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ABSTRACT
Code virtualization is one of the most challenging obfuscation techniques. It involves translating code into a custom 
instruction set that is unknown to reverse engineers. As the process of removing this obfuscation is tedious, advanced threat 
actors like Lazarus or FinFisher favour protecting their malware with virtualization.
Existing papers on deobfuscating virtualized code rely on creating standalone instruments. The typical workflow of such 
tools consists of disassembling virtualized code, optimizing it and then converting it to a known architecture such as x86. 
The deobfuscated code is then loaded into a reverse engineering framework such as IDA for further analysis.
In our paper, we present a novel and less arduous approach to defeating code virtualization. Rather than using standalone 
tools, we rely entirely on IDA Pro and Hex-Rays Decompiler, two popular reverse engineering instruments. As Hex-Rays 
already implements various code optimization routines, it allows deobfuscation to be performed with much less effort.
We describe our approach step by step, demonstrating how to apply it to FinSpy VM, a malware obfuscator commonly 
discussed in papers on code devirtualization. First, we introduce features of the IDA SDK that we use for automating 
deobfuscation. Then, we explain how to translate virtualized code into the x86 architecture using the disassembler API. 
Finally, we detail how to harness the Hex-Rays microcode to decompile the translated assembly into C and thus obtain 
clean devirtualized code. While describing the deobfuscation process, we will provide multiple recommendations on how 
to efficiently use the scripting capabilities of IDA and Hex-Rays Decompiler.
The commented code of the deobfuscator is released along with the paper. It can be used as a template for working with 
other virtualized malware.

INTRODUCTION
While analysing highly sophisticated malware, it is common to encounter obfuscation techniques that significantly delay 
the process of reverse engineering. An example of such a technique is code virtualization. The goal of virtualization is to 
translate code from a commonly known architecture (such as x86) to a completely exotic one. Specifically, in order to 
virtualize a binary (e.g. a Windows executable file), malware developers usually perform the following procedure:

1. Design a virtual processor architecture. This architecture may have any number of instructions or registers. The only 
requirement is that the custom architecture should be able to compute any x86 function.

2. Create a translator program that converts functions located in the executable file from x86 to the virtual architecture.
3. Develop a program that emulates the virtual architecture, i.e. executes virtual architecture instructions on an x86 

processor.
4. Embed the emulator program along with the virtualized code into an executable file and make the emulator launch 

on startup of this executable.
As a result of these actions, the executable produced at step 4 will perform the same functionalities as the original one. 
However, the presence of the virtual architecture will make the obfuscated executable much more difficult to analyse.

Figure 1: Illustration of the obfuscation process. An x86 instruction is translated to an architecture with a virtual 
instruction pointer (vip) and a general-purpose register (virtReg).

In order to analyse a virtualized executable, a malware analyst usually needs to perform the following actions:
1. Reverse engineer the emulator program in order to understand the inner workings of the virtual architecture. For 

example, in the case demonstrated in Figure 1, an analyst would need to deduce that the instruction with bytes 
42 00 00 00 11 22 33 44 assigns the value 0x11223344 to a virtual register).



DEOBFUSCATING VIRTUALIZED MALWARE USING HEX-RAYS DECOMPILER  KUCHERIN

3VIRUS BULLETIN CONFERENCE OCTOBER 2023

2. Convert the code of virtualized functions back to a known architecture (e.g. the instruction mov virtReg, 
0x11223344 from Figure 1 can be converted to the x86 instruction mov eax, 0x11223344).

3. Optimize the converted x86 code to make it easier to analyse with commonly used tools such as IDA.

Existing papers on malware devirtualization ([1, 2]) propose performing steps 2 and 3 by creating standalone scripts or 
even fully fledged binary analysis frameworks. As an alternative, it is possible to perform all the deobfuscation steps with 
just IDA Pro and the Hex-Rays Decompiler, two instruments commonly used for reverse engineering. Such an approach 
has the following advantages:

• The automation capabilities of IDA Pro provide an API that can be used for efficiently performing operations with 
assembly instructions.

• The Hex-Rays Decompiler implements various optimization algorithms, thus using it will simplify the optimization 
step.

In the following sections of this paper, we will demonstrate this approach and its efficiency by applying it to FinSpy VM, 
an obfuscator that is used in the FinFisher spyware and commonly discussed in papers on devirtualization.

OVERVIEW OF FINSPY VM
The sample of FinSpy that we will be analysing has the SHA256 hash 94ABF6DF38F26530DA2864D80E1A0B7CDFCE63FD 
27B142993B89C52B3CEE0389. It is available for free download from vx-underground [4] – we recommend that the 
reader downloads the sample and follows along with the instructions in this paper.

Before describing the devirtualization method itself, we will need first to study the internals of the FinSpy VM obfuscator. 
As information about this obfuscator is already published in existing papers, we will provide only the most essential 
information that is crucial for understanding the rest of this paper. Interested readers can refer to [1, 2, 3] for more detailed 
descriptions of the obfuscator’s inner workings.

One of the obfuscated functions in this binary is located at the address 0x405362. It starts with the following code:

.text:00405362 loc_405362: mov edi, edi

.text:00405364   push ebp

.text:00405365   mov ebp, esp

.text:00405367   sub esp, 0C7Ch

.text:0040536D   push ebx

.text:0040536E   push esi

.text:0040536F   push edi

.text:00405370   push 735FBBCh

.text:00405375   push edx

.text:00405376   xor edx, edx

.text:00405378   pop edx

.text:00405379   jz loc_401930

As can be observed from the code above, it performs the following:

• Allocates space on the function stack.

• Pushes registers and a 32-bit value (0x735FBBC) on the stack. This value identifies the first virtual instruction that is to 
be executed.

• Performs a jump to the virtual machine emulator (at address 0x4005379).

As for the code of the emulator to which the jump is taken, it is as follows:

.text:00401930 loc_401930:

.text:00401930   jz loc_401EB8

.text:00401936   jnz loc_401EB8

.text:00401EB8 loc_401EB8: 

.text:00401EB8   pusha

.text:00401EB9   jp loc_40193E

.text:00401EBF   jnp loc_40193E

…
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As can be observed from this code, pairs of instructions at addresses 0x00401930 – 0x00401936 and 0x00401EB9 
– 0x00401EBF contain conditional jumps. They lead to the same destination, and their conditions are opposite. Thus, 
these jumps implement an obfuscation technique called opaque predicates [5]. To combat it, we can replace each pair of 
conditional jumps with an unconditional jump (e.g. replace the jz and jnz instructions at 0x401930 with the 
jmp loc_401EB8 instruction). This can be done with a Python script authored by Rolf Rolles [6]. A version of this script 
that works with latest versions of IDA can be found at [7].
In order for the script to work, it should be placed in the plugins directory of the IDA installation. Once IDA is restarted, 
the opaque predicate obfuscation will be eliminated. This in turn will allow a function to be defined at address 0x401930 
(which is called at address 0x405379 in the disassembly listing). 
An analysis of this function reveals the following details about FinSpy VM:

• The obfuscated binary embeds compressed (with APLib) and encrypted (with 4-byte XOR) bytecode of the virtual 
machine (in the analysed sample this bytecode is contained at address 0x40A0A8).

• The decrypted and decompressed bytecode contains 24-byte virtual instructions. The bytes of each instruction contain 
the following information:

- A unique identifier of the instruction (4 bytes)
- Instruction type (1 byte)
- Size of instruction operands (1 byte)
- Relocation data (2 bytes)
- Instruction operands (16 bytes).

Figure 2: Snippet of FinSpy VM decrypted bytecode, with the components listed above separated by square brackets.

• The obfuscator implements 34 handler functions, one for each instruction type. These handlers are stored in a table (at 
address 0x4028B3). Each handler is responsible for interpreting the operands of the instruction and then executing it.

• Implemented instructions can be divided into three types:
- Instructions performing various jumps, either conditional or unconditional. Conditional jump instructions use bits 

of the EFLAGS register to check where a jump should be taken. 

Figure 3: A handler implementing the ja (jump if above) instruction, which checks the ZF and PF flags.

- Instructions performing various operations with a virtual register, that we will refer to as virtReg. Such 
instructions are used for moving data from x86 registers to the virtual register and vice versa, as well as 
performing arithmetic operations (such as addition or bit shifting).

Figure 4: A handler implementing the shl virtReg, imm8 instruction that performs a left shift of bits in the virtual register.
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- Instructions executing native x86 code (examples of executed x86 instructions include test and ret).

Now that we have an outline of how the FinSpy VM obfuscator works and what virtual instructions it implements, we can 
describe the deobfuscation process itself.

TRANSLATING VIRTUAL INSTRUCTIONS TO X86
As we have discussed in the introduction, the next step after analysing the virtual machine internals is to translate virtual 
instructions into x86 ones. We have three types of instructions, and translation of two of these types is straightforward:

• Instructions executing native x86 code do not need to be translated at all.

• Instructions performing jumps (such as ja) can be replaced with their x86 equivalents.

The greatest difficulty arises with translating instructions that use the virtReg register. While translating such instructions 
(e.g. the shl virtReg, imm8 instruction), we need to find a place where we can store the value of the virtual register. 
There are two options for that storage:

1. An x86 register (such as eax);

2. An in-memory global variable.

If we choose the first option, the instruction shl virtReg, imm8 would be translated as shl eax, imm8. In the case of 
the second option, the translation will be shl dword ptr [virtReg], imm8.

To decide which option to choose, we can take a look at the following set of virtual instructions:

exec {mov eax, 0x3} ; this instruction executes native x86 code

mov virtReg, 0x400300 ; this instruction moves a constant into the virtual register

mov [virtReg], eax ; this instruction writes data to an address stored in 

 ; the virtual register

If we execute these three instructions, the value 0x3 will be written to the address 0x400300. If we choose to use option 1 
and replace the virtual register with eax, the translation will be as follows:

mov eax, 0x3

mov eax, 0x400300

mov dword ptr [eax], eax.

However, this translation is not equivalent to the virtualized code as it moves the value 0x400300 (instead of 0x3) to the 
address 0x400300. Thus, it is not enough to simply replace the virtual register with an x86 one, and option 1 is not suitable 
for us. Thus, we are left with the second option. 

Now that we have decided to store the virtReg register in memory, we can provide equivalent x86 code for virtual 
instructions. We provide examples of such translations below, while all translations can be examined at [7].

Virtual instruction Instruction description x86 translation

shl virtReg, imm8 Performs a left shift of the bits in the virtual register shl dword ptr [virtReg], imm8

add virtReg, imm32 Adds a constant to the virtual register add dword ptr [virtReg], imm32

mov virtReg, [virtReg] Retrieves a DWORD located at an address in the 
virtual register and stores it in the virtual register.

push eax

mov eax, [virtReg]

mov eax, [eax]

mov [virtReg], eax

pop eax

Once we compose an x86 translation for every virtual instruction, we are able to:

• Iterate over every virtual instruction in the bytecode, translating it to x86.

• Write the bytes of translated instructions into the IDB (IDA database) of our sample.

It is best to store these bytes in a separate segment that can be created using the add_segm_ex API function [8]. We can 
then write data to this segment using the put_bytes [9] function. We will additionally use this segment to store the value 
of the virtReg resister. As an effect, we get the following results:
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Figure 5: Snippet of the translated x86 code. The dup(90h) bytes represent nop instructions that have been placed for 
purposes of padding.

Once the segment is filled with assembled code, we can patch the obfuscated function at address 0x405379, replacing the 
jump to the virtual machine emulator with a jump to the created segment (if the reader launches the script from [7], the 
target address will be 0x432744). Once this jump is patched, we get the following decompilation results:

Figure 6: Snippet of the decompilation results.

Although this code is readable, the decompilation results are far from satisfactory. That is because they contain dead store 
assignments to the virtReg variable, such as the assignment of the constant 1 in this snippet:

virtReg = 1;

SetErrorMode(1u);

virtReg = v40;

To make sure that the decompilation results are correct in every case, the Hex-Rays Decompiler does not perform dead store 
elimination with global variables. However, in our case, we need to force the decompiler to perform such optimizations. To 
do that, we will need to study the internals of the Hex-Rays Decompiler and then use a novel optimization technique.

ANALYSING MICROCODE OF THE DECOMPILED FUNCTION 
In order to modify decompilation results, we can use an API that is referred to as microcode API. It allows us to interact 
with microcode – an intermediate language between assembly code and C pseudocode. In order to look at a function’s 
microcode, we can use the Lucid plug-in [10]. When this plug-in is installed, we can press Ctrl-Shift-M in the decompiler 
window to view the microcode:
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Figure 7: Microcode Explorer window.

The microcode itself is displayed on the left, while the panel on the right allows the selection of one of multiple so-called 
maturity levels. The microcode at the lowest maturity level (MMAT_GENERATED) looks like assembly code, while the 
microcode at its highest maturity level (MMAT_LVARS) is most close to pseudocode. 
We will be looking at the microcode at the MMAT_PREOPTIMIZED level. At this level, redundant assignments to the 
virtReg variable look as follows:

1.43 mov #1.4, $virtReg.4 

1.44 call $SetErrorMode <std:"UINT uMode" #1.4>.0

1.45 mov &(_C).4, $virtReg.4 

As can be seen, the virtReg variable is contained in the operands of the mov instruction. We can further examine 
microcode instructions by representing them in the form of a graph:

Figure 8: Graph representing the mov #1.4, $virtReg.4 instruction.

As can be seen from the graph above, this instruction has an operand with type mop_v, which is the virtReg variable, as 
well as an operand with type mop_n, which is the constant 1. In order to optimize code and make redundant assignments to 
the virtReg variable disappear, we need to iterate through all operands of all microcode instructions. For every operand, 
we need to check if it is the virtReg variable. If so, we need to replace it with another object that allows optimizations to 
be performed on it.
One such ‘optimizable’ object that the decompiler implements is called a kernel register [11], which is an object similar to 
a processor register. While there is a limited number of x86 processor registers (eax, ebx, ecx, etc.), it is possible to use 
any number of kernel registers in a function’s microcode. Thus, in order to perform the optimizations that we need, we can 
create a kernel register and replace every occurrence of the virtReg variable with this created register.

REPLACING THE VIRTUAL REGISTER VARIABLE WITH A KERNEL REGISTER
As we have discussed above, we need to iterate over all instructions in the microcode to perform replacements of their 
operands. With Hex-Rays API, operand iteration can be performed by using decompiler hooks. A decompiler hook is a class 
that is derived from ida_hexrays.Hexrays_Hooks. To be able to interact with the microcode at the MMAT_PREOPTIMIZED 
level, we need to override the preoptimized method in the hook class. In this method, we need to:

• Allocate a kernel register;
• Invoke a replacer that will iterate over all operands and search for the virtReg variable. 
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This can be performed with the following code:

class DecompilerHook(ida_hexrays.Hexrays_Hooks):

 def preoptimized(self, *args):

  global kernel_register

  mba = args[0] # MBA means "micro block array". This object contains the

     # microcode of the function being decompiled

  kernel_register = mba.alloc_kreg(4) # We allocate a kernel register here

  if kernel_register != ida_hexrays.mr_none:

   repl = OperandReplacer()

   mba.for_all_ops(repl) # Invoke a class that iterates over operands

  return 0

event_hook = decompiler_hook()

event_hook.hook() # Activate the hook

As for the replacer, it is a class derived from ida_hexrays.mop_visitor_t. In this class, we should define a method 
called visit_mop that will check the operand type and replace it if needed:

class OperandReplacer(ida_hexrays.mop_visitor_t):

 def visit_mop(self, op, op_type, is_target):

  global kernel_register

  # Check if we are dealing with the virtual register variable

  if op.t == ida_hexrays.mop_v and op.g == register_addr

   # Replace the global variable with a kernel register

   op.make_reg(kernel_register, op.size)

   if self.blk:

    self.blk.mark_lists_dirty() # inform IDA that the microcode changed

  return 0

When the replacement is complete, the decompiled code will not contain the virtReg variable. As can be observed in 
Figure 9, the code is clean of any obfuscations, which means that we have successfully performed devirtualization of 
FinSpy VM.

Figure 9: Snippet of the deobfuscated code.

CONCLUSION
In this paper, we described how the automation capabilities of IDA Pro and Hex-Rays Decompiler can be used to 
devirtualize functions protected by the FinSpy VM obfuscator. To perform devirtualization, we composed equivalent x86 
code for every virtual instruction. We then created a segment in IDA where we placed the generated code. Finally, we 
improved the quality of decompilation by replacing occurrences of the virtual register global variable with kernel registers. 
Thanks to the vast automation capabilities of IDA Pro, we were able to efficiently develop the deobfuscator code. The 
devirtualizer implementation can be considered relatively compact as it contains fewer than 500 lines of code.
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