2023

y LONDON

4 - 6 October, 2023 / London, United Kingdom

INTO THE CUMULUS: SCARCRUFT BOLSTERS
ARSENAL FOR TARGETING INDIVIDUAL ANDROID
DEVICES

Sebin Lee, Sojun Ryu, Hyeokju Gwon & Youngjae Shin
S2W, Republic of Korea

sebin@s2w.inc
hypen@s2w.inc
hjgwon@s2w.inc
teaf1001@s2w.inc

www.virusbulletin.com

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

ABSTRACT

Scarcruft Group (aka APT37), a North Korean APT group, is believed to have been active since 2016 and continues to
carry out attacks against institutions and political organizations around the world. In April 2017, a Cisco Talos team
disclosed the Scarcruft group’s proprietary tool, ROKRAT, a piece of malware that has been continuously modified and
used by the group to this day. Initially, only the Windows version of ROKRAT was used, but an Android version of the
malware was also later identified.

According to a report published by the Financial Security Institute, the Scarcruft group conducted an attack in mid-2017
that distributed mobile versions of ROKRAT to specific devices through a watering hole attack.

In following the Scarcruft group’s trail, Talon, S2W’s threat research and intelligence centre, identified additional samples
that perform similar functions to the published samples. These have similar functionality to the malicious APKs released in
2017, but the ability to use messaging services has been added. We also found that these APKs have been continuously
updated to date. S2W Talon named the malicious APKs ‘Cumulus’, and the plug-in modules used by Cumulus ‘Clugin’.

We classified the Cumulus APKSs into three types based on whether or not Clugin was downloaded and the type of
messaging service used. In this paper we will disclose how the malware behaves according to the type, as well as our
analysis of the latest Cumulus and Clugin malware. This will include the strategies they have introduced to target
Chinese mobile devices.

During our analysis, we were able to secure data in the cloud showing the attacker’s mistakes (OPSEC fail). We analysed
the attacker’s test device and test data in the cloud, and were able to obtain the latest version of the Clugin malware, which
was not publicly available. We also identified artifacts such as the attacker’s IP and test cases for distribution. The data
includes conversations with victims, and guidance leading to malicious APK installation.

We believe that the IOCs and TTPs of the Scarcruft group’s Android malware provided in this presentation will be useful for
defenders in preventing possible threats, and can be used as artifacts to identify attackers in the event of a similar threat case.

INTRODUCTION

According to a report published by the Financial Security Institute [1], the Scarcruft group conducted an attack in mid-2017
that distributed malicious APKs to specific devices through a watering hole attack. At the end of 2017, the group also
carried out an attack campaign targeting North Korean human rights organization officials and journalists from North
Korean media outlets to prompt the installation of malicious APKs through KakaoTalk, the most popular messenger in
South Korea. In addition, malicious APKs were distributed by contacting targets through Facebook and uploading APKSs to
the Google Play Store. The malicious apps were all identified as mobile versions of ROKRAT.

According to an analysis report published by InterLab in December 2022 [2], during a conversation via the WeChat
messenger, the Scarcruft group convinced a South Korean journalist to install a malicious APK file disguised as a
messenger called ‘Fizzle.apk’, claiming that he should not send sensitive files via WeChat messenger but rather by this
‘Fizzle’ app. InterLab named the malicious APK ‘RambleOn’, but analysis revealed similarities with the mobile version of
Scarcruft group’s ROKRAT. Unlike in the past, the APK has the ability to receive data from the attacker via a messaging
service called Pushy.

We identified additional samples that have similar functionality to the malicious APKs released in 2017, but with the added
ability to use messaging services. We also found that these APKs have been continuously updated. We named the
malicious APKs ‘Cumulus’, and the plug-in modules used by Cumulus ‘Clugin’.

In this report, we further categorize the identified Cumulus APKs by type and describe the attacker’s TTPs and strategy
based on our detailed analysis.

OVERVIEW OF CUMULUS TYPES

Cumulus (aka RambleOn) has been used by the Scarcruft APT group to target Android devices since at least 2019. The
group has been using a mobile version of the ROKRAT malware since at least 2017, and we separately classify Cumulus as
a type of existing ROKRAT mobile malware with messaging capabilities such as FCM or Pushy added. Cumulus is usually
distributed disguised as a legitimate mobile application, such as a coin miner, image viewer, or messenger. Although we
were not able to secure samples, we have seen them distributed under the package names ‘com.personal.info’,
‘com.sec.mishat’ and ‘com.data.person’. Based on the types of applications Cumulus disguises itself as, we suspect that it
is distributed directly to individuals via messengers. Table 1 shows different types of Cumulus.

After obtaining Cumulus samples disguised as legitimate applications and analysing them, we were able to categorize them
into three types, as shown in Table 2. Types B and C download a separate plug-in and perform their main actions in the
plug-in, which is why we named the plug-in downloaded by Cumulus ‘Clugin’.

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

App name =SIEHE Threema PhotoSecViewer FreeCoinMiner Fizzle
Work ThreemWork
App icon
Distribution At least September 2022 (for At least
. At least end of 2019 At least early 2022 . end of
period early 2020 testing) 2022
Package m.greet com. com.a
g com.greet. threema. com.data.wecoin Om.app. ch.seme
name messagefree workfree freecoinminer
Type Type A Type A Type B TEST Type C
. FCM
Messaging (no use) FCM FCM FCM Pushy
It)ev1ce Cloud Cloud Firebase database Cloud Cloud
oken
Yandex
Cloud Yandex Yandex - pCloud pCloud
Table 1: Types of Cumulus.
Type A Type B Type C
Download Clugin X (0] o
Download Command O (Cumulus) O (Clugin) O (Clugin)
Download CallRecorder | O (Cumulus) O (Clugin) O (Clugin)
Messaging FCM FCM Pushy

Table 2: Type classification.

* Clugin: a plug-in that Cumulus downloads from the cloud and which is responsible for information leakage.
+ Command: a configuration file that Clugin or Cumulus downloads from the cloud to execute commands.

 CallRecorder: an additional Dex file that Clugin or Cumulus downloads from the cloud to perform call recording
functions.

Type A downloads and loads the Command file — which contains the configuration information necessary to perform the
malicious behaviour — and CallRecorder from the cloud. It then uploads the infected device information and internal files to
the cloud. It receives a separate message from the attacker via FCM.

Type B downloads Clugin from the cloud. Clugin takes over the functions of Cumulus, downloads the Command file
and CallRecorder, steals and uploads information to the cloud. Like Type A, Type B receives a separate message through
FCM.

TEST seems to be used by the attacker for testing before an attack and uploads the infected device information and internal
files to the cloud without downloading any additional files. In real-world attacks, Cumulus uses abbreviations to upload
each set of exfiltration data to the cloud, but in the case of TEST, the full word is used for ease of identification.

Type C has most of the same features as Type B, but uploads the Device Token to the cloud instead of the Firebase
database and receives messages from the attacker via Pushy.

FCM is a service that specializes in message delivery within Firebase and was also used in the mobile malware used by the
Kimsuky group that we disclosed last year [3]. The difference is that the Device Token is sent to the cloud or a legitimate
Firebase database, rather than to an attacker’s C&C server. The most recent version of the Pushy service is a separate
third-party service that provides similar functionality to FCM.

TIMELINE

Clugin appears to have been uploaded to Yandex Cloud and distributed since at least September 2021. Although we do not
have an exact date for the creation of the Yandex Cloud account, we believe that Clugin distribution began around that time.

https://medium.com/s2wblog/unveil-the-evolution-of-kimsuky-targeting-android-devices-with-newly-discovered-mobile-malware-280dae5a650f
https://medium.com/s2wblog/unveil-the-evolution-of-kimsuky-targeting-android-devices-with-newly-discovered-mobile-malware-280dae5a650f

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

A pCloud account was subsequently created in October 2021, but the data exfiltration we identified was from March 2022.
Given that Type B was distributed in March 2022, we believe that the attacker began distributing Clugin via pCloud in a
similar way. The attacker appears to have distributed Clugin initially through Yandex Cloud, and then, starting in March
2022, configured it to communicate with pCloud on initial infection, only communicating with Yandex Cloud when passing
a separate command. TEST is believed to be a test version to introduce this. The Scarcruft group appears to have set the
OAuth key for pCloud communication differently for each distributed APK but kept the OAuth key for the Yandex Cloud
communication relatively unchanged.

Type A TypeB TEST TypeC

pCloud account
registered

2019 2020 2021
First victim First Clugin
(on Yandex) (on pCloud)
e A First Clugin
v (on Yandex)

Figure 1: Full timeline for Cumulus.

Behaviour flow for Type A

After infection, Type A registers a method to JobScheduler to periodically execute the main malicious behaviour. It then
downloads a Command file from the Yandex Cloud and steals information as specified in the Command file. It additionally
downloads and loads a CallRecorder, which performs call recording and saves it to a file.

The collected device information and internal files are uploaded to Yandex, which also transmits the device token for FCM
communication, allowing the attacker to obtain the Device Token of the infected device from the Yandex Cloud. The
attacker can use the obtained Device Token to send a message to the infected device via FCM, and Cumulus, which
receives the message, checks whether the method that performs the malicious behaviour is registered in the JobScheduler,
and registers it if it is not.

6. Sends a message . 5. Gets device token
l Y
Messaging Attacker
2 B . e . 1. Downloads Command file &
- Forwards the message to Cumulus » CallRecorder o a
»~ k. 7 il
4. Exfiltrates data 3
Firebase
Cumulus (Type A) Yandex

2. Loads CallRecorder

= 3. Saves call recording data to file
EI'I

CallRecorder

Figure 2: Execution flow of Type A.

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

Behaviour flow for Type B

Type B downloads the Clugin from the cloud, then the Clugin downloads CallRecorder and steals the infected device
information and internal files. In addition, Type B receives messages via FCM, adding update functions such as changing
cloud storage and changing OAuth Token.

When executed, Type B first sends the Device Token to the Firebase database. With the sent token, the attacker passes the

OAuth token and the cloud REST API through FCM, which is presumably used to download the Clugin from the cloud. At
the time of analysis, we were unable to obtain actual data from FCM, but based on the internal code of Type B, we believe
that it is downloaded from Yandex Cloud.

3. Sends a message with Cloud URL e i
-
2. Gets device token
Attacker
\ 4
Messaging Firebase Database
1. Sends device token
4. Forwards the message and data 5. Downloads Clugin
R v
Firebase
Cumulus (Type B) Yandex
6. Downloads Command file &
P CallRecorder
<
"l 9. Exfiltrates data
Clugin

7. Loads CallRecoder
'i| 8. Saves call recording data to file

CallRecorder

Figure 3: Execution flow of Type B.

Behaviour flow for TEST

In the case of TEST, when the APK is executed, it steals information such as infected device information, SMS, contacts,
internal files and recordings, and uploads them to the pCloud. Although TEST includes Yandex Cloud’s OAuth token, it
actually uses only pCloud’s OAuth token initialized within the pCloud SDK class and does not use the Yandex token. In
addition, there is no function to send the device’s Device Token separately, so we assume that TEST is for testing purposes
only. The string ‘test-pi-d9b7e’ is used in the code to initialize Firebase functionality, and the functionality is incomplete
compared to other types, suggesting that the attacker used this type for testing.

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

2. Sends a message e

Attacker
Messaging
/ 3. Forwards the message to Cumulus
>
Firebase
Cumulus (TEST)

1. Exfiltrates data

®

pCloud

Figure 4: Execution flow of TEST.

Behaviour flow for Type C

Type C sends messages to Cumulus via a third-party messaging service called Pushy rather than FCM. Type C has hard-coded
pCloud and Yandex OAuth token values, and an attacker can update the type of cloud service and OAuth token via Pushy.

7. Sends a message with status to update . 6. Gets device token
l <€

Attacker
Messaging Cloud

@ 8. Forwards the message and data 1. Downloads Clugin ®

Pushy pCloud Yandex
Cumulus (Type C)

\

2. Download Command file &
CallRecorder

=
|'| 5. Exfiltrates data
Clugin

3. Loads CallRecorder

4\ 4. Saves call recording data o file
l'l
CallRecorder

Figure 5: Execution flow of Type C.

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

DETAILED ANALYSIS

We conducted a detailed analysis of a messenger impersonation APK called ‘Fizzle’ (named ‘RambleOn’ by InterLab) and
Clugin version 14.0, which is classified as Type C of Cumulus types. In the following we describe the entire execution
process of a Type C Cumulus.

Stage 1 : Cumulus

Stage 2 : Clugin —

Stage 3 : Call Recorder

Cumuius Clugin CallRecorder pCloud
. 1. Sets status in SharedPreferences
2. Requests Clugin
>

3. Sends /{ UUID}/Plugin.{ VERSION}

A

3. Requests Command file -
»

4. Sends /{UUID)/C

A

5. Checks service status & start

A

6. Calls a method in Clugin

v

7. Requests CallRecorder
A -
¥ ol

8. Sends /P/cmd{ CMD}

A

9. Calls a method in CallRecorder

Y

. 10. Records calls and save to file

11. Exfiltrates data "{UUIDY"
A

>

Figure 6: The communication scenario of Cumulus Type C.

Stage 1: Cumulus (Fizzle.apk)

1. Status in SharedPreferences

Cumulus manages its status with SharedPreferences and references it to perform its malicious behaviour. The UUID or TID
in the status is used as an ID to identify the infected device. Initially, it uses the UUID, but if it subsequently receives a
message from the attacker via Pushy, it changes the ID to the TID contained in the message instead of the UUID. It stores
the Device Token for receiving messages from Pushy in PUSHYT and sets CLOUD to P to communicate with pCloud. The
OAuth token required for cloud communication is specified in PRIMARY ACCESSTOKEN. The Clugin version is set to
VERSTION to request the Plugin{vErRsION} file from the cloud, and download success is flagged as 1 or 0 in
PLUGINDEXDOWN{VERSION}. CLOUD is only supported for p (pCloud) and Y (Yandex), and is set to P on the first run.

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

Name Description Value

UuID Unique ID Random value

TID Unique ID Initialized later by Pushy

PUSHYT Pushy device token Device Token

CLOUD Type of cloud ‘P’ (initialized to ‘Y’ by Pushy)

PRIMARY_ ACCESSTOKEN Cloud OAuth token OAuth token for pCloud (initialized
to Yandex’s by Pushy)

VERSTON Plug-in version 4.0

PLUGINDEXDOWN{VERSION} | Flag for successful download (1: Success / 0: Fail) | 1 (after downloading Clugin)

Table 3: Values in status.

2. Download Clugin from the cloud

Cumulus references the status to download the Clugin in DEX format from the cloud service. Since the cloud identifies

infected devices by their UUID or TID values, it is possible to install a different Clugin for each device. After downloading,
it calls the LogState method of the com.personal.info.plugin class.

* Clugin path on first run (on cloud): /P/plugin{ VERSION}

+ Clugin storage path (on infected device): ch.seme/Files/.temp/plugin{ VERSION} .dex’

try

filel = loguservicel.getDir("plugindex”, @});

exClassLoader dexClassLoaderl = new DexClassLoader(Loguservice.this.pluginDexpPath, filel.getabsoluterath(), null, Loguservice.this.getClassLoader()};
constants.classieader = dexClassLoaderl;
Class classl = dexClassLoaderl.loadClass({"com.personal.info.plugin™);

Constants.plugincls = classl;
constructor constructorl = classi.getConstructor(Context.class);
censtants.pluginConstructor = constructorl;
constants.pluginobi = constructorl.newInstance(LogUservice,.this.getapplicationContext());
HMethod method2 = Constants.plugincls.getMethod(“LogState™);
while(true) {

method2. invoke(Constants.pluginobi};

break;

Figure 7: Downloads and invokes Clugin.

Stage 2: Clugin (DEX)

Cumulus downloads and executes Clugin in the form of a plug-in from the cloud. In this process, we were able to collect
samples of different versions of Clugin, between 1.0 and 14.0. Tables 4a and 4b (on the following page) summarize the
versions and features that we found to have noticeable changes after analysing each version of Clugin.

1. Download Command file from the cloud

The Clugin reads the Command file from the cloud and performs information theft according to the values set in each field.
For each field, the data is specified in the format {Type} : {Key} : {Value}, and the Key and Value are parsed and
registered in SharedPreferences. The C (Command) file can be deleted from the cloud after downloading.

» Command file download path: /{UUID}/C

Command 4. Verify value types
\ I : Integer / S : String
x REQNUM
1. Requests Command SMSIT : 86400

DEBUGLOG : 1 SharedPreferences
LOGREQNUM : 2 Putint("CMD", 1)
AR:0
DEVICEINFOREQNUM : 2
APPSTATEREQNUM : 2
:FILEREQNUM : 2

2. Sends Command
Cloud Clugin

i

5. Updates values

I:
I : CLIT : 86400
-— - 3. Data Parsing | : GPSIT : 86400
3 "I—) | : SMSREALTIME : 0
I:
) 13
I:
I:
I:
|

:ARST : 2020_03_24_14_00_00

s
s
S :SDPATH : 0
S :SDKIND : 0 /

_

Figure 8: Command file parsing process.

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

Plug-in version 2.1 2.2 3.0 6.0
MD5 1F2C23C7C9ECB28B 97ASABT6AF215241 759B26631A660D82 72182F83E771FCAA
FDC6627A3AD23783 AD2A07856B40242E F6A93621991C4292 AlE86C7C932014CB

Cumulus package name

com.data.person

com.data.wecoin

com.sec.mishat

com.sec.mishat

Build Config Build Config Build Config
R R R
. . plugin plugin
Build Config plugin . DocumentFileMeta DocumentFileMeta
Class R DocumentFileMeta
. SAFTools SAFTools
plugin SAFTools
Storage Storage
Storage
Storagel 1 Storagell Storagel1
pCloud pCloud
Cloud Yandex Yandex Yandex, pCloud Yandex, pCloud
okhttp3 okhttp3
Library dagger dagger okio okio
net net
net net
Send SMS Send SMS Send SMS Send SMS
Send Contacts Send Contacts Send MMS Send MMS
Send File Structure Send Call Logs Send Contacts Send GPS
Send RealTimelnfo Send File Structure Send Call Logs Send Call Logs
Send Devicelnfo Send RealTimelnfo Send File Structure Send Contacts
Function Send AppState Send Devicelnfo Send RealTimelnfo Send RealTimelInfo
Send ServiceLog Send AppState Send Devicelnfo Send Devicelnfo
Audio Recording Send ServiceLog Send AppState Send AppState
Send External File Data Audio Recording Send ServiceLog Send ServiceLog
Send External File Data Audio Recording Audio Recording

Send External File Data

Send External File Data
Send File Structure

Table 4a: Feature comparison of Clugin versions 2.1, 2.2, 3.0 and 6.0.

Plug-in version 6.0 7.0, 10.0 14.0
MD5 72182F83E771FCAA 97A9ABT76AF215241 72182F83E771FCAA
AlE86C7C932014CB AD2A07856B40242E AlE86C7C932014CB

Cumulus package name

com.sec.mishat

com.sec.mishat

com.antivirus

Build Config Build Config Build Config
R R R
plugin plugin plugin
Class DocumentFileMeta DocumentFileMeta DocumentFileMeta
SAFTools SAFTools SAFTools
Storage Storage Storage
Storagel1 Storagel 1 Storagell
Pcloud Pcloud Pcloud
Cloud Yandex, Pcloud Yandex, Pcloud Yandex, Pcloud
okhttp3 okhttp3 okhttp3
Library okio okio okio
net net net
Send SMS Send SMS Send SMS
Send MMS Send MMS Send MMS
Send GPS Send Call Logs Send Call Logs
Send Call Logs Send Contacts Send Contacts
Send Contacts Send RealTimelnfo Send RealTimelnfo
Function Send Real.TimeInfo Send Devicelnfo Send Devicelnfo
Send Devicelnfo Send AppState Send AppState
Send AppState Send ServiceLog Send ServiceLog
Send ServiceLog Audio Recording Audio Recording
Audio Recording Send External File Data Send External File Data
Send External File Data Send File Structure Send File Structure
Send File Structure Play MP3 Play MP3

Table 4b: Feature comparison of Clugin versions 6.0, 7.0, 10.0 and 14.0.

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

Key Description

CMD Command flag
CTREQNUM Contacts request number
SMSIT SMS interval

CLIT Call log interval

GPSIT GPS interval
SMSREALTIME Recent SMS flag
DEBUGLOG DebugLog flag
LOGREQNUM Log request number

AR Audio record flag
DEVICEINFOREQNUM Device info request number
APPSTATEREQNUM AppState request number
FILEREQNUM File request number
ARST Audio record start date
ARET Audio record end date
SDPATH Storage path

SDKIND File extension to steal

Table 5: Keys in Command file.

The CMD in the Command file determines whether malicious behaviour is performed:

* CMD == 0: Do not perform malicious behaviour.

* CMD > 0: Run the service and send the information after stealing it.

¢ CMD > 10: Download and load CallRecorder.

2. Interact with Cumulus to execute malicious services

The Clugin checks whether the AR and SDPATH values are set in the Command file and executes the malicious behaviour
by interacting with Cumulus. If the CMD value is greater than 0 in the Command file, the Clugin checks to see if a specific
service in Cumulus is currently running, and if not, executes the service through an Intent. The service in Cumulus directly
calls specific methods in the Clugin to perform the actual audio recording or file collection behaviour. In Figure 9, Clugin
checks whether a service named ‘com.sec.mishat. {ServiceName} is running, which is the package name of Cumulus.
The reason for this implementation is that the commands are modularized using Clugin, so the version of Clugin can be
updated at any time, taking advantage of the fact that Clugin does not depend on Cumulus. The malicious behaviour
executed in this way is as follows:

* Audio Record using CallRecorder

+ Collect files from external storage

C

Cumulus Clugin
.1 1. Checks service status & execute J
2. Call a method in Clugin ; ;‘

3. Exfiltrates data or update Clugin
(Audio Record, Get External Storage)

Figure 9: How methods are executed in Clugin.

10

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

if{v > @ B& (IsZ.equals("@") & Iplugin@.isMyServiceRunning(com.sec.mishat.Syncservice™}}} {
Intent intentl = new Intent(};
intent1.setComponent(new Componentiame(plugine.mycontext, "com.sec.mishat.syncservice"});
if(Build.VERSION.SDK_INT »>= 26) {
pluging.myContext.startForegroundService(intentl);
1

else {
plugin®.myContext.startservice(intentl);

3

plugin.appendLog(“syncservice start"};

Figure 10: Check if a specific service is running in Cumulus.

3. Download CallRecorder

Cumulus reads the CMD from SharedPreferences and if the value is greater than 10, it downloads an additional
CallRecorder from the cloud that performs the call recording function and calls the CallRecorder’s ‘execute’ method.

File filel = new File(s2);

if(sharedPreferencese.getInt(s1 + v2, @} == 1 && ((filel.exists()) && sharedPreferencese.getInt("CMDEXECUTE" + v2, @) != 1)) {
string s9 = plugine.mycontext.getoir("outdex”, @).getabsoluterath();
1 der classLeoader® = plugine.mycontext.getClassLoader();

@

plugin.cmdobi = classe.getConstructor(Context.class).newInstance(plugine.mycontext);
plugin.execute = classe.getmethod("execute™);

plugin.execute. invoke(plugin. cmaobi);

plugin.appendLog(“dex of command-" + v2 + " executed");

: class@ = new DexClassloader(plugine.workDir + s7 + v2 + ".dex", s9, null, classiLoader®).loadClass("com.sec.android.acservice.Command” + v2);

Figure 11: Downloads and invokes CallRecorder.

4. Collect and exfiltrate

Finally, Clugin collects information from the infected device and sends it to the cloud. Table 6 shows what data is
encrypted and how it’s stored in the cloud.

Data type Encryption Cloud path

SMS o /{UUID}/D/{Timestamp}

MMS (0] /{UUID}/D/{Timestamp}

Call Log (0] /{UUID}/D/{Timestamp}

Contacts (0] /{UUID}/D/{Timestamp}

GPS (0] /{UUID}/D/{Timestamp}

Call Record (0] /{UUID}/D/{Timestamp}

Audio Record o /{UUID}/D/{Timestamp}

File Structure /{UUID}/FS/internal.json

Client Info /{UUID}/CI

Phone Info /{UUID}/PI/PI_{Number of requests}
APP Status /{UUID}/AS/AS_{Number of requests}
Job Log /{UUID}/JL/JL_{Number of requests}
External File Data /{UUID}/ED/

Table 6: List of collected data and upload paths.

The extent of stealing from external storage differs based on the Android SDK version. When using version 14.0 of the
plug-in, the data stolen will vary depending on the SDPATH specified in the command file. Specifically, if the SDPATH
includes ‘/Android’ and the Android SDK is 33 or higher, only the data within the ‘com.tencent.mm’ package will be
stolen. On the other hand, if the Android SDK version falls within the range of 30<=SDK Version<33, the data within the
‘/Android’ directory will be stolen.

11

12

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

if(Build.VERSION.SDK_INT »>= 33) {
if(!plugin.isPackageInstalled("com.tencent.mm”, contexte.getPackagemanager(})}) {
goto label 51;
¥
if(sl.contains(s + "/android™}) {
if(storagell.checkStoragePermissions{context®, SAFTools.getTreeUri_andreoidDataTencent(contexte})} {
DocumentFileMeta documentrFilemeta® = SAFTools.getByPath(contexte, s + "/android/data/com.tencent.mm™);
if(documentFileMeta® != null) {
Storagell.getExternalData(contexte®, s, documentFileMetad, s2);
1
¥
return;
1
L
else {
label 51
if(Build.VERSION.SDK _INT < 33 B& (sl.contains(s + "/android”})) {
if(storagell.checkStoragePermissions{contexte, SAFTools.getTreeUri_androidData(contexte}}) {
pocumentFileMeta documentrilemetal = SAFTools.getByPath(contexte, s + "/android/data™);
if(documentFileMetal != null) {
steragell.geteExternalDatalcontexte, s, documentrilemetal, s2);
h
¥
return;
¥
k)

Figure 12: Updated exfiltration routine for external storage.

For the stolen items stored in the D path on the cloud, encryption is performed before exfiltration, which involves
downloading an EPK file containing the encryption key from the cloud. The file data is then AES decrypted and Base64
decoded with hard-coded values in Clugin to extract the RSA public key. Each collected file is then encrypted by randomly
generating an AES secret key, and the secret key is encrypted with the extracted RSA public key. Finally, the encrypted file
data is stored along with the encrypted AES secret key, length of encrypted AES secret key, Custom Path, and length of
Custom Path. If the RSA public key does not exist, the generated AES secret key is stored in plain text.

 Secret key: 1qaz2wsx3edc4rfvStgboyhn7ujm8ik,
» IV: gqwertyuiop456789

L&

pCloud Clugin

.: 1. Requests epk file

2. Sends 5 . 9. Encrypts AES Secret Key
HUUID)P/epk using RSA Public Key

8. Encrypts target files
using AES

10. Makes custom path

Encrypted Data

H

3. Saves epk to file

SR

4. Decrypts epk using AES

Encrypted AES Secret Key

1

7. Generates random AES
Secret Key per file

1 T

5. Decodes decrypted data
using Base64
S —

Length of encrypted AES Secret Key

Custom Path

6. Extracts RSA Public Key

Length of Custom Path

Figure 13: Structure of the files to be stolen.
The AES secret key and hard-coded I'V value used to encrypt files are shown below:
* Encryption: AES-256-CBC
* Secret key: Random 32-byte
» IV: gwertyuiop456789

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

string s3 = this.getkey();
try {
this.aesEncrypt(filee, filel, s3, "gqwertyulopd567897);
if(this.Pur == null) {
arr_b = s3.getBytes();

¥
glse {
arr_b = this.encryptText({s3, this.rPUr};
if{arr_b == null) {
arr_b = s3.getBytes(};
h

Figure 14: Encryption flow.

Files containing encrypted data and additional information are named according to the type of each file. Only the top two
formats in Table 7 are actually used, and a combination of UUID, cell phone number and data type is used as the custom
path.

Data type Custom path
SMS, MMS, GPS, Contacts, Call Log /{UUID}/{Phone Number}/text/{Data Type} {Timestamp}
Audio, Call Record /{UUID}/{Phone Number}/audio/{Original filename}

- /{UUID}/{Phone Number}/extData/{Original filename}
- /{UUID}/{Phone Number}/chat/{Original filename}
- /{UUID}/{Phone Number}/other/{Original filename}

Table 7: Format of custom path.

5. Download and play MP3

Beginning with Clugin version 10.0, the downloaded ‘bsb’ file from the cloud is stored as bsb10.mp3 and subsequently
executed. Although we have not observed this method being utilized thus far, there is a possibility that it might be invoked
within the APK or employed in future executions. In March 2023, we stumbled upon the presence of ‘bsb’ and ‘bsb10.mp3’
files in the cloud, presumably serving as test files. Upon inspection, we discovered the absence of any audio content,
indicating their usage for testing purposes. The intention behind the inclusion of this feature remains unknown at this time.

Cloud Clugin

‘: { Download bsb File }

KTID or UUIDIP/bsb]I ';.

Save bsb10.mp3

Play bsb10.mp3

I
Figure 15: Encryption flow.

13

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

Stage 3: CallRecorder

After analysing the CallRecorder that is additionally downloaded by the Clugin, we found that it is a DEX file that has a
call recording function. CallRecorder records incoming and outgoing calls and saves them as separate files. The saved
recording files are sent to the cloud via the Clugin.

+ Package name: com.sec.android.acservice

public woid start() {
CR.outputDir = this.ctx.getFilespir().getAbsolutePath() + “/.temp/.data”;
File file® = new Flle(CR.outputDir);
if(ifiled.exists(})
fileg.mkdirs();
by

if(CR.outgoingReceiver == null) {
CR.outgoingReceiver = new OutgoingReceiver(this);
IntentFilter intentFilter® = mew IntentFilter("android.intent.action.NEW_O0UTGDING CALL"Y);
this.ctx.registerreceiver(CR.outgoingReceiver, intentriltere);

iy

if(CR.callstateristener == null) {
CR.callstatetistener = new CallStatelListener(this);
this.itm = (TelephonyManagerythis.ctx.getsystemservice("phone”};
this.im.listen(CR.callstatelistener, a@x28);

Figure 16: Key features within CallRecorder.

Actions when additional messages are received from Pushy

An attacker can send messages to Cumulus using Pushy, a messaging service, to update the status of the malware. This
allows the attacker to continuously update the status of the infected device. The following information can be updated via
messages:

» TID: Change the upload path for stolen information on the cloud
* ACCESSTOKEN: Change OAuth token

CLOUD: Change cloud service from pCloud to Yandex
* VERSION: Update the Clugin version

AUTOSTART: Set app auto launch

Boverride
public woid onRecelve(Context context®, Intent intente) {

string s = intente.getstringextra("cLOoUD");

5tring s1 = intent®.getStringExtra("ACCESSTOKEN");

string s2 = intente.getstringExtra("TID");
5tring s3 = intent®.getStringExtral“VERSION™);

54 = intente.getstringExtra(”aUTOSTART™);

sharedPreferences.Editor sharedPreferences$editor® = PreferenceManager.getbDefaultsharedPreferences(contexte).edit();
sharedPreferences$editore. putstring(“CcLoUD™, s);
sharedPreferences$Editord. putstring("ACCESSTOKEN", s1);
sharedPreferences§Editord. putstring("TID", s2);
sharedPreferences$Editord. putstring("VERSION", s3);
sharedPreferences$Editore. commit(};
Intent intentl = new Intent({contexte, LogUservice.class);

g

it

Figure 17: Status update.

The flow of malicious behaviour executed by Cumulus via the Pus/y message service is shown in Figure 18. In the first
execution, the infected device is identified by its UUID value, but after that, it is identified by its TID value.

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

Cumulus Clugin Cloud Pushy

1. Sends a message with status

L
.,

. 2. Set new status values

3. Requests updated version of Clupin

@ >
>

4. Sends /{ TID}/Plugin { VERSION}

@

A

5. Requests Command file
N
L

6. Sends A TID}/C

A

7. Exfiltrates data

Figure 18: Execution flow when receiving a message from Pushy.

INTERESTING DISCOVERIES

We have been monitoring the group’s attack campaign for a few months and have been able to obtain data from victims
compromised by Cumulus and Clugin, as well as test data from attackers leaked via OPSEC failures. We have been able to
see malicious app deployment tests and the context of malicious app distribution via messengers.

1. Targeting Chinese phones

The Scarcruft group has traditionally implemented its messaging capabilities through Firebase, but in the latest version, it
uses a third-party service called Pushy. This is believed to be in case the targets use mobile devices made in China, such as
Huawei. In fact, Pushy reviews indicate that many people have switched from Firebase to Pushy to ensure a stable
implementation in China.

Furthermore, it is evident that the Clugin specifically targets devices utilizing WeChat, as it steals data from the
‘com.tencent.mm’ package, particularly when the Android SDK version is 33. WeChat is a messaging application that is
widely used in China, thus affirming that the attack focuses on Chinese devices.

if(Build.VERSION.SDK_INT >= 33) {
if(!plugin.isPackageInstalled("com.tencent.mm”, contexte.getPackagemanager(})} {
goto label_51;
h

if(si.contains(s + "/Jandroid"}} {
if(Storagell.checkStoragePermissions(contexte, SAFToels.getTreeuri_androidDataTencent(contexte})) {
DocumentFileMeta documentFileMeta® = SAFTools.getByPath(contexte, s + "/android/data/com.tencent.mm");
if(documentFileMetae != null) {
storagell.getexternalData(contexte, s, documentrFilemetae, s2);

3

return;

Figure 19: Exfiltrates ‘com.tencent.mm’ package data .

15

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL... LEEET AL

2. Installed packages in the test environment

We found that the attacker was testing the malicious APK. From the test logs, we could see information relating to the
attacker’s test device, and from the installed application information, we could see that VPN and translation applications
were installed.

Astrill VPN is a VPN application used to bypass internet blocking in China, and SpeedCN is an application that increases
the speed of internet access in China. The presence of a translation application that can translate Chinese among the
installed applications suggests that the attacker is preparing to target Chinese-speaking users.

Installed package
Astrill VPN A E=0{1.1 SpeedCN Papago
(com.astrill.astrillvpn) | (com.chinese.Changgong) (cloud.speedcn.speedenx) (com.naver.labs.translator)
Table 8: Installed packages on test device.
3. OPSEC fail

Additionally, within the cloud, we discovered leaked information originating from the attacker’s ongoing testing, which
dates back to at least 2021. Recently, we successfully identified data that can be attributed to the attacker. Notably, the IP
addresses of the compromised devices were traced back to Pyongyang, North Korea.

CT : 2023/01/19 10:42:01
NT : WIFI

BP : 74%

BO : Not Optimized

DS : STATE ON

PI : {"country":"North Korea","city":"Pyongyang","query":"175.45.178.3"}

Table 9: North Korean IP in exfiltrated data.

4. Cryptocurrency

On 16 February 2023, we successfully retrieved data from cloud-validated logs, which can be attributed to the attacker.
Among the collected test data, we encountered a capture of the Electrum wallet program located in the /storage/emulated/0/
DCIM/Camera directory. However, it is important to note that although the infected device was utilized for testing, it
remains uncertain whether the addresses depicted in the capture are directly linked to the attacker.

* 1GrwDkr33gT6LuumniYjKEGjTLhsL5kmqC (Bybit)
-> [KInUw2cfXm9zwsc9vZQuNbLHyKkUgU8C2
(Suspected intermediate addresses)
-> 1LUFbisSwhP253CfkwiCV4MSF4EGeLmf9Q (Binance)
-> 1F6srSixoLk9hGmCndWEJxghQdMy7V{SplJ
(Suspected attacker’s address)

Figure 20: Screenshot of suspected attacker s wallet.

16 VIRUS BULLETIN CONFERENCE OCTOBER 2023

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

5. Distributed malicious APK screenshot

Within one of the image files, we came across a chat log from a mobile messaging application that contained a request to
install an APK, bearing the same file name as the ‘Fizzle.apk’ file. Notably, the conversation employed the term ‘cell
phone’, implying that the attack is specifically aimed at North Korean officials or defectors. The distribution method
employed bears a striking resemblance to the one previously disclosed by InterLab, utilizing the same filename.

ES -0 12:04
) waz v
s QQ che2E el Huawel AI|A
Xt Share
[2agxojnix|
L]
™ -
148 H
] Pictures 0]0]x|
‘ uuy ‘
128 209
© 7ozt ojo|x|
@ A
Huawei Drive L)

Figure 20: Suspected attackers screenshot.

of PIEICH: X &7

L

R

BE B20E Mysigval

4
LA]

£ Qo) o HEig=Ee?

SHUTBOM BRIk ANy
M RIS FHAER EE Y
droig

&

-
b Fizzle apk |

EAE0] SUS UUR G
utk

Dol il AN NBaWr)

Huoga

Sy
& fizdeapk.|

et S BRI
uq

BOIPLE, 20 2EO L
U] SRR XX S LTS,
20/ G2 SHBTEIN

Why doesn't it work?
When you click on it,
Is your phone set to Korean?

Does that mean it won't download?

We talked to our experts and
finalized the conditions and steps.

I've checked the file you sent me.
Sorry about that. My smartphone
has a lower version

Figure 21: Messenger chat screenshot.

17

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

6. Testing for malware downloads

On 8 December 2022, we successfully retrieved the attacker’s data that had been uploaded to the cloud. Upon analysing the
logs, we discovered that the attacker conducted the testing using a Samsung Galaxy Core Mini 4G device. Notably, the logs
contained an image capturing the attacker’s activity during an APK download test. The image depicts the attacker sending
a malicious APK via SMS, providing a pCloud link as the download source, and subsequently saving it on the
compromised device. Interestingly, the metadata associated with the image indicates that the camera manufacturer is listed
as ‘Pyongyang’, leading us to suspect that the image originated from a North Korean smartphone.

&l IMG_20221204_144052 jpg &4 x

ETICT e LT T

i
%
N

' N

0:
8

sme Az ¥z | pyongyang
Fter 2= 2418

F-AE F/22

=2 AT 20Z

https:// 150 ZE I50-857

u.pcloud.link/ rosin i
pUbllnk A ffl;iQ o
show?code=XZ0UaW aird R
\ A 2E ZHA B
=244 04|

35mm =% 72|

Figure 22: Distribution malware test screenshot.

Although we were unable to acquire the actual APK file due to lack of access to the pCloud address at that time, other
images provided insights into the usage of a Threema messenger impersonation app in Type B and Type C-1 variations.
Additionally, we came across an image depicting what seems to be the app’s purported launch, suggesting its functionality
as a file uploader. This assumption is supported by the APK file being named ‘SendFile.apk’ and being accompanied by a
message indicating the ongoing file upload process. It appears that the attacker utilized screenshots to guide users through
the download and launch procedures, which served as tests for the malicious APK they were developing.

EHERR UCH K SRS A

®

Threema

Figure 23: Malware test screenshot.

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

ATTRIBUTION

Our analysis of the Cumulus and Clugin samples reveals a strong similarity in code and functionality to malicious APKs
distributed by the Scarcruft group in the past through watering hole attacks. The malware used was a mobile version of
ROKRAT, which suggests that the Scarcruft group continues to update it and use it to this day [1].

The malicious APK used by Scarcruft in 2017 drops an additional malicious APK with the package name ‘com.android.
systemservice’, and code similarities between the APK and Clugin 6.0 were found. The same routine for downloading
Command files from the cloud and registering settings via SharedPreferences is present in both pieces of malware. We
also found the same values for the keys registered by the 2017 sample and the keys in the Command downloaded by the

2023 sample.

String s = String.valueof(this.workDir) + “/cmd";
if(this.downloadFile(str: valueof: thls cmanrth + (Mservice.tid, s) » @) {
buffercdreadere = new eader(s));
sl = bufferedReadere.read
if(s1.length() > s@) {
52 = s1.substring(si.indexof("akryd”) + 5, si.indexof("gka

com.android.systemservice (2017) Clugin 6.0 (2023)
if'alc itor sharedPreferencesteditere = sharedrreferencese.edit(); SharedPreferences.Editer sharedPreferences$Editor® = sharedPreferencese.edit();
e try {

networkInfo networkInfo@ = ((Cor
if(networkinfoe != null) {
if(networkInfoe.isConnected()) {

string s = + plugin.tid + “/c";

boolean z = plugin.cloud.equals("P

'H

ivityManager)plugine.myContext.getSyster

label_278
bU'F'Fer‘EdP.EEder'ﬂ close();
goto label_275;

¥
catch{Exc
L

eption e) {

: DEVICEINFOREQNUM : 2

: APPSTATEREQNUM : 2

: FILEREQNUM : 2

S : ARST : 2020_03_24_14_00_00
S : ARET : 2020_08_30_16_00_00
5:SDPATH : 0

S :SDKIND : 0

53 s1.substring(s1.index0f("gkajs"} + 5, si.indexof(")H if(z) {
Ssectoentosanay et uE e 3 (plugin.dounloadt ile_F(s, plugine.Command) >) {
$6 = s1.substring(s1.index0f("CLsIFsys") + 8, $1.indexof(Ctsts-,-; 5 plugin.appendLog(“Getlmd success”);
s7 = sl.substring(si.indexof("CTsjfsys") + 8, si.indexof(“djwth")};
58 = sl.substring(si.indexof(" th } + 5, s1.indexof(" 3 i }
59 = s1.substring(s1.indexof("TID") + 3, s1.indexof("slx")); else if(plugin.downloadFile v(s, plugine.Command) > @) {
boolean z = s2.equals("8"); plugin.appendLog(“G d success”);
goto label_1i25
¥
goto label_27e;
¥
gote lab
b
try { 1:CMD : 1
sharedPreferences$Editord. putInt("c¥0”, Integer.parseInt(s2}}; I: CTREQNUM : 1
sharedPreferences$Editore. putlong("sT", Long.parseLong(s3)); 1: SMSIT : 86400
sharedPreferences$Editore. putLlong(“ET", .parseLong(s4)}; 1+ CLIT : 86400
sharedPreferences$Editorse. putLong(“GrsIT", g.parseLong(ss)); . i
- s - | : GPSIT : 86400
sharedPreferences$editore. putLlong("CLIT", Long.parseLong(se}}; | - SMSREALTIME : 0
sharedPreferences$Editord. putlong("CTIT", Long.parseLong(s7}}; . .
sharedPreferences$editore. putstring(“KEY", s8); I DEBUGLOG : 1
sharedPreferencesieditore. putstring("TIn”, s9); I: LOGREQNUM : 2
sharedPreferences$editore. commit(); I1:AR: 0
I
I
I

Table 10: Code similarity between ‘com.android.systemservice’ and ‘Clugin 6.0’.

In addition to this, it was found that a similar code was used to collect the same data. In Clugin 6.0, a part was added that

collects email information from the device.

com.android.systemservice (2017) Clugin 6.0 (2023)
8 . try {
2 2 woaye: | 0 Filed riter filewritere = new Filewriter(this.phonelInfo, false);
fu-NEiels Yt \DEY ‘F:l]EHI":l‘tEI"E write("PN @ " + 51 + "\n");

fw.write("ru
fw cluse(],

LEEY this.conver‘tD:lgrttuS‘tr‘:Lng(s:l) + "\n");

(‘t his.pevi r:emf
eInfo//

‘tr‘ue),

'Fw di.write("// 4/
fw_di.write(”
Fw_di.write("
fw_di.write("
fw_di.write(
fw_di.write(”
fw_di.write(
fw_di.write("
fw_di.write(”
fw_di.write("
fw_di.write("
fw_di.write("
fw_di.write("
Fw_di.write("
fw_di.write("
fw_di.write("T.
fw_di.write("TY
fw_di.write(
fw_di.write("
fw_di.write("
fw_di.write("VER
fw_di.write("VERS
fw_di.write("VERS
fw, dl.wrlte("ERS

1d.B00TLOADER + "\n");
BRAND + "\n");
.DEVICE + "\n"};

MANUFACTURER + "\n"};
d.MODEL + "\n");

d.PRODUCT + "\n");

“\n");

");

)i

B H

");
er‘swn() + "\n");

ON.CODENAME + "\n");
. INCREMENTAL + "\n");
.RELEASE + "-.n' 3;
JSDK_INT + "\n");

{44411 fUPDATED_ H

eManager packageManager® = this. getApph[atmnEontEx‘t() getPa(kagE\'\anagEr(),
st 1ist@ = packageManager®.getInstalledPackages(@);

Iterator iteratore = liste.iterator(};

filewritere.write("eM : °
filewritere.close();

Fs2 SN

Filewriter fileWriterl = new t'| (this.PhoneInfo, true);
filewriterl.write("///DEVICE_ \n");
filewriterl.write(" " + Build.BOARD + "\n");

filewriterl.write("
FfileWriterl.write("BRAND : '
filewriterl.write("DEVICE : "
filewriterl.write("DISPLAY = "
filewriterl.write("FINGERPRINT
filewriterl.write("HARDWARE : "
fileWriteril.write("HOST : °
filewriterl.write("1D " + Bu "\n"});
filewriterl.write("MANUFACTURER : " + Bulld.MANUFACTURER + "\n"});
filewriterl.write("MODEL : " MODEL + "\n"};
filewriterl.write("PRODUCT "W\n");
filewriterl.write("SERIAL : " T i H

" + Bulld.BOOTLOADER + "\n");
+ Build.BRAND + "\n");

i FINGERPRINT + "\n"};
HARDWARE + "'\n"};
"\n");

fileWwriterl.write("TAG)
filewriterl.write("T =
fileWriterl.write("TY i
filewriterl.write(" \n");
filewriterl.write(" ge‘tRadm\rersmn() + "\n");

filewriterl.write("VERS
filewriteri.write("VERS INCREMENTAL
filewriteri.write("VERS RELEASE : " RSION.RELEASE + "\n"};
filewriterl.write("VERSION SDK_INT : " ild.VERSION.SDK_INT + "\n")};
FackageManager packageManagere® = this.mycontext.getPackageManager();
List liste = packageManager®.getInstalledrPackages(@);
fileWwriterl.write("///USER_APP///\n");

Iterator iteratore = liste.iterator();

. CODENAME + "\n"});
RSION.INCREMENTAL + "

\n"};

Table 11: Collect device information code.

19

20

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

The package name ‘com.sec.android.acservice’, which is the package name of the CallRecorder downloaded from the
Clugin, has been used in similar samples in the past.

com.sec.android.acservice (2018)

catch(Exception

try {
sharedPreferencesieditore. putInt(cx

sharedPreferencesieditore. putLlong(
sharedPreferencesgEditore. putLlong(
sharedPreferencesiEditore. putLlong(
sharedPreferencesieditore. putLlong(
sharedPreferencesiEditore. putLlong(

sharedrreferences$editore.

sharedPreferencesfeditore. putLlong(

sharedPreferencesieditore.
sharedPreferencesieditora.
sharedPreferencesgeditore.

sharedPreferencesfEditore. commit();

goto label_

385
385;

e} {

putstring(“KEY", s8)};

putstring (" YANDEXTOKEN", 518);
putstring("SDPATH", s11});
putString("SDKIND", s12};

D", Integer.parseInt(s2)});
5T", Long.parseLong(s3));
ET", Long.parseLong(s4));
GPSIT", Long.parseLong(s5));
CLIT", Long.parseLong(sel});
CTIT", Long.parseLong(s7});

)

g

SDIT", Long.parseLong(s9)});

CONCLUSION

Table 12: Command data.

* We found that the Scarcruft group has continued to improve the mobile version of the ROKRAT malware they have
been utilizing since 2017 and is still actively using it today.

* The mobile version of the ROKRAT malware can be classified as Cumulus, which receives messages from attackers
via messaging services such as FCM or Pushy, and exfiltrates data to cloud services such as pCloud and Yandex.

» As disclosed by InterLab, the group is conducting attack campaigns targeting individuals and using conversations to
convince them to install malicious apps disguised as legitimate apps, such as image viewers, messenger programs, etc.

* The malware employs a multi-channel strategy that utilizes cloud services such as Yandex and pCloud, as well as
legitimate services such as Firebase and Pushy for command and control.

REFERENCES

[1] Financial Security Service. Profiling Malware Using Korean Documents — 2018 Cyber Threat Intelligence Report.
10 August 2018. https://www.fsec.or.kr/bbs/detail ’menuNo=244&bbsNo=6139.

[2] Liber, O. Cyber Threat Report: RambleOn Android Malware. InterLab. 30 December 2022. https://interlab.or.kr/

archives/2567.

[3] Lee, S.; Shin, Y. Unveil the evolution of Kimsuky targeting Android devices with newly discovered mobile
malware. S2W Talon. 24 October 2022. https://medium.com/s2wblog/unveil-the-evolution-of-kimsuky-targeting-
android-devices-with-newly-discovered-mobile-malware-280dae5a650f.

MITRE ATT&CK
Tactic Technique TID Description
Credential Access F?:)fi(a;nApphcatlon Access T1635 | Send FCM or Pushy Device Token
Persistence Event Triggered Execution = T1624 Update the settmg s by the data received through
Firebase Messaging
File and Directory Gather data regarding the files and directories that exist
. T1420 . .
Discovery on the infected devices
Location Tracking T1430 | Collect GPS information
Discovery
Software Discovery T1418 | Collect a list of installed applications
System Information T1426 | Gather information about the infected devices
Discovery

https://www.fsec.or.kr/bbs/detail?menuNo=244&bbsNo=6139
https://interlab.or.kr/archives/2567
https://interlab.or.kr/archives/2567
https://medium.com/s2wblog/unveil-the-evolution-of-kimsuky-targeting-android-devices-with-newly-discovered-mobile-malware-280dae5a650f
https://medium.com/s2wblog/unveil-the-evolution-of-kimsuky-targeting-android-devices-with-newly-discovered-mobile-malware-280dae5a650f

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

Archive Collected Data T1532 | Encrypt the stolen data using AES

Collection . .
Audio Capture T1429 Cap.ture audio rt?cordlngs and record phone calls from

the infected devices

Command and Web Service T1481 Using PCloudf Yandex to steal information and

Control download additional malware

Exfiltration Exﬁltrat}on Over T1639 Steavl information by communicating with cloud
Alternative Protocol services

10Cs

Cumulus, Clugin & CallRecorder

SHA256 Type
9190dfb4d9f5ec294¢5b385b50e2791d546a737¢78¢92d077¢2¢7d0F35d37865 (CT“};I;“TI;“
748£0724¢50bbde494{892e495fa8ef6848a83 fbdafdec606c8b50c3ce8 51 (CTL‘;E:x
€6a7615d29b287f14ee044cd4e8e786126709636¢fb5F455¢£500336ab96810 %‘;‘zg
e80b454d6b6477568¢7c 1 f2ced T4aa6¢560ecbd9e6f0ddS 178164 1£2fdb9a2b ?T“yr;‘;ﬂl‘;;
437c4348a34067872f1ef2456e4dd9e 1b9de000559¢be296a6¢9977£3470edc 1 (CTuyI;‘:g
97d8aed87ec78d975aaff4a63415badf95635616686a7ad4a3257¢02b6ca2400 (CTL‘;E:IS
e8eba9d664eb23557338b9179b8ddfc8e9915¢3e57093f3b5cf0104d1f48101f Clugin 1.x
fe7a8e5a5085¢5043336be86a6a6301322b2b33b3dce7ac03251d65070dc 77 Clugin 1.x
1975¢a1d437653a1bc85896525a10bc938674f1d8dd2434ce28db459¢8289091 Clugin 1.x
89cec458al3fdbc7cebeeleab0325a1118c¢88d405082a35ac6034a8¢98182b72 Clugin 2.x
d64bf46c8bc3ea8bas8bsb7c530fc822f543e53f9c93767f0e38782126a3e214 Clugin 2.x
2¢9¢d231641de301d4bbcaad914dcfc936e6180cc7df05010bdec17a9468 1eb Clugin 2.x
c8a0fb2c3e7c320f5bed53 1a8777f63£d5107468b5cbafd173a8f92d3dc49e2d Clugin 2.x
1333675be92bb1011b6777a49b2df485133805df79ba24759bd66d5be82ce 704 Clugin 2.x
840a1029e1923c47cSeabadf2a2e317a6d3fef5609becc66dcb0fa3fd94£383e Clugin 2.x
76e20aa484a4867cadc2ab49cc3¢c391d065edae86b4447f211c0302006061c0e Clugin 2.x
1efc95af7490493£4302bc755f0d8£401df77d9d6e8a58b5£222dc065¢61b7ca Clugin 2.x
5fb81fee599baa9ee58d3d11cfdbdc09d9d2alcdcfbd67805babas5780e9ba949 Clugin 2.x
478d4d7644d94214ee33d8219bdfbf2745b03774b79b8c81e49799046c0eba7l Clugin 3.x
a5b975288b4fdc56b6cd856¢0ab969bd7b4496538¢2fc6ae0625b229ce04bdb Clugin 3.x
30b4668d400221df61c449aa6c3c73103acfabe88c9f367fced42929d82d3d1 Clugin 3.x
fd8b46e3e1e0423d8d96178862867362d1125b3d7e28d84afafa36b9713f6f Clugin 3.x
e415b5¢caf279901982a71ffccef937bc65674a3tb780cc73484387338bafdb02 Clugin 4.x
28d61253bal3a24b5dfe01a81606ef587676a012c42bbe5b99e2dectf6e6b42d2 Clugin 4.x
0dadf1240d097d15dee890d448cfab02d3ef8698bdcdde 1 8f1b5495¢500655F gﬂfﬁaﬁj"
b08b46a36112919afc8bf533d3dc15208f0fc 1 7a0ed9acd963al c8e7d0e32153 Clugin 5
lccfeebfd3c5732711bc8c242c6c0dc110a41768bb40efaf28tbe737¢018b0ad Clugin 6
1439FC0112F1DC32C34F3EDO4EF47E422 AE40ECA556410AD2C9763AAFSBF44CC Clugin 7

21

22

INTO THE CUMULUS: SCARCRUFT BOLSTERS ARSENAL FOR TARGETING INDIVIDUAL...

48A12AC12D881C81E9060C27B5656A28D6437CDF2F84588AE0C30B4B45BAE3 1D Clugin 10
9BA144AB275A9714BB5DBA2EA009D4DASF56743AB7315B522D41D441564DE220 Clugin 11
E15COE621E1A9E850ACDS5SABC40083272821372C8021A326DC44037DB8442FF2E Clugin 14
c70860c9569245¢243566e960125d1f4fb4b8790f48ddbe8e73ac5cdd9e8d6fb CallRecorder
f4c8b84d6aad1b6375cbdb2269d354da8d07f6f4£1680c4311a8cafc7968202¢ CallRecorder

