrounding this vulnerability became omnipresent and
exhausting, like the 24-hour news cycle and the Macarena. We can only speculate on the thought process that led to not
patching this particular security hole, but – and this is just our feeling – we suspect that the reasoning ‘come on, who would
want ********to hack us’ must have been involved. This reasoning then met a nation-state actor eager to put a high-profile
notch in their belt, with catastrophic results.
The attackers made some interesting choices when putting together the cryptographic scheme. One of these was assembling
a functional ransomware that can encrypt and decrypt, even if the intent was, presumably, never to decrypt anything, and
let the Technion wallow in its misery. Another was the little touches left in the implementation here and there (the naming
scheme for encrypted files, in particular, is rather unorthodox). The inclusion of a CLI is also not standard for ransomware,
and further points to a scenario where malware was used by someone far removed from the original author.

REFERENCES
[1] Israel National Cyber Directorate. Iranian Government-Sponsored Threat Actor MuddyWater Conducts Cyber

Attack Against Israel. 9 March 2023. https://www.gov.il/en/departments/news/_muddywater.
[2] Vinopal, J. Pulling the curtains on Azov ransomware: not a skidsware but polymorphic wiper. Check Point.

12 December 2022. https://research.checkpoint.com/2022/pulling-the-curtains-on-azov-ransomware-not-a-
skidsware-but-polymorphic-wiper/.

APPENDIX – IMPLEMENTATION OF AUXILIARIES REQUIRED FOR LOCATE_KEYS FUNCTION
type AnomalyIndexSpreadIterator struct {
 has_anomaly bool
 anomaly_spread int
 anomaly_index int
}

func (it *AnomalyIndexSpreadIterator) next() (Vector, bool) {
 var vec Vector
 if it.has_anomaly == false {
 it.has_anomaly = true
 return vec, true
 }
 if it.anomaly_index+it.anomaly_spread > 32 {
 it.anomaly_index = 0
 it.anomaly_spread++
 }
 if it.anomaly_spread > 4 {
 return vec, false
 }
 vec[it.anomaly_index] = it.anomaly_spread
 it.anomaly_index++
 return vec, true
}

func positiveSums(n, l int) [][]int {
 if n <= 0 || l <= 0 {
 return [][]int{}
 }
 if l == 1 {
 return [][]int{{n}}
 }
 var result [][]int
 for i := 1; i <= n-l+1; i++ {
 for _, v := range positiveSums(n-i, l-1) {

https://www.gov.il/en/departments/news/_muddywater
https://research.checkpoint.com/2022/pulling-the-curtains-on-azov-ransomware-not-a-skidsware-but-polymorphic-wiper/
https://research.checkpoint.com/2022/pulling-the-curtains-on-azov-ransomware-not-a-skidsware-but-polymorphic-wiper/

DARKBIT DECODED: ANALYSIS OF AN IRANIAN-SPONSORED ATTACK COHEN & HERZOG

9VIRUS BULLETIN CONFERENCE OCTOBER 2023

 result = append(result, append([]int{i}, v...))
 }
 }
 return result
}

func getModifiedVectors(v []int, w [][]int) [][]int {
 modifiedVectors := [][]int{}

 // Find the index of the non-zero element in v
 var i int
 found_nonzero := false
 for j, val := range v {
 if val != 0 {
 i = j
 found_nonzero = true
 break
 }
 }
 if !found_nonzero {
 modifiedVectors = append(modifiedVectors, v)
 return modifiedVectors
 }

 // Generate modified vectors for each vector u in w
 for _, u := range w {
 modified := make([]int, len(v))
 copy(modified, v)
 for j, val := range u {
 if j+i >= len(v) {
 break
 }
 modified[j+i] = val
 }
 modifiedVectors = append(modifiedVectors, modified)
 }
 return modifiedVectors
}

	_ojh8ng3gqh39
	_n0ls3sp6zx7p
	_4b2h6y4qz78j
	_yzcqpwyg3rnm
	_csoeand22umv
	_5qt6yqen1aji
	_q68by1o8wgwy

