y LONDON

4 - 6 October, 2023 / London, United Kingdom

SOUTH KOREAN ANDROID BANKING MENACE -
FAKECALLS

Bohdan Melnykov & Raman Ladutska
Check Point Software Technologies, Israel

bmelnykov@checkpoint.com
ramanl@checkpoint.com

www.virusbulletin.com

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

ABSTRACT

When malware actors want to enter the cybercrime business they can choose markets in which, according to documented
past results, their profit is almost guaranteed to be worth the effort. The malware does not need to be high profile; careful
selection of the audience and the right market can be enough.

This ‘stay-low, aim-high’ approach is what we have seen in our research. We encountered an Android trojan named
FakeCalls, a piece of malware that can masquerade as one of more than 20 financial applications and imitate phone
conversations with bank or financial service employees — this type of attack is known as voice phishing. FakeCalls targets
the South Korean market and possesses the functionality of a Swiss Army knife, being able not only to conduct its primary
function but also to extract private data from the victim’s device.

Voice phishing attacks have a long history in the South Korean market. According to a report [1] published on a South
Korean Government website, financial losses due to voice phishing amounted to approximately US$600 million in 2020,
with the number of victims [2] reaching as many as 170,000 in the period from 2016 to 2020.

We discovered more than 3,500 samples of the FakeCalls malware that used various combinations of mimicked financial
organizations and implemented anti-analysis (aka evasion) techniques. The malware developers paid special attention to the
protection of their malware, using several unique evasions that we had not previously seen in the wild.

In our investigation we describe all of the anti-analysis techniques we encountered and show how to mitigate them, dive
into the key details of the malware’s functionality, and explain how to stay protected from this and similar threats. In
addition, we show how the voice phishing scheme is implemented in FakeCalls and explain the tricks used for resolution of
command-and-control (C&C) servers.

VOICE PHISHING

The idea behind voice phishing is to trick the victim into thinking that there is a real bank employee on the other end of the
call. As the victim believes that the application in use is a genuine internet-banking (or payment-system) application, there
is no reason to be suspicious of an offer to apply for a loan with a lower interest rate — the offer is, of course, fake. At this
point, the malware actors can lay the necessary groundwork to understand how to approach the victim in the best way
possible.

At the point at which conversation actually happens, the phone number belonging to the malware operators, unknown to
the victim, is replaced by a real bank number. Therefore, the victim is under the impression that the conversation is taking
place with a real bank and a real employee. Once trust has been established, the victim is tricked into ‘confirming’ their
credit card details in the hope of qualifying for the (fake) loan.

Figure 1 outlines the principal scheme of the attack.

1 — ‘ X
Malware app imitating Fake loan offer inside with Malware operators
e-banking app lower interest rate can make necessary
preparations
2 c E (s
Phone number of Victim “confirms” the « »
criminals replaced with credit card data hoping to Reward” for
a real bank number get a loan malware operators

Figure 1: The key steps of a voice phishing attack.

Targeted financial institutions are selected from amongst the largest and most prominent in the banking sector: strong repay
capacity ratings as evaluated by the South Korean Government and major world agencies, with revenues of billions of
South Korean Won (KWR), equal to millions of US dollars. Mimicking the applications of such organizations increases the
chances of attracting suitable victims.

When victims install the FakeCalls malware, they have no reason to suspect that some hidden catches are present in the
‘trustworthy’ internet-banking application from a solid organization.

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

In step 2 of the voice phishing attack, instead of a phone conversation with a malware operator, a pre-recorded audio track
can be played, imitating instructions from the bank. Several different tracks are embedded into different malware samples,
corresponding to different financial organizations.

One way or another, the malware operators get hold of the private financial data of the victim, meaning that the goal of
attack is achieved successfully.

TECHNICAL DETAILS

In this section we describe the anti-analysis techniques used by FakeCalls, as well as the process of dropping the final
payload and the details of its network communication.

Anti-analysis techniques

We encountered three unique anti-analysis techniques in different malware samples that we had not previously observed in
the wild. We took the following malware sample and analysed all three evasions we encountered inside:

£8823780d2822307e995528bd7a34al1735e66bd2fe22404e02053cb92b0ab6cb
If we try loading such a sample into analysis tools, they fail, as shown in Figure 2 on attempting to load it into JEB Pro.

File Edit Navigation Action Android Native Debugger Window Help

s @/ s e .

*1: Project Explorer

® F8823780d2822307e995528bd7a34a1735ef
28bd7a34a173
307e995528bd7a34a1

R AndroidManifest.xml = Logger & Terminal 4 Quick Search

¥ Colors | ¢yl INFO

1.2G/8.0G
Figure 2: FakeCalls failed to load in JEB Pro.

Let’s dissect and mitigate each of the anti-analysis techniques one by one, to finally be able to load and analyse the
malicious payload.

Multi-disk

The first evasion is called ‘Multi-disk’. When trying to load the APK into the analysis tools an exception is shown, stating
that multi-file archives are not supported.

*1; Project Explorer

~ & F8823780d2822307e995528bd7a34a1735e¢
~ ® F8823780d2822307e995528bd7a34a173

~ [® F8823780d 307e995528bd7a34a1l
B AndroidManifest.xml B Logger & Terminal 4 Quick Search

Figure 3: Exception saying that multi-file archives are not supported.

We understand that the APK cannot be split into multi-disk archives, so we checked this information in the APK by
analysing the ZIP header data. The relevant entry is the central directory file header. The end of this record, EOCD [3],
contains information about the disk count at offsets 4 and 6. We will also pay attention to the offsets 10 and 12.

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

Offset Bytes | Description

0 4 End of central directory signature = 0x06054b50

4 2 Number of this disk (or Oxffff for ZIP64)

6 2 Disk where the central directory starts (or Oxffff for ZIP64)

8 2 Number of central directory records on this disk (or Oxffff for ZIP64)

10 2 Total number of central directory records (or Oxffff for ZIP64)

12 4 Size of central directory (bytes) (or Oxftftfftf for ZIP64)

16 4 Offset of start of central directory, relative to start of archive (or Oxffffftff for ZIP64)
20 2 Comment length (n)

22 n Comment

EOCD marks the end of the ZIP so the required byte sequence can be found at the end of the file, as shown in Figure 4.

f8823780d2822307e995528bd7a34a1735e66bd2fe22404e02053ch92b0a56ch* x

49 46 45 34
AD 19 33 04 72
00 DO 00 00 e 2lbs

Figure 4: Selected sequence at the end of the file.

The processed structure is shown in Figure 5.

Output

Figure 5: Values of the structure fields.

Based on the very large values in the disk number fields, we understand that the malware developers edited these fields and
entries. To mitigate this evasion technique, we set the e1Di skNumber value to 0, as the archive is not a multi-disk one.
Subsequently, the value of elStartDiskNumber is also set to 0.

Also, in legitimate APKSs the values elEntriesInDirectory and elDirectoryOnDisk are the same. Having
empirically verified that the correct value is 1075 (the initial value of elEntriesInDirectory) as opposed to 6573, we
set the value of elDirectoryonDisk to 1075 as well.

AndroidManifest

The second evasion goes by the name ‘AndroidManifest’. The AndroidManifest file must start with a specific magic
number: 0x00080003. Apktool also allows another constant, 0x00080001, to be present at the beginning of the manifest:

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

I: Using Apktool 2.6.1 on f8823780d2822307e995528bd7a34a1735e66bd2fe22404e02053cb92boas6ch

I: Loading resource table...

I1: Decoding AndroidManifest.xml with resources...

Exception in thread "main" brut.androlib.err.RawXmlEncounteredException: Could not decode XML

at brut.androlib.res.decoder.XmlPullStreamDecoder.decode(XmlPullStreamDecoder. java:145)

at brut.apdrclib.res. ; J anifest(XmlPullStreamDecoder.java:151)
Caused by: java.lo.IOException

at brut.util.ExtDatalnp

Figure 6: Correct values, one of which must be present at the beginning of the AndroidManifest file.

Apktool expects the additional constant because of an issue [4] when it failed to decode the manifest file, after which the
constant 0x00080001 was added to the code. However, the correct value in the AndroidManifest header is 0200080003,
which is equal to the constant name CHUNK_AXML FILE in the apktool source code [5], not CHUNK AXML FILE BROKEN,
which is equal to 0x00080001.

5936 private static final in‘tlEI—U‘-I{_J-'J.X.'-IL_FILE = PudeaEeasg3, CHUNK_AXML_FILE_BROKEN = @x@ecsesal,
937 CHUMK_RESOURCEIDS = 9x@@aselse, CHUNK_MXML_FIRST = @xd@leslea,
938 CHUMK _XML_START_MAMESPACE = @x@8lealead,

Figure 7: Constants for AndroidManifest headers defined in the apktool source code.

The analysed file starts with 0x00080000.

AndroidManifest.xml x

Figure 8: Magic number at the beginning of the AndroidManifest file.

Besides an unexpected magic number, the file contains other things that break the decoding process, as seen in Figure 9 in
an exception thrown by the jadx tool.

File Wiew Navigation Tools Help
A CHLE ZKQ «-2>FB0amE F
f8823780d2822307995528bd7a34a1735e66bd2f . AndroidManifest.xml

Source code Error decode manifest

Resources 2 java.ic.l0Exception: Expected strings start,|expected offset: @x188, actual: ms<134|
assets at jadx.core.xmlgen.ParserStream.checkPOS|Parser ot ream. java: 124]
junit 1 at jadx.core. xmlgen.CommonBinaryParser. parseSt ringPoolNoType(CoamonBinaryParser . java:29)
META-INF at jadx.core.xmlgen.BlnaryXMLParser.decode(BinaryXMLParser. java: 109)
okhttp3 at jadx.core.xmlgen.BinaryXMLParser.parse{BinaryXMLParser.java:81)
ara

Figure 9: Exception when decoding the AndroidManifest file using the jadx tool.

To find out what causes this exception, we first break down the AndroidManifest structure.

Size Comment

8h

4h

4h
15A8h
4h

4h

4h

4h

4h

4h

4h
160h
Eh

Eh

Figure 10: AndroidManifest structure and its fields — the one causing the exception is outlined.

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

By checking the offset shown in the exception, we can see that the issue is in the scStringOffsets array field, in its last
element (0x24 + 0x160 = 0x184 — the exact offset shown in the exception).

When examining this array closely, we see that the offset of the last string is pointing out of the file.

11 00 00 1. 12
12 00 00 1. DO CZ2 12
13 00 00 1 13

C 13 00 00 13 14
00 74 00 IS5 GO 0 00 G5 00
00 61 00 62 00 00 &C 00
00 6F 00 6E 00 OO 00 04 00 6

Template Results - AndroidManifest.bt &

MName
uint

uint

uint se

uint 5

uint scStringOffsets[871] 7602181
b struct STRING_ITEM stritem[0 theme

Figure 11: Wrong last string offset in the array.
The string ‘theme’ is wrongly interpreted as an offset value in the last element of the array, number 87.

This means that the value of the scStringCount should be less by 1, i.e. set to 86. Now there are 87 elements in the array,
each of four bytes. A multiplication of 87*4 is equal to 348, which is 0x15C in hex. As the scStringOffsets field starts
at 0x24, now it ends at 0x24 + 0x15C, which is equal to 0x180 — exactly what is expected in the analysis tool.

After all the relevant fixes have been applied, apktool throws yet another exception.

ol 2.6.1 on f8823780d2822307e995528bd7a34a1735e66bd2fe22404e02053cb92bfas6¢ch
Loading resource table...
Decoding AndroidManifest.xml with resources...
xception in thread "main" java.lang. Hcgattveﬁrrdy'LLcExceptl
at brut.androlib.re C
brut.androlib.res.dec
brut.androlib.res.decoder.

_.mlPullParqerDelegate java:165)
brut.androlib.res.decoder.XmlPullbtrcachc der. decode(XmlPullHtreamDecoder java:138)
brut.androlib.res.decoder.XmlPullStreamDecoder.decodeManifest(XmlPullStreamDecoder. java:151)
brut.androlib.res.decoder.ResFileDecoder.decodeManifest(ResFileDecoder. java:159)
brut.androlib.res.AndrolibResources.decodeManifestWithResources(AndrolibResources. java:193)
brut.androlib.Androlib.decodeManifestWithResources(Androlib. java:141)
brut.androlib.ApkDecoder.decode(ApkDecoder. java:189)
brut.apktool.Main.cmdDecode(Main. java:175)
brut.apktool.Main.main{Main. java:79)

Figure 12: Exception thrown by apktool; the key points to investigate are outlined.

On examining the source code of apktool, we understand that the exception occurs because of bad size calculation for the
allocated array.

Figure 13 shows the key code line after the execution of which the exception occurs.

Examining the values of the fields in the STRINGCHUNK AndroidManifest structure, we’re interested mainly in
scStylePoolOffset, which corresponds to the stylesOffset variable in apktool code. If it is not equal to zero, the
array is allocated. Its value is 4,269,912,320, which is equal to 0xFE81B100, and as this value is represented as int

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

int chunk

block.n

Figure 13: The key code line after execution of which the exception occurs.

(signed) in the code, it is treated as -25,054,976. scStringPoolOffset (stringOffset in the code) has a value of 376,
and by subtracting the two numbers, we get the exact value from the exception: -25,054,976 — 376 = -25,055,352 (see
Figure 12).

Based on the value (0) of the scStyleCount field, we can see that the file shouldn’t contain ‘styles’, and the value of the
scStylePoolOffset field should be 0x00000000

00 00
00 oo 00
00 oo 00
0o i 00
00 00 AB . 00
01 oo 01 00
2 0 oo 01 00
8 02 02 2 00
02 00 D8 02 2 00
03 00 24 03 3 00
92 03 00 03 00 00 3A 04 2 00
CE 04 00 22 05 00 00 74 05 5 00
FC 05 00 3C 06 00 00 80 06 6 00
Template Results - AndroidManifest.bt &
Name
ngChunk
1835009
5544
88

q
37

4269912320

Figure 14: Values of the fields in the STRINGCHUNK structure.

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

Files

The third and final evasion is simply called ‘Files’. This technique is related to the files inside the APK. At this point, after
applying the two previous fixes, the target APK loads successfully in JEB Pro and jadx, but apktool still throws an
exception when analysing this file.

I: Using Apktool 2.7.0 on f8823780d2822387e995528bd7a34a1735e66bd2fe22404e02053cb92b0as6ch
I: Copying raw resources...
I: Baksmaling classes.dex...
I: Copying assets and libs...
Exception in thread "main" brut.androlib.AndrolibException: brut.directory.DirectoryException:
Error copying file: assets

at brut.androlib.Androlib.decodeRawFiles(Androlib. java:169)

at brut.androlib.ApkDecoder.decode(ApkDecoder.java:166)

at brut.apktool.Main.cmdDecode(Main.java:175)

at brut.apktool.Main.main(Main.java:79)
Caused by: brut.directory.DirectoryException: Error copying file: assets

at brut.directory.DirUtil.copyToDir(DiruUtil. java:99)

at brut.directory.AbstractDirectory.copyToDir(AbstractDirectory.java:208)

at brut.androlib.Androlib.decodeRawFiles(Androlib. java:156)

... 3 more
Caused by: brut.directory.DirectoryException: Error copying file: hSeCvupVLj7NCqcVvmpr4wmjojWp
1CUTQRZbyew1P2KOWPX6f0sz5bLzG5D1IKN zn8WBbwr@zMbWwxvx1KEjvYOFAFDLksepAAIRbEdrbIGzINjH1ZRai0eAu
QaG4QPgIXwW7ZOWXGNiXroGYweDwLehBwixvEHYv4A2XgnTFCUE61rifjmk8msFDP6KRQa30ZY32xTH1iN95gKmKedsmrwBi
M5yhvoboCBFgdzr TAPcUoyp4DWFS9ZMNYPr89LmFmUCOf fGQTKWMURSNQFPO1UqNe2SyiuVZDITIEGZY

at brut.directory.Dirutil.copyToDir(DiruUtil. java:99)

at brut.directory.Dirutil.copyToDir(Dirutil. java:71)

at brut.directory.AbstractDirectory.copyToDir(AbstractDirectory.java:198)

at brut.directory.Dirutil.copyToDir(Dirutil. java:87)

... 5 more
Caused by: java.nio.file.FileSystemException: fB8823780d28223087e995528bd7a34a1735e66bd2fe22404e
102053cb92b@as6ch.out/assets /hSeCvupVLjTNCQcVvmpr4wmjo jWPLCUTQRZbyewlP2KOWPX6T0sz5bLzG5DLIKN]zn
8WBbwWr@zMbWwxvx1KEjvYOTAFDLksepAAIRbEdrblGzINjH1ZRa10eAUQaGAQPIXWTZOWXGN1XroGYWEDWLehBWixvEHY
V4A2XQNTFCUE61rifjmk8msFDP6KRQa30ZY32XxTHLN9S hvOboCBFgdzrTAPcUoyp4DWFS9ZMNyPr89L
mFmUCOfFGQTKWMURSNQFPO1uqNO25SyiuVZDIIEGZY :

at java.base/sun.nio.fs.UnixException.translateToIOException(UnixException.java:100)

Figure 15: Apktool can't copy the file because of its long name.

From the exception description, ‘File name too long’, we understand that file name is too long and investigate all the files
inside the APK.

Name
+ [assets

= 7 ageivghhbKc7nQ13jfHObP

~ 7 tPxZFzmZjDbUFSuA4tXd8DfApGVFOQbg501QCzW30V3Dm6wIZPNQpLd1)DKOOROECS0q209EHANMKNSthKRkcw2tkOh90XojWzbrgftkRiivy1r7WqZe
g | ZBgdGg2HOPVPeBkLAMfgGE4NnG6LTkn)8ki795nL9COREXQuAgvvdUYFYH3ILXjwWIXFEFMRMMgZ3XA00M4MZ2GowOLBbQOIsr6zLIy55PCNOM|hdS04HI4)ljs4WQGM5HM2
~ 7 pPnoskTelxbcugs
[svVUb0cb

+ 7 ajmsjfgllcf7DMTsHZHLgblquBOENEXNLTVelfRIBXScc1KmYBBqT2D2loyzoWYSTYvH20gBhOKEgioDxXQmcgEUD447SruPg8uoFdvkuliUROVC

+ 7 bbkxqdh7DwbryxMIfstg5Lk2riByvyXQSs04FKTNWTzmho

~ 7 bhgurkkjlAQtzQoDf|Tgje006Q8
~ 7 wvdEs)hj30

~ 7 tiskouS0ougATn

~ 7 HuyBp2
~ P ByRYxmMO0)elCJzl1E0QoQOUTcOEIZUSOWO3jLXNigkVI0gPL944MKOUYPYWHS AbOxBQ]HypSnHhG 3IgWI3n60gdiQfF 0bgAQi6Z3KgeKOmycGZ5hP
~ 7 vOng0q414C4zQhhCyTTolfZNrOS
~ 7] M2kylbvKDC7)9cmMQoGr6eBIyAZqbKZwI3TcsGOPWHIV
~ 7 kpj3machBfIBIOVMF|3nk
~ 7 fkuk
[F 15zffgolQxZNWphYzMgG

7 bingzcholB6fCNOOVWEShmHShDI9S2ItDEAWLT]MiHp3)qdk9wxxvGBXKv7 Nk]vKyX0T5dBcux9Qsfuvz9
7 bstpyldljjlxxbCVpm8onreFho
7 cagiahxokfuQsC2FxULQICmhIDK
7 ckhpdijb

Figure 16: Files inside the APK.

What we see is that the developers added a large number of files to the asset folder inside nested directories. As a result, the
length of the file name and path exceeds 300 characters (as shown in Figure 17) — it is this that causes the exception.

These files break the logic of tools, like apktool, that cannot remap file locations and may fail during APK decompilation.
After analysing the API calls from the bytecode, we can see that there are no actual references to these files. This means
that such files can be manually removed from the APK as they are no longer required.

Finally, the resulting APK can be processed inside all the typical analysis tools.

file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%209.png

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

E5| D1 C3 (9D

4B 03 66 F8 K..EA&6ayp. fok—.
DA B2 28 00 TR e P T
65 74 2F 63 ets/gouocoecck57r
43 30 6E 47 76 I102nPPspTJHGvOXT7
7 b 64 S5A 65 qvjdP1Y¥lo/uZemn4
37 62 50 39 2F 7bcP71iiKUjE9/rot

Template Results - ZIPbt &

Name Value
b struct ZIPFILERECORD record[971] assets/nul.nT
> struct ZIPFILERECORD record[972] assets/hSeCvupVLj7NCqcVvmprdwmjojWPICUTQRZbyew1P2KOWPX6fOsz5b
b char frSignature[4] PKI
ushort frversion 3795
ushort frFlags 26413
enum COMPTYPE frCompression -17542
DOSTIME frFileTime
DOSDATE frFileDate
uint frCrc 66B753B6h
uint frCompressedSize 183
uint fruncompressedSize 183
ushort friileNameLength 302
ushort frExtraFieldLength 37
b+ char friileName[302] assets/hSeCvupVLj7NCgcVvmprdwmj0jWPICUTQRZbyew1P2KOWPX6f0sz5b
b uchar frExtraField[37]
¢ uchar frDatal183]
¥ struct ZIPFILERECORD record[973] assets/goucoecck57rl02nPPspTJHGvox7qvjdP1Ylo/uZemnd 7bcP7iiKUjE9/rotX
+ char frSignature[4] PKI
ushort frversion 50316
ushort frFlags 62443
enum COMPTYPE frCompression -27
DOSTIME frFileTime
DOSDATE frfileDate 03/06/2104
uint frCrc DA9DI7C6h
uint frCompressedSize 178
uint fruncompressedSize 178
ushort friileNameLength 303
ushort frExtraFieldLength 40

Figure 17: Length of the file name (selected in the screenshot).

femp/fixed.apk - JEB Pro
File Edit Navigation Action Android Native Debugger Window Help

= Hl A& 5 b - . Omnibox (F3) ...

"1; Project Explorer # Bytecode/Disassembly

~ & fixed.apk.jdb2
~ ® fixed.apk

~ [®s03i9.qskod.mpeg8q
Manifest (MainActivity)
@ Certificate
Bytecode INotificationSideChannel
& Resources
& Assets

(ApplicationStart)

Q system
value = {
Bytecode/Hierarchy INotificationSideChannel$Stub,
INotificationSideChannelsDefault
android Ii

Description HexDump Disassembly Graph Strings

¥ androidx

com

- & flyco B Logger & Terminal 4 Quick Search

~ 5 roundview Creating a new project (primary file: /tmp/fixed.apk) ™ Colors | gyel.

© BuildConfi . roi A INFO
uildConrig [I] Adding artifact to project: /tmp/fixed.apk

[1]

[1]

> @R {fixed.apk > fixed.apk}: Resource files adjusted (958)
DU HolindFrametmn; {fixed.apk > s8319.qgskod.mpeg8q}: Analysis completed
> ® RoundLinearLayot
> ® RoundRelativeLay
> @ RoundTextView

> ® RoundViewDelega
gessloop

= encrypt

-k

Figure 18: FakeCalls successfully loaded in JEB Pro.

file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2010.png
file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2011.png

10

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

Inside the malware

The FakeCalls payload is not launched at once. Instead, the dropper is used as an intermediate step.

Dropping process

The malware registers BroadcastReceiver for the application installation events. This receiver launches the dropped
APK later in the process.

intent@) {

();
(MainAc ()) & (MainActivity.
(MainActivity. i B ();
s1 = MainActivity. (MainActivity.):
MainActivity. < (, 51);
MainActivity.

Figure 19: Implementation of the BroadcastReciever responsible for launching the dropped APK.
Then the malware displays a button to click to start the payload installation.

/@ 11:53

Figure 20: Button saying ‘Click Install Setup’in Korean.

file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2014.png
file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2019.png

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

The APK is located inside the asset folder and is copied during the process of loading the view components.

ApkDownloadAsyncTask

AsyncResponse

()i
(stringBuildere.
(M {
{);

(s);
(stringBuildere. {));

+ stringBuilder®.

Figure 21: Code responsible for copying the APK.

When the payload is successfully dropped, the malware launches the application with the configuration that it gets during
the runtime.

intent® = ; (). (MainActivity.

(v == il
bundle® =

bundle@.
bundle@
bund
bund
bund
bund
bund
bund
bund . (, SharedPreferencesUtils.
bund : (i IH
intente. (bundleo);

(intente, v);

exception®) {

: + exception®.

Figure 22:Setting up the parameters when launching the application.

Live stream capture

FakeCalls also has the ability to capture and send live audio and video streams from the device’s camera to C&C servers
with the help of an open-source library [6]. The command processing method has a command called ‘stream’:

11

file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2020.png
file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2021.png
https://github.com/pedroSG94/rtmp-rtsp-stream-client-java

12

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

1) A
(jSONObject®.

Figure 23: Option in the code enabling capture of live streams.

The corresponding method starts an audio or video service, or stops them, depending on the ‘state’ variable value
received from the C&C server.

+ v);

Manager.a. ((NodeMana
NodeManager.z. ((NodeManager.
AppStar f

AppStart.

(d1.b(AppStart.
AppStart.

(NodeManager.z, Vi

NodeManager.
AppStart.1 = 1;

Figure 24: Code to capture live streams.

Upon the creation of the video service, the Rt spCamera? object is initialized by setting the authorization details and audio/
video configuration (bitrate, fps, noise cancellation, etc.).

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

)i

]
RtspCameraz (

Figure 25: Initialization of the RtspCamera?2 object.

Then the malware selects the front camera and starts streaming to the C&C server, which will be stopped after five minutes.

(intent®,

rvice.

+ exception®.

Figure 26: Code launching live streaming to C&C server.

FakeCalls may receive a command from the C&C server to switch the camera during the live streaming.

Network communication

The malware developers implemented several ways to keep their real command-and-control (C&C) servers hidden: reading
the data via dead drop resolvers in Google Drive or using an arbitrary web server. The use of dead drop resolvers is a
technique in which malicious content is stored on legitimate web services. Malicious domains and IP addresses are hidden
inside legitimate web services to disguise the communication with real C&C servers. We have identified more than 100
unique IP addresses by processing the data from dead drop resolvers.

Google Drive

In the first method the configuration is read via Google Drive: the malware contains an encrypted string with a link to
Google Drive where the file is stored.

Figure 27: Link to Google Drive inside the FakeCalls malware.

The name of the file is encrypted with AES. Figure 28 shows the code to get the encrypted file name from Google Drive.
After reading the file name, FakeCalls decrypts it with a hard-coded AES key and gets the real C&C configuration:

SERVER1 156.245.21.38-SERVER2 156.245.12.211-SERVER3_154.38.113.162-SERVER4 154.197.48.72~
SERVER5 154.197.48.125-SERVER6_154.197.48.195-SERVER7T_206.119.82.78-SERVER8_154.23.182.63~

SERVERY 154.197.48.93-SERVER10 154.197.48.212-SERVERLK 127.0.0.1

13

file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2023.png

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

{0
01

(0 {

Document document® = Jsoup.

(documente != ol
(object®: document®.

5 = ((Element)objecte).

e
(s)) {

(URL.

[1 arr_s = s. (=)
{arr_s = || arr_s.

(arr_s[o]) 7 : arr_s[e]. {}},

s1 = AESUtils. ((
(s1)) {

[1 arr s1 = s1.
(arr_s1 =) {

r

; +v) {
(v >= arr_sl. e

s2 = arr_sl1[v];
(1 T (s2}) {
[1 arr s2 = s2. [7
(arr_s2z 1= &5 arr_s2. / (arr_s2[e]}))) {
URL. (arr_s2[1]);
JVBaseActivity.

}
JWwUS2W1+9mjbH195Q5RYKGM7PQMIOB+L9R+qJgHemxHeJZPU0St9qujmO6UKbUIVEAetwdhnjlzvxlACu7u2ImSjFn7SEA/uZt6nABApPbBs69XFbXR8pPSVISAPIOM3KjIU... — O X

A /wwUS2W1+9mjbH19sQ" x +
I I . ® % A % O %mmgnim

&« C & drive.google.com,
‘i, E Signin

b AwUS2W1+9mjbH19sQ5RykGM7PQMIOB+ LR +glgHemxHe JZPUOBt9qujmO6U ... zZQP3YIATC ZXLtxOOdEQyShs A XmHNRIUTPMSSVEXfDme1otiThGmQ88pig==

No preview available

o, Download

Figure 28: The code to get the encrypted file name from Google Drive.

Fetch from alternative
The other way to communicate with C&C servers is when the malware has hard-coded an encrypted link to a specific

resolver that contains a document with an encrypted server configuration.

We used the following sample for the analysis of this network communication method:

4a422047bcl0a2ca692b33a80740ab64a5bbc325¢c348d3d4eealf£304d3c256e03

Figure 29 shows the code to perform a request to the arbitrary C&C resolution server.

file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2024.png
file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2025.png

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

()1

(stringUtils.

Stub() {

(serverInfc

Timber.w(
}

\
. (exceptiong
Timber.e(
}i
httpClient®. (s, ServerInfo. , serverInfoSer
. 0

Figure 29: The code to perform a request to the arbitrary C&C resolution server.

$ curl https://www.daebak222.com/huhu/admin.txt
{

"a0l": "eWV1IYWIrPjSmZmY dXBOc3B6IyMjP3J-fA==",
"b05": "Y2ViYWIrPj4gICI IyAjPykpPyAlKSspIiMjPnl4Zz30Q=",
"a07": "eWV1YWIrPj4gKSM ICc JSM ICkrJCEkJD55ZH1kPnBlfHh P2VpZQ=="

}

The first element is a new server address, the second one is the address of a stream server used for live streams capture, and
the last one is a link to a new dead drop resolver.

The malware decrypts all the data pieces and stores them for future use:

StringUtils {
(
[1 arr b :
(v = B; v < arr b.
arr b[v] (){arr b[v] ©

(arr b,

Figure 30: The code for decrypting the information received from the server.

CONCLUSION

In the case of the FakeCalls malware, the developers decided not to leave any aspect of their operations to chance. They
selected a profitable voice phishing market in South Korea where past results had proved to bring tremendous value for
cybercrime operators, harvesting approximately US$600 million from unsuspecting victims in 2020. The coverage of
170,000 victims in the five-year period from 2016 to 2020 only added fuel to the mix.

But the story did not end there. The malware developers took special care with the technical aspects of their creation as
well, implementing several unique and effective anti-analysis techniques. In addition, they devised mechanisms for
disguising the command-and-control servers behind the operations.

This case shows the importance of researching malware that is active in just one country out of almost 200 in the world.
The tricks and approaches used in this particular malware can be re-used in other applications targeting other markets
around the globe. There is no physical distance in a digital sphere, the information spreads rapidly and we must react
quickly in an ever-changing malware landscape.

REFERENCES
[1] National Police Agency. Status of voice phishing. https://www.data.go.kr/data/15063815/fileData.do.

[2] Voice phishing damage of 1.7 trillion won over the past 5 years... 170,000 victims. https://it.chosun.com/site/data/
html_dir/2020/09/28/2020092802480.html.

[3] End of Central Directory Record. https://docs.fileformat.com/compression/zip/#end-of-central-directory-record.
[4] Unable to decode AndroidManifest.xml. https://github.com/iBotPeaches/Apktool/issues/1976.

15

file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2026.png
file:///C:\Users\user\AppData\Local\Temp\Rar$EXa11584.44863\FakeCalls%205c05a080d8434e3a9f021dd4f53b6981\Untitled%2027.png
https://www.data.go.kr/data/15063815/fileData.do
https://it.chosun.com/site/data/html_dir/2020/09/28/2020092802480.html
https://it.chosun.com/site/data/html_dir/2020/09/28/2020092802480.html
https://github.com/iBotPeaches/Apktool/issues/1976

16

SOUTH KOREAN ANDROID BANKING MENACE - FAKECALLS

[5] Apktool constants. https://github.com/iBotPeaches/Apktool/blob/master/brut.apktool/apktool-lib/src/main/java/
brut/androlib/res/decoder/AXmlResourceParser.java#L.986.

[6] rtmp-rtsp-stream-client-java library. https://github.com/pedroSG94/rtmp-rtsp-stream-client-java.
INDICATORS OF COMPROMISE

Hashes

Sample with all the evasion techniques described (also included Google Drive dead drop resolvers):
£8823780d2822307e995528bd7a34al735e66bd2fe22404e02053cb92b0ab6cb

Sample with the arbitrary CnC resolution method:
4a422047bcl0a2ca692b33a80740ab64a5bbc325¢c348d3d4eealf304d3c256e03

Sample with video stream functionality:

e8396aabcccd30478e8£d0cf959ee996b6b727531bdeceled63482b053¢c24004

URLs

The full list of dead drop resolvers:
https://drive.google.com/file/d/1L7CMBivSNLIrCxmUpkXRZcyFqbgmcKyS5/view?usp=sharing
https://drive.google.com/file/d/1HZg40qw7DGgl2HT6ZuGkKLkf5a0DnaBT/view?usp=share link
https://www.daebak222.com/huhu/admin.txt
https://182.16.42.18:5055/huhu/admin.txt
http://182.16.42.18:10102/Teamviewer/admin.txt
http://182.16.42.18:10102/HanaBank/admin/admin. txt
http://182.16.42.18:10102/HanaBank/admin.txt
http://192.168.99.186:5000/admin.txt
http://192.168.99.33:5055/admin.txt
http://192.168.99.191:5055/admin.txt

https://github.com/pedroSG94/rtmp-rtsp-stream-client-java

