12023

y LONDON

4 - 6 October, 2023 / London, United Kingdom

LET’S GO DOOR WITH KCP

Yoshihiro Ishikawa & Takuma Matsumoto
LAC Cyber Emergency Center, Japan

yoshihiro.ishikawa@lac.co.jp
takuma.matsumoto@lac.co.jp

www.virusbulletin.com

LET’S GO DOOR WITH KCP

ABSTRACT

In 2022 we observed the use of new APT malware by an unknown China-based APT actor across several incidents in
Japan. The malware uses KCP protocol for backdoor communication and was coded in Golang on multiple platform
operating systems — we named it ‘gokcpdoor’.

This backdoor has 20 commands and connects with C2 servers via KCP over UDP. KCP is a communication protocol that
maximizes bandwidth for reliable, low-latency communication. The protocol was designed by ‘skywind3000°, and its
source code is publicly available [1]. KCP is commonly implemented in proxy software, streaming services, and online
games. Most of the information about KCP is written in Chinese, so we think this protocol is relatively common among
Chinese speakers.

Recently, it has been reported that China-based APT actors are using KCP protocol in some APT malware. However, there
are few reports of this protocol being used in actual attack activity, and it is not in common use. Therefore, we think that
gokepdoor is an interesting piece of malware since it uses KCP protocol for C2 communication.

In this paper we describe the analysis results of gokcpdoor and related threats to help prevent similar attacks in the future.

A STUDY OF KCP
In this section we introduce the KCP protocol and kcp-go library [2], used by gokcpdoor.

KCP protocol

KCP is a fast and reliable automatic repeat-request (ARQ) protocol which provides low-latency communications. This
protocol was devised by skywind3000 in 2011 and the code, written in C, was published on GitHub [1].

KCP protocol requires a transmission mode for sending and receiving the underlying data packets. Many implementations
meet the requirement by utilizing UDP protocol as the transmission mode. According to KCP’s GitHub page, the
transmission speed of KCP over UDP is 30% to 40% faster than TCP, but wastes 10% to 20% of bandwidth. Therefore, the
implementation is used in software or services that require real-time performance, such as proxy software, online games,
and streaming services.

KCP message segment

The message segment exchanged in KCP communication consists of a 24-byte header and variable length data, as shown in
Figure 1 and Table 1. The command in the header is an essential field to identify transmission, acknowledgement, and
retransmission, like the TCP control flag. As shown in Table 2, there are four types of commands, and IKCP_CMD_PUSH
and IKCP_CMD_ACK are used most frequently.

| Header (24 bytes) in Body 7
conv cmd frg wnd ts sn una len data
(4B) (1B) (1B) (2B) (4B) (4B) (4B) (4B) (variable)

Figure 1: KCP message segment.

Field Size Description

conv 4 bytes Session number

cmd 1 byte Commands

frg 1 byte Number of fragments

wnd 2 bytes Window size

ts 4 bytes Timestamp

sn 4 bytes Serial number

una 4 bytes Number of KCP message segments received
len 4 bytes Length of the data segment

data variable Data segment

Table 1: List of parameters in KCP message segment.

LET’S GO DOOR WITH KCP

Command Value Description
IKCP_CMD_PUSH 81 (0x51 ‘Q’) Data message
IKCP_CMD_ACK 82 (0x52 ‘R’) Acknowledgement message
IKCP_WASK 83 (0x53 S?) Window probe message
IKCP_CMD_ WINS 84 (0x54 ‘T) Window receive message

KCP communication flow

Table 2: List of commands.

As illustrated in Figure 2, a sender sends the data message with IKCP_CMD_PUSH and receives IKCP_CMD_ACK as an
acknowledgement. Moreover, the sender can send KCP messages without waiting for an acknowledgement, because the
KCP message has window size (wnd) defined. If the receiver cannot send back immediately, the sender consumes all the
window and eventually stops sending. In this case, in order to prevent deadlock, the sender sends a window probe on a
regular basis and check the receiver’s window size.

Sender Receiver
SN=0, UNA=0 IKCP_CMD_PUSH (81) Push data
SN=0, UNA=1 IKCP_CMD_ACK (82) ACK
SN=1, UNA=0 IKCP_CMD_PUSH (81) Push data
SN=1, UNA=2 IKCP_CMD_ACK (82) ACK

if window size (wnd) equals zero,

SN=X, UNA=Y IKCP_WASK (83) Window Probe

SN=X, UNA=Y+1 IKCP_CMD_WINS (84) Tell window size

Figure 2: KCP one-way communication flow.
Kcp-go library

Kcp-go is a Reliable-UDP (RUDP) library for Golang with extensions based on KCP protocol. This library supports Forward
Error Correction (FEC) with Reed-Solomon coding and packet-level encryption with AES, Blowfish, Salsa20, and so on. In
addition, kcp-go uses CFB mode as a block cipher mode of operation; an initialization vector is hard-coded into the library.

Figure 3 and Table 3 demonstrate the structure of a kep-go message. The structure consists of a 28-byte header and variable
length body, and the KCP message is assigned to this body. In the header, kcp-go adds a Nonce, which is a random value,
so that encrypting the same plaintext yields different results each time.

Header (28 bytes) 1 Body
Nonce CRC32 FEC SEQID | FECTYPE SIZE KCP Message / ParityShard
(16B) (4B) (4B) (2B) (2B) (SIZE - 2B)

Figure 3: Structure of a kcp-go message.

Field Size Description

Nonce 16 bytes Random value

CRC32 4 bytes Checksum

FEC SEQ ID 4 bytes Sequence ID for FEC

FEC Type 2 bytes FEC type

Size 2 bytes Length of data

Data 4 bytes KCP message or parity shard for FEC

Table3: List of parameters in a kcp-go message.

LET’S GO DOOR WITH KCP

APT MALWARE USING KCP PROTOCOL
In this section we discuss some APT malware that uses KCP for C2 communication.

Figure 4 shows a timeline of malware families using KCP protocol. We confirmed implementation of the KCP protocol
code for the first time in the Crosswalk malware in April 2020. Much of the malware implementing the KCP protocol is
related to China-based threat group APT41. There are few reports of this protocol being used in actual attack activity, and it
is not in common use. In addition, we have not yet confirmed the implementation of KCP for PseudoManuscrypt. However,
the newly confirmed (March 2022) gokcpdoor malware is different. This malware utilizes the kcp-go library to actually
perform C2 communication with the KCP protocol. In the following, we will introduce the KCP implementation of each
malware family.

Crosswalk =i Pangolin8RAT gokcpdoor

= Type: PE = Type: PE = Type: PE/ELF

=« Lang: C/C++ O = Llang: C/C++ = Lang: Go

= Using KCP: No = Using KCP: No = Using KCP: Yes

= Actors: APT41 = Actors: Tianwu = Actors: Unknown

(subgroup/collaborator of APT41)

=
o

APR JUN MAR FEB MAR

2020 2021 2022 |

FunnySwitch = " PseudoManuscrypt s KeyPlug

= Type: PE = Type:PE « Type: PE/ELF
« Lang: C#(.Net) = lLang: C/C++ « Lang: C/C++

= Using KCP: No = Using KCP: Yes » Using KCP: No
= Actors: APT41 = Actors: Unknown » Actors: APT41

* KCP implementation unconfirmed

Figure 4: Timeline of malware families using KCP protocol.

Crosswalk, KeyPlug and Pangolin8RAT with KCP

We start with a comparison of Crosswalk, KeyPlug and Pangolin8RAT, developed in C language (Figure 5). The left-hand
side is the original KCP source code in open source and on the right is the /DA decompiled code for each piece of malware.
You can see that the same code is partially implemented.

kep/ikep.c o Crosswalk (MD5: a8bb1d69fb8add323bbc5d78f0e62850)
const TUINT32 IKCP_CMD_PUSH = 81; [if (cmd != @x51 && cmd = ©x52 && cmd != ©x53 && cmd != @x54)
const IUINT32 IKCP_CMD_ACK = 82; |_return -3;
const IUINT32 IKCP_CMD_WASK = 83; : (redacted)
const IUINT32 IKCP_CMD_WINS = 84; if (cmd == @x52)
: {
i (redacted) if (al[19] - v28 >= 8)
if (cmd != IKCP_CMD_PUSH && cmd != IKCP_CMD_ACK && ikep_update_ack(al);
cmd != IKCP_CMD_WASK && cmd != IKCP_CMD_WINS)
T KeyPlug (MD5:070eb0289afef7856{50fa63e7ebde87)

if (cmd == @x52)

- (redacted)
if ((int)(*(_DWORD *)(al + 76) - v44) >= @)
if (emd == IKCP_CMD_ACK) { ikcp_update_ack(al);
if (_itimediff(kcp->current, ts) >= @) { = (redacted)
ikcp_update_ack(kcp, _itimediff(kecp->current, ts)); if (ikcp_canlog(al, 8x20))

. K
; (redacted) LODWORD(v44) = *(_DWORD *

1 LODWORD(v43) = *(_DWORD *)(al + @x4C) - v22;
f (ikcp_canlog(kcp, IKCP_LOG_IN_ACK)) { = 2
= 25 pf DR e ikep_log(al, @x1@, "input ack: sn=%lu rtt=%1d rto=%1d", vie, v43, vdd);
ikep_log(kep, IKCP_LOG_IN_ACK,

"nput ack: sn=%lu rtt=ld rto=sld", (unsigned long)sn, | Pangolin8RAT (MD5:bf421d42174edb2f31007cbededcf5b9)

(long)_itimediff(kep—>current, ts),
(long)kcp=>rx_rto); if ((*(_BYTE *)(al + 244) & ox20) != @ && *(_QWORD *)(al + 256))
| H

LODWORD(Vv56) = *(_DWORD *)(al + @x3e);
LODWORD(v55) = *{_DWORD *)(al + @x4C) - v57;
ikcp_log(al, ©x1@, "input ack: sn=%lu rtt=%ld rto=%ld", w59, v55, v56);

Figure 5: Comparison of Crosswalk, KeyPlug and PangolinSRAT with KCP.

FunnySwitch with KCP

Next is a comparison of FunnySwitch, developed in C# language (Figure 6). The left-hand side is the kcp-dotnet source
code in open source and the right side is the decompiled code of FunnySwitch. This is also the same code.

LET’S GO DOOR WITH KCP

kcp-dotnet/KCP.cs FunnySwitch (MD5: 2b0c692d9eafeds5e24f2b52234ea0fa2)
namespace Network namespace Network
{ // Token: 0x0200003A RID: 58
public class KCP r;ub\ ic class KCP
{ // Token: 0x06000114 RID: 276 RVA: 0xO000AEFO File Offset: 0x000090F0
public const int IKCP_RTO_NDL = 30; public static void ikep_encode8u(byte[]l p, int offset, byte c)
public const int IKCP_RTO_MIN = 100; A ploffset] = c:

. (redacted
: . — () - // Token: 0x06000115 RID: 277 RVA: 0xQ000AF04 File Offset: 0x00009104
public static void ikcp_encode8u(bytel]l p, int offset, byte c) F'E'-lb“fr static byte ikcp_decode8u (byte[] p, ref int offset)
{
int num = offset:
offset = num + 1:
return pnum]:

ploffset] = ¢;
}

/¢'ecode 8 bitsiunsionad int) // Token: 0x06000116 RID: 278 RVA: OxO000AFIC File Offset: 0x0000911C
public static byte ikcp_decode8u(bytel] p, ref int offset) public static void ikcp_encodel6u(byte[] p, int offset, ushort v)
{

{
ploffset] = (byte) (v & 255);
ploffset + 1] = (byte) (v >> 8):

return ploffset++];

: (redacted)

e mcer (o e s . 77 Token: 0x040000B9 RID: 185
public static void ikcp_encodeléu(byte[] p, int offset, UIntlé v) public const int IKCP_RTO_NDL = 30;
{
ploffset] = (byte)(v & OXFF); // Token: 0x040000BA RID: 186
ploffset + 11 = (byte)(v >> 8); public const int IKCP_RTO MIN = 100;

Figure 6: Comparison of FunnySwitch with KCP.

Gokcpdoor with KCP

Finally we look at gokcpdoor, which is developed in Golang (Figure 7). The left-hand side is the kcp-go source code and
on the right side is the decompiled code of gokcpdoor. The identical code implementation shows that gokcpdoor uses the
code from kep.go.

kcp-go/kcp.go gokcpdoor (MDs: a6f4asec66b7c5f275e793be02885543)

func (kcp *KCP) Input(data [lbyte, regular, ackNoDelay bool)|// program/kcp.(*KCP).Input

if cmd != IKCP_CMD_PUSH && cmd !'= IKCP_CMD_ACK && if (cmd != ©x51 && cmd != Ox52 && cmd != Ox53 & cmd != Ox54)
cmd 1= IKCP_CMD_WASK && cmd != IKCP_CMD_WINS { return -3LL; .
return -3 = (redacted)

: (redacted) zf (cmd == 8x52)

if cmd == IKCP_CMD_ACK { program_kcp__ptr_KCP_parse_ack(v83, v68, v31, a4, a5, @x52LL

kcp.parse_ack(sn) a2 = v68;

kcp.parse_fastack(sn, ts) program_kcp__ptr_KCP_parse_fastack(v83, v68, v66);
- v9 = v76 | 1;

flag |=1 vil = v66;
latest = ts al = v83;

¢ (redacted) = (redacted)

if windowSlides { // if window has slided, flush if (windowslides)

{
kep. flush(false) program_kcp__ptr_KCP_flush(v5@, OLL, a3, v45, a5);
} else if ackNoDelay &% len(kcp.acklist) > @ { // ack immediately |}
kep. flush(true) else if ((_BYTE)a6 &% *(__int64 *)(v50 + 216) > 0)
}
FEtTALi0 program_kcp__ptr_KCP_flush(v50, 1lulLL, a3, v45, a5);

return OLL;

Figure 7: Comparison of gokcpdoor with KCP.

DEEP DIVE INTO GOKCPDOOR

In the core of this paper, we look at the gokcpdoor malware samples in more detail, including the differences between them
and the implemented functions.

Gokcepdoor is a piece of malware with backdoor functionality, coded in Golang and cross-compiled for Linux (ELF) and
Windows (PE). There are minor differences, but both versions have the same functionality. Both gokcpdoor samples we
have confirmed are built with go1.17.5 (Figure 8). Also, this malware uses multiple OSS libraries. For more information on
OSS libraries, please see Appendix 1.

aGoBuildinf db ' Go buildinf:’
db 8 ; pointer size
db o ; little endian

dq offset off_7AF@E@ ; "gol.17.5"
dq offset off_7AF130

Figure 8: Embedded Go build version.

LET’S GO DOOR WITH KCP

We also named this backdoor malware ‘gokcpdoor’ because its compile path contained the string ‘gokcpdoor’, as shown in

Figure 9.
.go -+ 00--- C /home/ubuntu/Desktop/gokepdoor1.0-20220301/kep/tx.go
5.go -+ 00--- C /home/ubuntu/Desktop/gokcpdoor1.0-20220301/kep/tx_linux.go
& .go -+ 00-:- C /home/ubuntu/Desktop/gokcpdoor1.0-20220301/socks5/client_side.go
5.go--- 00--- C /home/ubuntu/Desktop/gokcpdoor1.0-20220301/socks5/connect.go

Figure 9: Compile path containing gokcpdoor strings.

Comparison of Linux and Windows gokcpdoor functions

Figure 10 shows specific functions implemented by gokcpdoor in Linux and Windows. Malware functionality is almost
identical on Linux and Windows, but the Windows version has one characteristic function named ‘main_WinExec’. The

function literally executes the specified command by calling the WinExec API.

B Y Y Y Y Y Y Y Y Y Y Y G Y

main_mkdir

main_rmdir
main_UrlDownloadToFile
main_UrlDownloadToFile_dwrap_1
main_GetDirlnfo
main_CopyConn2StdinPipe
main_CopyStdoutPipe2Conn
main_handleConnection
main_handleConnection_dwrap_4
main_handleConnection_dwrap_3
main_handleConnection_dwrap_2
main_addudpforward
main_deludpforward
main_addtcpforward
main_deltcpforward
main_addsocks5)

main_addsocks5 _dwrap_b
main_delsocksb
main_handleConnWait
main_handleConnWait_funci
main_handleConnWait_func1_dwrap_7
main_handleConnWait_dwrap_6
main_readconfig

main_main
main_.mCommandTimeQut

main_init

main_mkdir

main_rmdir
main_UrlDownloadToFile
main_UrlDownloadToFile_dwrap_1
main_GetDirlnfo
main_CopyConn2StdinPipe
main_CopyStdoutPipe2Conn
main_handleConnection
main_handleConnection_dwrap_3
main_handleConnection_dwrap_2
main_addudpforward
main_deludpforward
main_addtcpforward
main_deltcpforward
main_addsocksd
main_addsocks5_dwrap_4
main_delsocks5
main_handleConnWait
main_handleConnWait_funcl
main_handleConnWait_func1_dwrap_6
main_handleConnWait_dwrap_5
main_readconfig

main_main

main_ mCommandTimeOut

e e e e o o e e e o

main_WinExec

£ |main_init

Backdoor function

Gokcepdoor starts opening a port with a hard-coded port number using the net ResolveUDPAddr functions and net
ListenUDP functions of Golang (Figure 11). Figure 12 is the result of executing the ‘ss’ command, which can display
information about the socket. In this sample, we can see that 10054/udp is open. In addition, the backdoor port number

Figure 10: Gokcpdoor functions (left: Linux versions, right: Windows versions).

differs depending on the sample.

mov rdx, rax
lea rax, audp_1 ; "udp"
mov r9, rbx
mov ebx, 3
mov rex; rdx ; 0.0.0.0:10054
mov rdi, r9
call [net ResolveuDPAddr]
test rbx, rbx
jz short loc_577830
w=
p], rbx
] rex loc_577830: ; int
lerrors_callers| |mov ebx, 3
p], rax mov PexX, Fax § e
rs_withStack lea rax, audp_1 ; int
pct nop
ar_s0] call
test rbx, rbx

Figure 11: Opening 10054/udp using net package functions.

LET’S GO DOOR WITH KCP

State - - Local Address:Port Peer Address:
UNCONN 127.0.0.53%lo:53

UNCONN 0.0.0.0:48253

UNCONN H=1E fS5E]

0.
UNCONN 0. 1631
UNCONN :2]:5353
UNCONN ::]:60000
UNCONN :10054

Figure 12: All open UDP ports listed by the ‘ss’ command.

Figure 13 shows part of a function that decodes the port number opened by gokcpdoor. The backdoor port number has been
encoded by XOR and Base64. In this case, there is the encrypted binary data at offset ‘Ox7AEFDO’ in the blue-line frame.
Decoding with the hard-coded XOR key and Base64, you can get the port number and the string ‘nld2jUd3Ld1Fxe’. This
is a fixed string sent when starting the backdoor C2 operation. By sending it once, multiple commands can be executed
until the backdoor session expires.

mov rbx, cs{off 7AEFD@]; xored+base64_config
; 0POORROPPA6LCFAC 1B 25 58 45 18 12 @9 @6 7C OF 07 3D 1B 22 2D 03 .%XE....|..=."-.
; ©D0POLPPPOA6L1CFBC 1A 3@ 30 4B 57 ©C 5D OF ©C 22 26 43 92 2F 19 09 .00KW.].."&C./..

mov rcx, cs:qword_7AEFD8 ; size 0x(C8

lea rax, [rsp+68h+var_30]

call runtime_stringtoslicebyte

mov [rsp+68h+var_10], rax

mov [rsp+68h+var_38], rbx

mov rcx, rbx

lea rax, RTYPE_uint8

call runtime_makeslice

mov rdx, [rsp+68h+var_38]

mov rsi, [rsp+68h+var_10] XOR decode

xor ecx, ecx

jmp short loc_5BC@73

loc_5BCO57: ; CODE XREF: main readconfig+A8!j

lea r9, aVfl2txhslkhe ;

movzx r9d, byte ptr [rax+r9

xor edi, rod \ XOR Key

mov [rbx+rcx], dil

inc rex

mov rax, rbx ; 00000RCO0EOD8RDG 4D 43 34 77 4C 6A 41 75 AD 44 6F 78 4D 44 41 31 |MCAwLjAuMDoxMDAI
; 00OOPOCOOPODBRE® AE 48 78 38 66 47 35 4A 5A 44 4A 71 56 57 51 7A |NHx8fG531ZDIqVWQz

: (redacted) Base64 decode

mov rbx, cs:off_ 7AEFD@

mov rcx, cs:qword_7AEFD8 ; size_©x28 . o g g

o rax, cs:quord 7B7AD® ; basebd table strings The identifier to begin C2 operation |Open Port

call encoding_base64__ptr !”r«~: JecodeString ; b64decoded_config }

5 @@GG@BCBGBBIESAB 30 2E 30 2E 30 2E 30 3A 31 3@ 30 35 34 7C 7C 7C Ié:é:é:é:iééé; “|
; 0P0PPPCOPPPLIESBO 6E 49 64 32 6A 55 64 33 4C 64 31 46 78 65 00 09" nId2jUd3Ld1Fxe..

Figure 13: Port number and the identifier decoding.

C2 commands

Table 4 (on the following page) shows a list of C2 commands for gokcpdoor. The malware has 20 commands, for
execution, uploading and downloading files, file manipulation, port forwarding, and so on. In particular, the exec, shell,
upload and download commands play an important role in controlling the victim host.

Communication data format

Gokcpdoor sends and receives data in Base64-encoded strings and a newline code format. For example, the C2 commands
to execute the Windows calculator (calc.exe) are Base64-encoded ‘exec’ and ‘calc.exe’. Each command/result is sent
separately with a trailing line feed (LF) from the C2 server to gokcpdoor as UDP data after it has been encapsulated and
encrypted by the kcp-go library, as illustrated in Figure 14.

Encryption method

Figure 15 shows the code for gokcpdoor’s encryption method. It uses PBKDF2, Key Derivation Function, with
HMAC-SHA-1 and AES 256 bit. We can see password, salt, iterations, and derived key length on this code.

The derived key is shown in the area highlighted in Figure 15 in grey. C2 commands and executions results are encrypted
with AES using this key and a hard-corded initialization vector into the kcp-go library.

LET’S GO DOOR WITH KCP
Command Description
exec Execute a program
shell Start reverse shell session
wget Download a file from URL on infected host
upload Upload a file from C2 server to infected host
download Download a file from infected host to C2 server
dir/1s List the contents of the specified directory
mkdir Create a directory
rm Remove the specified directory or file
cd Change current directory
pwd Get current directory path
whoami / id Get username by executing ‘whoami’ or ‘id’ command
getos Get OS information by executing ‘wmic os get name’ or ‘uname -a’ command
ps List all running processes
Ifconfig / ipconfig List all network interfaces
netstat Get network statistics about all active connections
portfoward list: List all port forwarding settings
add: Add port forwarding setting which TCP or UDP can be selected
delete: Delete port forwarding setting
socks5 list: List all SOCKSS settings
add: Add SOCKSS setting
delete: Delete SOCKSS setting
charset Change character set (gokcpdoor only supports UTF-8)
back End C2 command operation
exitprocess Terminate own process
Table 4: List of C2 commands.
Original Data
‘ C2 command / execution result
gokepdoor Data Format i
base64-encoded string & line feed(LF)
(Variable)
KCP Message Segment J'
conv cmd frg wnd ts sn una len data
(4B) (1B) | (1B) | (B) (4B) (4B) (4B) (4B) (Variable)
kcp-go Plaintext Format ‘
Nonce CRC32 FECSEQID | FECTYPE | SIZE KCP Message
(16B) (4B) (4B) (2B) (2B) (Variable)
UDP Packet ¥ Encrypt
Souce Port | Destination Port | Length | Checksum Data
(2B) (28B) (2B) (2B) (Variable)
Figure 14: Encapsulation of transmitted data.
Password
gmemcpy (» ["d#gxwsT. LgpU!dxbdUd5"F sizeof(20 _uint8));
= (_17_uint8 *)runtime newobject(&RTYPE__17_uint8);
qmemcpy (salt, ["Kc7djb3Ve>, x0pd8) s uint8));
4 = (int)salt; alt
- go

1024,
32

lang_org_x_crypto_pbkdf2_Key(
(_DWORD) ,

20,

R Derived key (32bytes) :

2 el 2C 77 OF 78 05 F4 BB 63 F1 BB E4 92 5332 51 67
o Iterations and 10 A3 8F 80 DF BC C3 1F 63 C9 16 47 71 E4 E5 28

Derived key length

(ur nt)crypto shal New);

[p

rogramikcprewAESQ}ockCrypt* , 20, » V4, 17, s 5 B)s

2

q
P

9; . B
word_7A02F8; AES encryption function

rogram_kcp_ListenWithOptions(qword_7A02F@, qword_7A02FS8, » 20, 10, 3, s s » s)

)

Figure 15: Gokcpdoor encryption method.

ATTRIBUTION

LET’S GO DOOR WITH KCP

In this section we predict the attributes of the APT actors that use gokcpdoor.

Infection chain for gokcpdoor

Figure 16 shows an example of the gokcpdoor malware infection chain in 2021 to 2022. APT actors use stolen credentials
to break into the victim’s network and install malware using lateral movement. Gokcpdoor and the ABK downloader [8]
were found on multiple servers and PCs. ABK has been used by Chinese APT actor Tick since 2019.

G — = —]

Unknown Actor

down\Oade'

x go\‘cdeO' ﬁ ABK

" —

SSL-VPN Products Victim Servers Other Victim PCs

VPN connection Unauthorized Lateral movement to
using stolen access to RDP and other PCs and installed
credentials installation of of some malware and
backdoor hacktools

Figure 16: Example of a gokcpdoor infection flow.

Figure 17 illustrates the ABK downloader infection process. ABK is embedded as an encrypted payload in the OAED loader
malware [9] (the payload is included after the yellow-line frame of Figure 18). The string ‘v|xI?1bW’ in the yellow-line frame
is a marker to locate the payload. The OAED loader executes using the DLL side-loading technique and decrypts the payload
with XOR. Then, the loader executes ABK via process hollowing into legitimate processes such as svchost.exe.

]

Consent.exe

Legitimate File
MS Corporation
(Signed)

-

—_— —
Load Inject decrypted
(DLL Side-Loading) payload
secur32.dll svchost.exe
OAED Loader Legitimate File
(ABK downloader is MS Corporation
contained as payload) (Signed)

Figure 17: ABK downloader infection process.

CloseHandle_@(v2);
strepy(vi7, 'v|xI?1bW');

if (!vs)
ExitProcess_08(9);
v6 = (char *)(v5 + 8);

if (vo && vo != @x56)
ve[v8] ~= ex56u;
++v8;

--v7

i

while (v7);
}

sub_9034A8();

1strcpyA(Stringl, vi1);
sub_40A760(0);

sub_4@9FBC();
vli2 = 4;
while (1)

ReadFile_@(v2, v4, FileSize_ @, &ExitCode[1], ©);

v5 = sub_90388C((int)v4, FileSize @, (int)vi7, 7);

v14[@] = (HANDLE)(v5 + 8 - (_DWORD)v4); .
if ((int)(FileSize @ - (unsigned int)vi4[e] -2

{ ; 16 @0 00 0 60 60 G0 0 0O GO G0 00 0@ 0B 0O 60
L iiaes o s ; 00 00 GO 00 00 0O 00 GO 60 00 00 00 00 00
U7i=: F118512840: (Ve ~ [BYTE %)) ; 00 00 00 00 G0 00 00 00 00 00 00 G0 00 00 00 00
v8 = 8; ; 00 00 00 0O a6 0O 00 08 58 43 ec 58 00 €2 5F 9b AT X5
do ; 77 ee 57 1a 9b 77 @2 3e 3f 25 76 26 24 39 31 24 wW.W..w.>?%v&91
{ S[ve] ; 37 3b 76 35 37 38 38 39 22 76 34 33 76 24 23 38 7;V57889"vA3vi#S
v9 = ve[v8]; ;

5
H
vi4[e] = (HANDLE)"iexplore.exe"; 5
v1e = (const CHAR *)sub_4@ASEe(); ; @0 00 0O 0O 0O PO GO OO 0O OO PO GO 0B 0O 6O 0O
if (!lstrcmpiA(vie, (LPCSTR)vi4[e])) 5
H

vll = (const CHAR *)sub_4@A9E@(); HEEEE

v13 = sub_9012AC(dword_937AE@, v28, v6, @); // start the process hollowing method

// marker strings

76 7c 78 49 3f 31 62 57 1b Oc ¢6 00 55 @0 90 00 |v|[xI?1bWl...U...
52 00 60 00 a9 a9 00 00 ee OO OO0 0O 60 00 00 PO R...............

// XOR decode (key=0x56)

XOR decode

; 76 7c 78 49 3f 31 62 57 4d 5a 96 @0 03 00 00 00 v|xI?1bfF]......
; @4 00 00 00 ff ff 00 00 b8 00 60 ©0 00 00 00 00
; 40 00 00 00 00 00 QO 0O 00 00 60 00 00 00 00 00

; 00 00 00 00 fO 00 @0 00 Qe 1f ba @e 00 b4 @9 cd
; 21 b8 ©1 4c cd 21 54 68 69 73 20 70 72 6f 67 72 !..L.!This progr
; 61 6d 20 63 61 6e 6e 6f 74 28 62 65 20 72 75 6e am cannot be run

Figure 18: Decryption and process injection of the payload (ABK downloader).

10

LET’S GO DOOR WITH KCP

The ABK downloader has four main characteristics:
* It detects some anti-virus products (Figure 19).

+ It collects MAC address, system information and anti-virus product information and sends the details to C2 servers
using no space User-Agent (Figure 20).

+ It executes only during working hours (08:00 to 18:00) using the GetLocalTime API.

+ It uses legitimate websites as C2 servers and downloads the next malware.

if (!'RegOpenKeyExA(
HKEY_LOCAL_MACHINE,
"SOFTWARE\\Symantec\\Symantec Endpoint Protection\\CurrentVersion",
9,
0x20119u,
&phkResult))

Type = 1;
cbData = 1024;
RegQueryValueExA(phkResult, "PRODUCTVERSION", @, &Type, Data, &cbData);
vl = (const char *)Data;
}
RegCloseKey(phkResult);
if (!'RegOpenKeyExA(HKEY_LOCAL_MACHINE, "SOFTWARE\\TrendMicro\\AMSP", @, ©x20119u, &hKey))

cbData = 1;
Type = 1024;
RegQueryValueExA(hKey, "TMFBE_GUID", @, &cbData, v10, &Type);
vl = (const char *)v10;
¥
RegCloseKey(hKey);
if (!'RegOpenKeyExA(HKEY LOCAL MACHINE, "SOFTWARE\\36@Safe\\Liveup", ©, 0x20119u, &v4))

cbData = 1;

Type = 1024;

RegQueryValueExA(v4, "mid", @, &cbData, v9, &Type);
vl = (const char *)v9;

RegCloseKey(v4);
if (!RegOpenKeyExA(HKEY_LOCAL_MACHINE, "SOFTWARE\\McAfee\\Endpoint\\AV", @, ©x20119u, &v6))

cbData = 1;
Type = 1024;
RegQueryValueExA(v6, "ProductVersion", @, &cbData, vl1l, &Type);

Figure 19: Detection of specific anti-virus products.

LOBYTE(v1o[e]) = @;

sub_401990 "Mozilla/4.0(compatible;MSIE8.9;windowsNT6.0;Trident/4.0)r, (void *)@x38, v10);
vli3 = 0;

v8 = 15; No space

v7 = 0;

vie[1e] = (int)ve;

LOBYTE(v6[0]) = @:

sub_401990("http: [redacted] /anki/abuky.php", (void *)@x3@, v6);

vl3 = -1;

sub_4023Fe(v6[0], (int)v6[1], (int)v6[2], (int)v6[3], v7, v8, v9, vie[e]);

Figure 20: Specific User-Agent and C2 server.

Relationship between APT actors and malware

Figure 21 shows the relationship between various APT actors and pieces of malware. As mentioned earlier, most malware
that uses the KCP protocol is associated with APT41, and gokcpdoor is also suspected to be associated with this group.
However, as described in the last section, we have found gokcpdoor along with malware used by the Tick actor, and for this
reason we believe it is related to Tick. (For a summary of attribution, see Appendix 2.)

LET’S GO DOOR WITH KCP

0 5

Use
>
FunnySwitch Crosswalk KeyPlug
N — |
Tianwu KCP

2

PangolingRAT Tonto Team

ShadowPad QAED Loader ABK Downloader

Figure 21: Overview of attribution (APT actors and malware).

COUNTERMEASURES

In this section

we discuss measures that could be used to prevent and detect gokcpdoor and similar threats.

KCP traffic detection

KCP traffic can be difficult to identify. For this reason, it is important for network security products to check unknown
UDP traffic. KCP traffic also has some characteristics that can be found using a Splunk query, as shown in Figure 22.
(Please refer to Appendix 3 for Splunk Steam settings.) In addition, it is possible to analyse suspicious UDP traffic using

KCP dissector

Experimental Search Query * Please note that this search query is expected to be delayed due to log volume.

[10], as shown in Figure 23.

index=main app=udp "R""Q" | table dest_content, src_content, _raw, _time
| eval src_command=substr(src_content, 5, 1), dest_ command=substr(dest_content, 5, 1)
| where dest_command in("R", "Q") and src_command in("R", "Q") | table _time, _raw

splunk

Search

> Search & Reporting

New Search SaveAsv Create Table View Close
index=main app=udp "R" "Q" | table dest_content, src_content, _raw, _time, _index_time Last 15 minutes v n
| eval src_command=substr(src_content, 5, 1), dest_command=substr(dest_content, 5, 1)

| where dest_command in("R", "Q") src_command in("R", "Q") | table _time, _raw, _index_time

1 event (4/30/23 5:50:41.000 PM to 4/30/23 6:05:41.000 PM) No Event Sampling +

Job~ » & 4 B8 Verbose Mode v
Events() Pattems Statistics (1) Visualizatior
20PerPage~ Format Preview v
_time £ _raw # s
2023-04-30 {"endtime": "2023-05-017T00:54:30. 3182657", " timestamp" : “2823-05-01700:54:28.254278Z", "app" : "udp"”, "bytes":840, "bytes_in" :462, "bytes_out":378, "dest_content": "/E\ugee4Gr
17:54:30.318 \u0000 \uB0E0E\UB0RT\uB0OO\UG0AE\UDOD\UOGDR\UORORNUOROG\UOGD 1\UGDOO\UGDRD\UGDRD\UBDAR)UBBD\LOBDA\LOROD,/E\UARO4EQ\UE00D \UOA0IU\UBOGR\UOBD\UOBDR\LOGOONUOGRD\UODT

\uB620\uBBe0\uBBBO\UO] 6\udBOB\uABBE\UDBADHessage sent by Host-B/E\uBBO4EBR\uB0O \uda0E\udROB\uUOBOR\uDBOO\UDDT\UBDED\UBBRD\UBADE\UBDEZ\uBBER\UORDE\UBDOR\UBBRD\UDEDE
\u@0e0\ueeee/E \ueee4kQ\ueeoe \ueeeoshu\uoeee\ueeo\uoese\ureoa\ueare\ueoe2\ubeee\uoeoe\uenee\uoe16\ueeae \uenes\ueeeoMessage sent by Host-B/E\uB004BR\uGEER \uBoeol
\uBORF \udBeo\useoR\uDPR2 \udBRR\uBABR\UDPAD\UO DI \UBRED\UODED \UDBDD\UOBD\UOBE\UDADD \uPOR/E \uDBO4EBQ\LOBDD \uBEDDZEU\UDERO\UADDZ\URDED\UDBD \uBBDR\UORD3 \uDBRE \LOBDD
\u00@0\ube16\udB00\UORBD \uBBBBMessage sent by Host-B", "dest_ip":"20.210.234.125 st_mac”:"00:0C:29:99:99:9F", "dest_port":12345, "flow_id": "3fd60452-d297-4143-856e-
a5fa82asSbéec”, "packets_in":6, "packets_out":4, "protocol _stack": "ip:udp”, "src_content”: " /E\u08046Q\u0000 \uB00OH\UGDOT \UOG0E\UBEEE\UBDEO\UOBDE \uBROR\UGDB\UOBE\UGRO
\u0020\uBBe0\uBB16\u0PED \uBBDR\uBBBAHessage sent by Host-A/E\udBD4BR\uGBED \uBDORU\udROR\UBBAD\UDBEO\UDADE\UADED\LBBET \uBBBE\UDER\uBBND\UOBDE \uBDOR\UBBRD \uOBB/E
\u00e48Q\u0000 \ueeaek\uPRB\UOBDR\LG0RE\URRAT \UGBEE\UBROR\UGBER\UBAAT \UDOBE\UADAR\LOGAE \UB] 6\UADE\ UDROD\UOBDEMesSage Sent by Host-A/E\upB04BR\UODEO\UDTF\uEBREsEU
\u00680\uB001\uB0001\u00E\udBO\UBABZ\UBBED\UBEO\UBBBE\UBDAD\uOBBE\uBEOA\UBBEB/E\ UBBE4BQ\u0BBD \uBABBE\uGDOF \udBRE\uBDOE\uBdE2\uBBAB\uBBBO\uBDBD\uBBO2\LBBDB\UBDED

Figure 22: Searching for KCP traffic on Splunk.

11

LET’S GO DOOR WITH KCP

A kep_traffic.pcapng - O X
J71IWF) $REE) FRV) BENG) FrIFVO SR HEHS) BE(Y ERW) O U-MT) »
Am:2® RB es=2F 5 =EQqQaH
N[z e B0+
o Time Source Destiration Protocol Length Info [T ~

1 @.0ee.. 192.1.. 20.2.. KCP 88 CMD_PUSH, SN(®@)

2 9.006.. 20.21. 192... KCP 66 CMD_ACK, SN(@), NEXT_SN(1)

3 0.006.. 20.21.. 192... KCP 88 CMD_PUSH, SN(®)WAIT_SN(1) v
< >

Frame 1: 88 bytes on wire (704 bits), 88 bytes captured (7084 bits) on interface \Device
Ethernet II, Src: VMware 94:13:50 (00:0c:29:94:13:50), Dst: VMware_99:99:9f (00:0c:29:9
Internet Protocol Version 4, Src: 192.168.12.19, Dst: 20.210.234,125
User Datagram Protocol, Src Port: 61782, Dst Port: 12345

v KCP Protocol, conv: 4237851484, cmd: CMD_PUSH(81), frg: FALSE(@), wnd: WND_RCV_SIZE(32)

Conv: 4237851484

Cmd: 81

Frg: @

Wnd: 32

ts: 231

sn: @

una: @

len: 22

data: Message sent by Host-A

00 @c 29 99 99 9f @@ @c 29 94 13 50 @8 0@ 45 00) ECR Y PE-E
00 4a 8c 34 00 00 80 11 00 @0 O a8 @c 13 14 d2

0020

0030 00 00 00

0040 65 20 73

0850

Figure 23: Example of using cfadmin-cn/kep_dissector [10] for Wireshark to analyse suspicious UDP traffic.

Detection of gokcpdoor
Gokepdoor can be detected and prevented using the following methods:
» Using a YARA rule (see Figure 24)
* Using Autoruns to check suspicious AutoStart Extensibility Points (ASEPs)!
» Using Sysmon to check the recording of Create Process and Network Connect events (Figure 25)

» Using EDR products to check execution of shell commands can be traced by process tree (Figure 26)

rule gokcpdoor {

meta:
description = "Detects gokcpdoor malware"
author ="LAC Co., Ltd."

strings:
$str1 = "gokcpdoor™ ascii
$str2 = "exec_lin.go" ascii
$str3 = "exec_win.go" ascii
$str4 = "syscmds/ps_linux.go" ascii
$str5 = "syscmds/ps_windows.go" ascii
$str6 = "target.go" ascii

condition:
(4 of ($str*)) and filesize > 2MB
}

* We recommend deliberate testing and tuning prior to implementation in any
production system

Figure 24: Example YARA rule of gokcpdoor malware.

'In the case we analysed the APT actor had registered gokcpdoor as a service to implement persistence mechanisms.

12

LET’S GO DOOR WITH KCP

Event SYSMONEVENT_NETWORK_CONNECT

1 2023-04-04 00:24:31.662
: {c6bde458-6e3f-642b-cOcb-5b0000000000}
! 26849
: /home/test/Desktop/gokcpdoor

: udp

Figure 25: Example logs (Network Connect) of Sysmon Linux after gokcpdoor has been executed.

uname
® The behavior caused by “getos”

id and “whoami” C2 commands

sudo 2dd8ab14..d1cc008 . .

. .“k . ,.f e dash chmod . - »

S © iy S [i The behavior caused by “upload
S and “shell” C2 commands
bash *We uploaded “test.sh” and executed it

Figure 26: Example of CrowdStrike Falcon graphs process tree.
CONCLUSION

Gokcepdoor is a backdoor malware coded in Golang using KCP protocol for C2 communication. Attack vectors using the
KCP protocol are on the rise and may be used more and more in the future.

We have shared some detection and prevention methods to protect against this and similar threats.
We have also suggested a possible relationship with the China-based APT actors Tick or APT41, but attribution is difficult.

We plan to continue to investigate APT actors using gokcpdoor and provide updated information that will help security
researchers and defenders.

REFERENCES

(1]

KCP. https://github.com/skywind3000/kcp.

[2] Kcp go. https://pkg.go.dev/github.com/xtaci/kcp-go.

[3] Positive Technologies. Higaisa or Winnti? APT41 backdoors, old and new. 14 January 2021.
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-4 1 -backdoors-old-
and-new/.

[4] Yeh, S.; Chang, L. The next-gen PlugX/ShadowPad? A dive into the emerging China-nexus modular trojan,
Pangolin8RAT. Black Hat Asia 2022. https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-
NextGenPlugXShadowPad.pdf.

[5] Kaspersky. PseudoManuscrypt: a mass-scale spyware attack campaign. 16 December 2021.
https://ics-cert.kaspersky.com/publications/reports/2021/12/16/pseudomanuscrypt-a-mass-scale-spyware-attack-
campaign/.

[6] Brown, R.; Ta, V.; Bienstock, D.; Ackerman, G.; Wolfram, J. Does This Look Infected? A Summary of APT41

Targeting U.S. State Governments. Mandiant. 8§ March 2022. https://www.mandiant.com/resources/blog/apt4 1-us-

state-governments.

13

https://github.com/skywind3000/kcp
https://pkg.go.dev/github.com/xtaci/kcp-go
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf
https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf
https://ics-cert.kaspersky.com/publications/reports/2021/12/16/pseudomanuscrypt-a-mass-scale-spyware
https://ics-cert.kaspersky.com/publications/reports/2021/12/16/pseudomanuscrypt-a-mass-scale-spyware
https://www.mandiant.com/resources/blog/apt41-us-state-governments
https://www.mandiant.com/resources/blog/apt41-us-state-governments

LET’S GO DOOR WITH KCP

[7] KCP.cs. https://github.com/qchencc/kep-dotnet/blob/master/Source/Network/KCP.cs.

[8] nao_sec. An Overhead View of the Royal Road. 29 January 2020. https://nao-sec.org/2020/01/an-overhead-view-
of-the-royal-road.html.

[9] Macnica Networks and TeamTS5. APT Threat Landscape in Japan 2020. 21 May 2021. https://www.macnica.co.jp/
business/security/manufacturers/files/mpressioncss_ta_report 2020 5 en.pdf.

[10] KCP dissector. https://github.com/cfadmin-cn/kcp_dissector.

APPENDIX 1: OSS LIBRARY LISTS
Table 5 lists the Golang OSS libraries used by gokcpdoor.

OSS Libraries (GitHub) Description

klauspost/Reedsolomon Provides Reed-Solomon Erasure Coding
klauspost/cpuid Gets information about related CPU
templexxx/cpu Gets information about related CPU
templexxx/xorsimd Provides XOR code engine

pkg/errors Provides simple error handling primitives
tifoc/gmsm Provides Chinese cryptographic algorithm
txthinking/x Provides some network utilities function
txthinking/runnergroup Ends concurrency reliably
patrickmn/go-cache Provides in-memory cache function
xtaci/kcp-go Provides KCP connection

Provides KCP session implemented by UDP

txthinking/socks5 Provides SOCKSS5 implemented for client
Provides UDP support for SOCKS5
BishopFox/Sliver Provides API for finding and listing processes
Provides ‘netstat’ command function
digibib/tcpforward Provides forward TCP traffic
11ann/udp-forward Provides forward UDP traffic

Table 5: List of OSS libraries.

APPENDIX 2: DIAMOND MODEL
Figure 27 shows the Diamond Model for the gokcpdoor campaign.

ADVERSARY

[N . . . ('
! ‘Technical Axis i = Believed to be based in China ‘ Social-Political Axis :

! = Possible relationship to Tick and APT41 . . !
= A part of custom malware . m National security

overlap with known Tick tools interests and concerns

= Intrusion via SSL-VPN products

CAPABILITY INFRASTRUCTURE

= Custom malware (gokcpdoor, = Heavy usage of IP address not domain

ABK downloader, OAED Loader
) = Multiple VPS and Hosting Service

= Using KCP Protocol Companies in East Asia

= Intrusion via SSL-VPN products
with stolen certificates or exploit

VICTIM

= Targeting Japanese companies

= Manufacturing, Academic institutions

Figure 27: Diamond Model of this campaign.

14

https://github.com/qchencc/kcp-dotnet/blob/master/Source/Network/KCP.cs
https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html
https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html
https://www.macnica.co.jp/business/security/manufacturers/files/mpressioncss_ta_report_2020_5_en.pdf
https://www.macnica.co.jp/business/security/manufacturers/files/mpressioncss_ta_report_2020_5_en.pdf
https://github.com/cfadmin-cn/kcp_dissector

LET’S GO DOOR WITH KCP

APPENDIX 3: SPLUNK STREAM SETTINGS

To search KCP traffic within Splunk, you need to enable UDP traffic capture and content recording in the Splunk Stream
app, as shown in Figure 26. We recommend estimating the amount of logs before setting these up in production.

Configure Metadata Stream - udp Clone | Delete
UDP Flow Events

Mode ‘

) Enable UDP traffic capture

Protocol uDP

Enable “src_content” fields pes
Figure 26: Splunk Stream settings.

APPENDIX 4: INDICATORS OF COMPROMISE (10Cs)

The following files were analysed for this paper.
Indicator Type Context
86102e91344a8e8009e59¢ecae934a780 MD5 ABK Downloader
d85c9b3d49blafd82¢c384a4253¢c16e28ac65a0f5 SHA1
61eb25a6e6457087232de7ce7cd7b6cd9926e10674487c9e55b9a3fa54748bdc | SHA256
Mozilla/4.0(compatible;MSIE8.0; WindowsNT6.0; Trident/4.0) User-Agent
a6f4a5ec66b7c5£275¢793be02885543 MDS5 gokcpdoor for Linux
bdb3db1013b16cb64b318156eae621054fa334bf SHA1
2dd8ab1493a97¢0a4416e077d6celc35¢7b2d8749592b319a7e2a8f4cd1cc008 | SHA256

Table 6: Samples related to this campaign.

