
LONDON

2023

LET’S GO DOOR WITH KCP
Yoshihiro Ishikawa & Takuma Matsumoto
LAC Cyber Emergency Center, Japan

yoshihiro.ishikawa@lac.co.jp
takuma.matsumoto@lac.co.jp

4 - 6 October, 2023 / London, United Kingdom

www.virusbulletin.com

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

2 VIRUS BULLETIN CONFERENCE OCTOBER 2023

ABSTRACT
In 2022 we observed the use of new APT malware by an unknown China-based APT actor across several incidents in
Japan. The malware uses KCP protocol for backdoor communication and was coded in Golang on multiple platform
operating systems – we named it ‘gokcpdoor’.
This backdoor has 20 commands and connects with C2 servers via KCP over UDP. KCP is a communication protocol that
maximizes bandwidth for reliable, low-latency communication. The protocol was designed by ‘skywind3000’, and its
source code is publicly available [1]. KCP is commonly implemented in proxy software, streaming services, and online
games. Most of the information about KCP is written in Chinese, so we think this protocol is relatively common among
Chinese speakers.
Recently, it has been reported that China-based APT actors are using KCP protocol in some APT malware. However, there
are few reports of this protocol being used in actual attack activity, and it is not in common use. Therefore, we think that
gokcpdoor is an interesting piece of malware since it uses KCP protocol for C2 communication.
In this paper we describe the analysis results of gokcpdoor and related threats to help prevent similar attacks in the future.

A STUDY OF KCP
In this section we introduce the KCP protocol and kcp-go library [2], used by gokcpdoor.

KCP protocol
KCP is a fast and reliable automatic repeat-request (ARQ) protocol which provides low-latency communications. This
protocol was devised by skywind3000 in 2011 and the code, written in C, was published on GitHub [1].
KCP protocol requires a transmission mode for sending and receiving the underlying data packets. Many implementations
meet the requirement by utilizing UDP protocol as the transmission mode. According to KCP’s GitHub page, the
transmission speed of KCP over UDP is 30% to 40% faster than TCP, but wastes 10% to 20% of bandwidth. Therefore, the
implementation is used in software or services that require real-time performance, such as proxy software, online games,
and streaming services.

KCP message segment
The message segment exchanged in KCP communication consists of a 24-byte header and variable length data, as shown in
Figure 1 and Table 1. The command in the header is an essential field to identify transmission, acknowledgement, and
retransmission, like the TCP control flag. As shown in Table 2, there are four types of commands, and IKCP_CMD_PUSH
and IKCP_CMD_ACK are used most frequently.

Figure 1: KCP message segment.

Field Size Description

conv 4 bytes Session number

cmd 1 byte Commands

frg 1 byte Number of fragments

wnd 2 bytes Window size

ts 4 bytes Timestamp

sn 4 bytes Serial number

una 4 bytes Number of KCP message segments received

len 4 bytes Length of the data segment

data variable Data segment

Table 1: List of parameters in KCP message segment.

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

3VIRUS BULLETIN CONFERENCE OCTOBER 2023

Command Value Description
IKCP_CMD_PUSH 81 (0x51 ‘Q’) Data message
IKCP_CMD_ACK 82 (0x52 ‘R’) Acknowledgement message
IKCP_WASK 83 (0x53 ‘S’) Window probe message
IKCP_CMD_WINS 84 (0x54 ‘T’) Window receive message

Table 2: List of commands.

KCP communication flow
As illustrated in Figure 2, a sender sends the data message with IKCP_CMD_PUSH and receives IKCP_CMD_ACK as an
acknowledgement. Moreover, the sender can send KCP messages without waiting for an acknowledgement, because the
KCP message has window size (wnd) defined. If the receiver cannot send back immediately, the sender consumes all the
window and eventually stops sending. In this case, in order to prevent deadlock, the sender sends a window probe on a
regular basis and check the receiver’s window size.

Figure 2: KCP one-way communication flow.

Kcp-go library
Kcp-go is a Reliable-UDP (RUDP) library for Golang with extensions based on KCP protocol. This library supports Forward
Error Correction (FEC) with Reed-Solomon coding and packet-level encryption with AES, Blowfish, Salsa20, and so on. In
addition, kcp-go uses CFB mode as a block cipher mode of operation; an initialization vector is hard-coded into the library.
Figure 3 and Table 3 demonstrate the structure of a kcp-go message. The structure consists of a 28-byte header and variable
length body, and the KCP message is assigned to this body. In the header, kcp-go adds a Nonce, which is a random value,
so that encrypting the same plaintext yields different results each time.

Figure 3: Structure of a kcp-go message.

Field Size Description
Nonce 16 bytes Random value
CRC32 4 bytes Checksum
FEC SEQ ID 4 bytes Sequence ID for FEC
FEC Type 2 bytes FEC type
Size 2 bytes Length of data
Data 4 bytes KCP message or parity shard for FEC

Table3: List of parameters in a kcp-go message.

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

4 VIRUS BULLETIN CONFERENCE OCTOBER 2023

APT MALWARE USING KCP PROTOCOL
In this section we discuss some APT malware that uses KCP for C2 communication.

Figure 4 shows a timeline of malware families using KCP protocol. We confirmed implementation of the KCP protocol
code for the first time in the Crosswalk malware in April 2020. Much of the malware implementing the KCP protocol is
related to China-based threat group APT41. There are few reports of this protocol being used in actual attack activity, and it
is not in common use. In addition, we have not yet confirmed the implementation of KCP for PseudoManuscrypt. However,
the newly confirmed (March 2022) gokcpdoor malware is different. This malware utilizes the kcp-go library to actually
perform C2 communication with the KCP protocol. In the following, we will introduce the KCP implementation of each
malware family.

Figure 4: Timeline of malware families using KCP protocol.

Crosswalk, KeyPlug and Pangolin8RAT with KCP

We start with a comparison of Crosswalk, KeyPlug and Pangolin8RAT, developed in C language (Figure 5). The left-hand
side is the original KCP source code in open source and on the right is the IDA decompiled code for each piece of malware.
You can see that the same code is partially implemented.

Figure 5: Comparison of Crosswalk, KeyPlug and Pangolin8RAT with KCP.

FunnySwitch with KCP
Next is a comparison of FunnySwitch, developed in C# language (Figure 6). The left-hand side is the kcp-dotnet source
code in open source and the right side is the decompiled code of FunnySwitch. This is also the same code.

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

5VIRUS BULLETIN CONFERENCE OCTOBER 2023

Figure 6: Comparison of FunnySwitch with KCP.

Gokcpdoor with KCP
Finally we look at gokcpdoor, which is developed in Golang (Figure 7). The left-hand side is the kcp-go source code and
on the right side is the decompiled code of gokcpdoor. The identical code implementation shows that gokcpdoor uses the
code from kcp.go.

Figure 7: Comparison of gokcpdoor with KCP.

DEEP DIVE INTO GOKCPDOOR
In the core of this paper, we look at the gokcpdoor malware samples in more detail, including the differences between them
and the implemented functions.
Gokcpdoor is a piece of malware with backdoor functionality, coded in Golang and cross-compiled for Linux (ELF) and
Windows (PE). There are minor differences, but both versions have the same functionality. Both gokcpdoor samples we
have confirmed are built with go1.17.5 (Figure 8). Also, this malware uses multiple OSS libraries. For more information on
OSS libraries, please see Appendix 1.

Figure 8: Embedded Go build version.

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

6 VIRUS BULLETIN CONFERENCE OCTOBER 2023

We also named this backdoor malware ‘gokcpdoor’ because its compile path contained the string ‘gokcpdoor’, as shown in
Figure 9.

Figure 9: Compile path containing gokcpdoor strings.

Comparison of Linux and Windows gokcpdoor functions
Figure 10 shows specific functions implemented by gokcpdoor in Linux and Windows. Malware functionality is almost
identical on Linux and Windows, but the Windows version has one characteristic function named ‘main_WinExec’. The
function literally executes the specified command by calling the WinExec API.

Figure 10: Gokcpdoor functions (left: Linux versions, right: Windows versions).

Backdoor function
Gokcpdoor starts opening a port with a hard-coded port number using the net_ResolveUDPAddr functions and net_
ListenUDP functions of Golang (Figure 11). Figure 12 is the result of executing the ‘ss’ command, which can display
information about the socket. In this sample, we can see that 10054/udp is open. In addition, the backdoor port number
differs depending on the sample.

Figure 11: Opening 10054/udp using net package functions.

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

7VIRUS BULLETIN CONFERENCE OCTOBER 2023

Figure 12: All open UDP ports listed by the ‘ss’ command.

Figure 13 shows part of a function that decodes the port number opened by gokcpdoor. The backdoor port number has been
encoded by XOR and Base64. In this case, there is the encrypted binary data at offset ‘0x7AEFD0’ in the blue-line frame.
Decoding with the hard-coded XOR key and Base64, you can get the port number and the string ‘nId2jUd3Ld1Fxe’. This
is a fixed string sent when starting the backdoor C2 operation. By sending it once, multiple commands can be executed
until the backdoor session expires.

Figure 13: Port number and the identifier decoding.

C2 commands
Table 4 (on the following page) shows a list of C2 commands for gokcpdoor. The malware has 20 commands, for
execution, uploading and downloading files, file manipulation, port forwarding, and so on. In particular, the exec, shell,
upload and download commands play an important role in controlling the victim host.

Communication data format
Gokcpdoor sends and receives data in Base64-encoded strings and a newline code format. For example, the C2 commands
to execute the Windows calculator (calc.exe) are Base64-encoded ‘exec’ and ‘calc.exe’. Each command/result is sent
separately with a trailing line feed (LF) from the C2 server to gokcpdoor as UDP data after it has been encapsulated and
encrypted by the kcp-go library, as illustrated in Figure 14.

Encryption method
Figure 15 shows the code for gokcpdoor’s encryption method. It uses PBKDF2, Key Derivation Function, with
HMAC‑SHA-1 and AES 256 bit. We can see password, salt, iterations, and derived key length on this code.
The derived key is shown in the area highlighted in Figure 15 in grey. C2 commands and executions results are encrypted
with AES using this key and a hard-corded initialization vector into the kcp-go library.

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

8 VIRUS BULLETIN CONFERENCE OCTOBER 2023

Command Description
exec Execute a program
shell Start reverse shell session
wget Download a file from URL on infected host
upload Upload a file from C2 server to infected host
download Download a file from infected host to C2 server
dir / ls List the contents of the specified directory
mkdir Create a directory
rm Remove the specified directory or file
cd Change current directory
pwd Get current directory path
whoami / id Get username by executing ‘whoami’ or ‘id’ command
getos Get OS information by executing ‘wmic os get name’ or ‘uname -a’ command
ps List all running processes
Ifconfig / ipconfig List all network interfaces
netstat Get network statistics about all active connections
portfoward list: List all port forwarding settings

add: Add port forwarding setting which TCP or UDP can be selected
delete: Delete port forwarding setting

socks5 list: List all SOCKS5 settings
add: Add SOCKS5 setting
delete: Delete SOCKS5 setting

charset Change character set (gokcpdoor only supports UTF-8)
back End C2 command operation
exitprocess Terminate own process

Table 4: List of C2 commands.

Figure 14: Encapsulation of transmitted data.

Figure 15: Gokcpdoor encryption method.

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

9VIRUS BULLETIN CONFERENCE OCTOBER 2023

ATTRIBUTION
In this section we predict the attributes of the APT actors that use gokcpdoor.

Infection chain for gokcpdoor
Figure 16 shows an example of the gokcpdoor malware infection chain in 2021 to 2022. APT actors use stolen credentials
to break into the victim’s network and install malware using lateral movement. Gokcpdoor and the ABK downloader [8]
were found on multiple servers and PCs. ABK has been used by Chinese APT actor Tick since 2019.

Figure 16: Example of a gokcpdoor infection flow.

Figure 17 illustrates the ABK downloader infection process. ABK is embedded as an encrypted payload in the OAED loader
malware [9] (the payload is included after the yellow-line frame of Figure 18). The string ‘v|xI?1bW’ in the yellow-line frame
is a marker to locate the payload. The OAED loader executes using the DLL side-loading technique and decrypts the payload
with XOR. Then, the loader executes ABK via process hollowing into legitimate processes such as svchost.exe.

Figure 17: ABK downloader infection process.

Figure 18: Decryption and process injection of the payload (ABK downloader).

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

10 VIRUS BULLETIN CONFERENCE OCTOBER 2023

The ABK downloader has four main characteristics:

•	 It detects some anti-virus products (Figure 19).

•	 It collects MAC address, system information and anti-virus product information and sends the details to C2 servers
using no space User-Agent (Figure 20).

•	 It executes only during working hours (08:00 to 18:00) using the GetLocalTime API.

•	 It uses legitimate websites as C2 servers and downloads the next malware.

Figure 19: Detection of specific anti-virus products.

Figure 20: Specific User-Agent and C2 server.

Relationship between APT actors and malware
Figure 21 shows the relationship between various APT actors and pieces of malware. As mentioned earlier, most malware
that uses the KCP protocol is associated with APT41, and gokcpdoor is also suspected to be associated with this group.
However, as described in the last section, we have found gokcpdoor along with malware used by the Tick actor, and for this
reason we believe it is related to Tick. (For a summary of attribution, see Appendix 2.)

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

11VIRUS BULLETIN CONFERENCE OCTOBER 2023

Figure 21: Overview of attribution (APT actors and malware).

COUNTERMEASURES
In this section we discuss measures that could be used to prevent and detect gokcpdoor and similar threats.

KCP traffic detection
KCP traffic can be difficult to identify. For this reason, it is important for network security products to check unknown
UDP traffic. KCP traffic also has some characteristics that can be found using a Splunk query, as shown in Figure 22.
(Please refer to Appendix 3 for Splunk Steam settings.) In addition, it is possible to analyse suspicious UDP traffic using
KCP dissector [10], as shown in Figure 23.

Figure 22: Searching for KCP traffic on Splunk.

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

12 VIRUS BULLETIN CONFERENCE OCTOBER 2023

Figure 23: Example of using cfadmin-cn/kcp_dissector [10] for Wireshark to analyse suspicious UDP traffic.

Detection of gokcpdoor
Gokcpdoor can be detected and prevented using the following methods:

•	 Using a YARA rule (see Figure 24)
•	 Using Autoruns to check suspicious AutoStart Extensibility Points (ASEPs)1

•	 Using Sysmon to check the recording of Create Process and Network Connect events (Figure 25)

•	 Using EDR products to check execution of shell commands can be traced by process tree (Figure 26)

Figure 24: Example YARA rule of gokcpdoor malware.

1 In the case we analysed the APT actor had registered gokcpdoor as a service to implement persistence mechanisms.

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

13VIRUS BULLETIN CONFERENCE OCTOBER 2023

Figure 25: Example logs (Network Connect) of Sysmon Linux after gokcpdoor has been executed.

Figure 26: Example of CrowdStrike Falcon graphs process tree.

CONCLUSION
Gokcpdoor is a backdoor malware coded in Golang using KCP protocol for C2 communication. Attack vectors using the
KCP protocol are on the rise and may be used more and more in the future.
We have shared some detection and prevention methods to protect against this and similar threats.
We have also suggested a possible relationship with the China-based APT actors Tick or APT41, but attribution is difficult.
We plan to continue to investigate APT actors using gokcpdoor and provide updated information that will help security
researchers and defenders.

REFERENCES
[1]	 KCP. https://github.com/skywind3000/kcp.
[2]	 Kcp go. https://pkg.go.dev/github.com/xtaci/kcp-go.
[3]	 Positive Technologies. Higaisa or Winnti? APT41 backdoors, old and new. 14 January 2021.

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-
and-new/.

[4]	 Yeh, S.; Chang, L. The next-gen PlugX/ShadowPad? A dive into the emerging China-nexus modular trojan,
Pangolin8RAT. Black Hat Asia 2022. https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-
NextGenPlugXShadowPad.pdf.

[5]	 Kaspersky. PseudoManuscrypt: a mass-scale spyware attack campaign. 16 December 2021.
https://ics-cert.kaspersky.com/publications/reports/2021/12/16/pseudomanuscrypt-a-mass-scale-spyware-attack-
campaign/.

[6]	 Brown, R.; Ta, V.; Bienstock, D.; Ackerman, G.; Wolfram, J. Does This Look Infected? A Summary of APT41
Targeting U.S. State Governments. Mandiant. 8 March 2022. https://www.mandiant.com/resources/blog/apt41-us-
state-governments.

https://github.com/skywind3000/kcp
https://pkg.go.dev/github.com/xtaci/kcp-go
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf
https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf
https://ics-cert.kaspersky.com/publications/reports/2021/12/16/pseudomanuscrypt-a-mass-scale-spyware
https://ics-cert.kaspersky.com/publications/reports/2021/12/16/pseudomanuscrypt-a-mass-scale-spyware
https://www.mandiant.com/resources/blog/apt41-us-state-governments
https://www.mandiant.com/resources/blog/apt41-us-state-governments

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

14 VIRUS BULLETIN CONFERENCE OCTOBER 2023

[7]	 KCP.cs. https://github.com/qchencc/kcp-dotnet/blob/master/Source/Network/KCP.cs.
[8]	 nao_sec. An Overhead View of the Royal Road. 29 January 2020. https://nao-sec.org/2020/01/an-overhead-view-

of-the-royal-road.html.
[9]	 Macnica Networks and TeamT5. APT Threat Landscape in Japan 2020. 21 May 2021. https://www.macnica.co.jp/

business/security/manufacturers/files/mpressioncss_ta_report_2020_5_en.pdf.
[10]	 KCP dissector. https://github.com/cfadmin-cn/kcp_dissector.

APPENDIX 1: OSS LIBRARY LISTS
Table 5 lists the Golang OSS libraries used by gokcpdoor.

OSS Libraries (GitHub) Description
klauspost/Reedsolomon Provides Reed-Solomon Erasure Coding
klauspost/cpuid Gets information about related CPU
templexxx/cpu Gets information about related CPU
templexxx/xorsimd Provides XOR code engine
pkg/errors Provides simple error handling primitives
tjfoc/gmsm Provides Chinese cryptographic algorithm
txthinking/x Provides some network utilities function
txthinking/runnergroup Ends concurrency reliably
patrickmn/go-cache Provides in-memory cache function
xtaci/kcp-go Provides KCP connection

Provides KCP session implemented by UDP
txthinking/socks5 Provides SOCKS5 implemented for client

Provides UDP support for SOCKS5
BishopFox/Sliver Provides API for finding and listing processes

Provides ‘netstat’ command function
digibib/tcpforward Provides forward TCP traffic
1lann/udp-forward Provides forward UDP traffic

Table 5: List of OSS libraries.

APPENDIX 2: DIAMOND MODEL
Figure 27 shows the Diamond Model for the gokcpdoor campaign.

Figure 27: Diamond Model of this campaign.

https://github.com/qchencc/kcp-dotnet/blob/master/Source/Network/KCP.cs
https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html
https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html
https://www.macnica.co.jp/business/security/manufacturers/files/mpressioncss_ta_report_2020_5_en.pdf
https://www.macnica.co.jp/business/security/manufacturers/files/mpressioncss_ta_report_2020_5_en.pdf
https://github.com/cfadmin-cn/kcp_dissector

LET’S GO DOOR WITH KCP ISHIKAWA & MATSUMOTO

15VIRUS BULLETIN CONFERENCE OCTOBER 2023

APPENDIX 3: SPLUNK STREAM SETTINGS
To search KCP traffic within Splunk, you need to enable UDP traffic capture and content recording in the Splunk Stream
app, as shown in Figure 26. We recommend estimating the amount of logs before setting these up in production.

Figure 26: Splunk Stream settings.

APPENDIX 4: INDICATORS OF COMPROMISE (IOCs)
The following files were analysed for this paper.

Indicator Type Context
86f02e9f344a8e8009e59ecae934a780 MD5 ABK Downloader
d85c9b3d49b1af482c384a4253c16e28ae65a0f5 SHA1
61eb25a6e6457087232de7ce7cd7b6cd9926e10674487c9e55b9a3fa54748b4c SHA256
Mozilla/4.0(compatible;MSIE8.0;WindowsNT6.0;Trident/4.0) User-Agent
a6f4a5ec66b7c5f275e793be02885543 MD5 gokcpdoor for Linux
bdb3db1013b16cb64b3f8156eae621054fa334bf SHA1
2dd8ab1493a97e0a4416e077d6ce1c35c7b2d8749592b319a7e2a8f4cd1cc008 SHA256

Table 6: Samples related to this campaign.

