
LONDON

2023

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE
INTO A KUBERNETES (K8S) INFECTION
Santiago Abastante
Solidarity Labs, Argentina

sabastante@solidaritylabs.io

4 - 6 October, 2023 / London, United Kingdom

www.virusbulletin.com

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

2 VIRUS BULLETIN CONFERENCE OCTOBER 2023

ABSTRACT
Kubernetes (K8s) is an orchestration system for automating software deployment, scaling and management, and if you
don’t already know… it’s really hot right now.
When implemented in a cloud environment, it allows a service to grow almost without limit because the K8s cluster can
create and destroy servers at will, based on the load of the containers running. Imagine what can go wrong when attackers
get hold of this power… you’re right, lightspeed growth equals a lot of destructive power.
In this paper we will analyse a real example of an AWS Kubernetes cluster infection through a software development
supply chain compromise. The attackers were able to get AWS credentials from a DevOps workstation and use them to
introduce a poisoned docker image into a Kubernetes cluster. It allowed them to move laterally within the cluster and to the
cloud provider, retrieving secrets, passwords, tokens, and a bunch of other data.
Luckily, we were able to detect them just in time, as they had retrieved secrets that would have allowed them to move
laterally to other companies or execute a new docker image with nastier results.
We will present the examples using a real-time lab, offering examples for incident responders and malware analysts to
understand how to investigate these techniques, running through the cyber kill chain and explaining what went wrong and
what could have been done better.

TECHNICAL CONCEPTS AND INTRODUCTION

Kubernetes: an overview
Kubernetes, often referred to as K8s, is an open-source container orchestration platform that simplifies the management
and deployment of containerized applications. It provides a scalable and resilient framework for automating the
deployment, scaling and management of containerized workloads across clusters of machines. Kubernetes abstracts away
the complexities of infrastructure management and allows developers and administrators to focus on defining and running
their applications efficiently. With its robust set of features, Kubernetes enables organizations to achieve high availability,
fault tolerance and scalability for their applications, making it a popular choice for modern cloud-native architectures. By
leveraging Kubernetes, teams can streamline their development and deployment processes, maximize resource utilization,
and effectively manage complex containerized environments.

Key Kubernetes components

Figure 1: Kubernetes components (source: [1]).

Kubernetes consists of several key components that work together to manage and orchestrate containerized applications.
At the heart of the cluster is the API server, which serves as the central interface for communication and interaction with
the cluster. It validates and processes requests, ensuring the cluster’s desired state is maintained. The scheduler is
responsible for assigning workloads to available nodes based on resource requirements and constraints. The controller
manager oversees various controllers that monitor the cluster’s state and take actions to ensure it matches the desired
configuration. The etcd datastore serves as a distributed key-value store, storing the cluster’s configuration and runtime
data.

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

3VIRUS BULLETIN CONFERENCE OCTOBER 2023

Nodes, or worker machines, host the actual application workloads and are managed by the control plane. Each node runs a
kubelet, a Kubernetes agent responsible for managing containers, and a container runtime, such as Docker, to run the
application containers.
These key components work together to provide a scalable and resilient platform for deploying and managing containerized
applications in a Kubernetes cluster.

Kubernetes security
Kubernetes security is of paramount importance in ensuring the protection and integrity of containerized applications and
the underlying infrastructure. With the dynamic and distributed nature of Kubernetes deployments, there are specific
security considerations to address.
From the hardening perspective, secure configuration and access control are crucial aspects, involving the proper
configuration of Kubernetes components and enforcing granular access controls to limit unauthorized access. Secure
container images and runtime isolation are also vital, with the implementation of container image scanning, vulnerability
management, and runtime security measures such as pod security policies and network policies.
Ongoing monitoring and logging are essential for detecting and responding to security incidents, while encryption of
sensitive data and communication channels adds an extra layer of protection. Regular updates and patches, along with
conducting periodic security assessments and audits, contribute to maintaining a robust and secure Kubernetes
environment. By adopting a comprehensive security approach, organizations can mitigate risks and safeguard their
Kubernetes deployments against potential threats and vulnerabilities.

Kubernetes logging and monitoring
In a Kubernetes environment, logs refer to the recorded events and messages generated by various components and
applications running within the cluster. Kubernetes provides a centralized logging mechanism that allows you to collect,
store, and analyse logs from different sources, including pods, containers, and control plane components. Logs are essential
for understanding the behaviour and performance of your applications, diagnosing issues, and monitoring the health of your
Kubernetes infrastructure.

• Container logs: These logs contain the output and error messages generated by individual containers running within a
pod. They provide insights into the application’s behaviour, including status, events, and any issues encountered by the
container.

• Kube-apiserver logs: The kube-apiserver logs record activities and events related to the Kubernetes API server. These
logs are crucial for monitoring API requests, authentication, authorization, and any errors or warnings related to the
API server’s functionality.

• Kube-controller-manager logs: The kube-controller-manager logs capture information about the Kubernetes
controller manager. These logs provide details on various controllers, including node controller, replication controller,
endpoint controller, and others. They help monitor the behaviour and health of controller processes.

• Kube-scheduler logs: The kube-scheduler logs contain information about the Kubernetes scheduler, which assigns
pods to nodes based on resource requirements, affinity rules, and other constraints. These logs provide insights into the
scheduling decisions made by the scheduler.

• Kube-proxy logs: The kube-proxy logs capture events and activities related to the Kubernetes network proxy running
on each node. These logs provide details on network routing, load balancing, and any errors or warnings related to the
proxy’s operation.

• Ingress controller logs: If you are using an ingress controller for managing external access to your cluster, the logs
from the ingress controller provide insights into the routing, load balancing, and SSL termination processes for
incoming traffic.

• Application logs: These logs are specific to your applications running within Kubernetes pods. They capture
application-specific events, errors, and informational messages. Application logs are vital for monitoring application
behaviour, diagnosing issues, and troubleshooting application-level problems.

Figure 2: EKS logging configuration.

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

4 VIRUS BULLETIN CONFERENCE OCTOBER 2023

Benefits and challenges of Kubernetes
Kubernetes enables horizontal scaling of applications by efficiently distributing workloads across multiple containers and
nodes. It simplifies the process of adding or removing resources as needed, allowing applications to handle increased
demand seamlessly.
It also provides robust mechanisms for ensuring high availability of applications. It can automatically detect and recover
from node failures or pod disruptions by rescheduling or replicating affected containers on healthy nodes and optimizes
resource utilization by intelligently scheduling and allocating resources based on application requirements. It allows for
fine-grained control over resource allocation and can automatically scale resources up or down based on workload
demands.
Kubernetes provides built-in service discovery and load balancing mechanisms. It allows applications to easily discover
and communicate with other services within the cluster, abstracting away the complexities of network routing and load
balancing, it continuously monitors the health of applications and automatically restarts or replaces failed containers to
maintain the desired state. It also provides features like readiness and liveness probes to detect and recover from
application-level failures.
On the other hand, Kubernetes is a complex platform with a steep learning curve. Setting up and configuring a Kubernetes
cluster requires an understanding of various concepts, components, and configuration options. Managing and
troubleshooting issues within a distributed system can also be challenging for administrators and operators. Deploying and
managing Kubernetes clusters requires dedicated resources, including skilled personnel and infrastructure. Organizations
need to invest in training, continuous monitoring, upgrades and maintenance to ensure the proper functioning of the
Kubernetes environment.

Cloud computing fundamentals

Cloud fundamentals
Cloud computing is a model for delivering on-demand computing resources over the internet. It enables organizations to
access a wide range of services, such as servers, storage, databases, networking, and software applications, without the need
for upfront infrastructure investment or extensive on-premises hardware. Cloud computing offers several key concepts:

• On-demand self-service: Users can provision and access computing resources, such as virtual machines or storage, as
needed, without requiring manual intervention from service providers. This allows for scalability and flexibility in
resource allocation.

• Broad network access: Cloud services are accessible over the internet using standard protocols and can be accessed
from various devices, including laptops, tablets and smartphones. Users can connect to the cloud from anywhere,
anytime, as long as they have an internet connection.

• Resource pooling: Cloud providers consolidate computing resources to serve multiple customers, using virtualization
techniques to create virtual instances that are logically isolated. These resources are dynamically allocated based on
demand, ensuring efficient utilization and cost-effectiveness.

• Rapid elasticity: Cloud services can quickly scale up or down based on demand. This enables users to easily increase
or decrease their resource usage to match their requirements, providing agility and cost optimization.

• Measured service: Cloud providers track resource usage and provide detailed billing information, allowing users to
pay only for the resources they consume. This pay-per-use model helps optimize costs and provides transparency in
resource utilization.

Security considerations
While the cloud offers numerous benefits, it also introduces unique security challenges. Organizations must carefully
evaluate and address these considerations to ensure the confidentiality, integrity and availability of their data and
applications. Key areas of focus include secure access controls, robust authentication and authorization mechanisms, and
encryption of sensitive data in transit and at rest.
Implementing proper network security measures, such as firewalls, intrusion detection systems and network segmentation,
is vital to protect against unauthorized access and potential attacks. Regularly monitoring and logging activities within the
cloud environment helps detect and respond to security incidents promptly. Additionally, organizations should ensure
compliance with industry regulations and standards, conduct regular security assessments and audits, and maintain clear
incident response plans to mitigate and address potential security breaches effectively.

AWS services supporting Kubernetes
AWS provides a managed Kubernetes service called Amazon Elastic Kubernetes Service (Amazon EKS) [2], which allows
customers to deploy, manage and scale Kubernetes clusters easily on the AWS platform.

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

5VIRUS BULLETIN CONFERENCE OCTOBER 2023

Amazon EKS takes care of the underlying Kubernetes infrastructure management, including the control plane, ensuring
high availability, scalability, and security. Customers can focus on deploying and managing their applications without the
operational burden of managing the Kubernetes control plane. It also leverages the scalability and high availability
capabilities of AWS to provide a reliable Kubernetes environment. It allows customers to easily scale their Kubernetes
clusters up or down based on demand, ensuring optimal resource utilization and cost efficiency.

Figure 3: AWS EKS management plane.

Identity and Access Management
AWS Identity and Access Management (IAM) [3] is a service provided by Amazon Web Services (AWS) that allows you to
manage access and permissions to AWS resources. IAM enables you to securely control who can access your AWS services
and resources and what actions they can perform.
IAM allows you to create individual IAM users for each person in your organization who needs access to AWS resources.
You can also organize users into groups and assign permissions to groups, making it easier to manage access at scale. It
also integrates with various AWS services, allowing you to control access to services like Amazon S3, Amazon EC2, AWS
Lambda, and many others. By leveraging IAM, you can manage access at both the AWS account level and the individual
resource level.
AWS enables users, applications, or services to interact with AWS resources programmatically through API calls or
command-line tools. It involves the use of access keys (Access Key ID and Secret Access Key) associated with an IAM
user or role, which are used to authenticate and authorize requests made to AWS APIs.
While IAM programmatic access is essential for automated interactions with AWS services, it also introduces potential
security risks if not properly managed. If access keys are compromised, an attacker could gain unauthorized access to AWS
resources. Access keys are similar to a username and password combination, and if they are inadvertently exposed or
shared insecurely, malicious actors can use them to perform unauthorized actions.

Figure 4: Example of AWS hard-coded credentials.

AWS logging and monitoring
AWS offers various monitoring and logging services, such as Amazon CloudWatch [4] and AWS CloudTrail [5], which can
be integrated with Amazon EKS clusters. These services provide visibility into the performance, health and activities within
the Kubernetes environment, enabling customers to monitor and troubleshoot their applications effectively. Figure 5 shows
an example of an AWS CloudTrail log.

AWS cloud workload protection
AWS GuardDuty [6] is a threat detection service that continuously monitors your AWS accounts and workloads for
malicious activity and unauthorized behaviour. While GuardDuty is not specifically designed for Kubernetes clusters, it can

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

6 VIRUS BULLETIN CONFERENCE OCTOBER 2023

provide valuable insights and alerts for securing your overall AWS environment, including the underlying infrastructure and
services that support your Kubernetes clusters.
GuardDuty uses machine learning algorithms and threat intelligence feeds to analyse AWS CloudTrail logs, VPC Flow
Logs, and DNS logs to detect a wide range of threats, such as compromised credentials, unauthorized access attempts, and
network attacks. By monitoring and analysing these logs, GuardDuty can detect potential security issues and generate
actionable findings, including detailed alerts and recommendations for remediation.
To protect Kubernetes clusters specifically, GuardDuty can detect anomalies or suspicious activity related to the control
plane infrastructure, such as unauthorized access attempts to the cluster’s API server or suspicious changes to cluster
configurations. GuardDuty can also identify potentially malicious network traffic between Kubernetes nodes, such as
lateral movement attempts or communication with known malicious IP addresses.

Figure 6: Samples of Guard Duty findings.

Figure 5: Example of an AWS CloudTrail log.

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

7VIRUS BULLETIN CONFERENCE OCTOBER 2023

AWS ECR and container registries
Amazon Elastic Container Registry (ECR) [7] acts as a repository for storing container images. When using EKS, you can
push your container images to ECR, either manually or as part of your CI/CD pipeline. ECR provides secure and highly
available storage for your container images, ensuring they are readily accessible to your EKS clusters. You can define IAM
policies to manage who has permissions to push, pull, or manage container images in ECR. This allows you to control
access to the images used by your EKS clusters and enforce security best practices.
ECR seamlessly integrates with EKS, making it easy to deploy your containerized applications. You can directly reference
ECR images in your Kubernetes deployment manifests or Helm charts, allowing EKS to pull the required images and create
the necessary containers.
It also includes a built-in image scanning capability that can analyse container images for vulnerabilities and security risks.
When pushing an image to ECR, you can enable image scanning, which automatically scans the image for known
vulnerabilities based on the Common Vulnerabilities and Exposures (CVE) database. This helps ensure that only secure and
trusted container images are deployed within your EKS clusters.

Understanding Kubernetes infections
Kubernetes infections refer to instances where malicious actors gain unauthorized access or exploit vulnerabilities within
Kubernetes clusters, compromising the integrity, availability, or security of the containerized applications and the
underlying infrastructure.
These infections can manifest in various forms, including the deployment of malicious containers, unauthorized privilege
escalations, or the manipulation of cluster configurations.
Kubernetes infections can lead to data breaches, service disruptions, or unauthorized activities within the cluster, highlighting
the critical importance of implementing strong security measures, such as proper access controls, container image scanning,
and regular vulnerability patching, to mitigate the risk of infections and protect the overall Kubernetes environment.

Common attack vectors

Figure 7: Kubernetes Threat Matrix (source: [8]).

For the sake of this paper we will review those that are related to the security incident:
• Using cloud credentials [9]: In cases where the Kubernetes cluster is deployed in a public cloud (e.g. AKS in Azure,

GKE in GCP, or EKS in AWS), compromised cloud credentials can lead to cluster takeover. Attackers who have access
to the cloud account credentials can get access to the cluster’s management layer.

• Access Kubernetes API server [10]: The Kubernetes API server is the gateway to the cluster. Actions in the cluster
are performed by sending various requests to the RESTful API. The status of the cluster, which includes all the
components that are deployed on it, can be retrieved by the API server. Attackers may send API requests to probe the
cluster and get information about containers, secrets, and other resources in the cluster.

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

8 VIRUS BULLETIN CONFERENCE OCTOBER 2023

• New container [11]: Attackers may attempt to run their code in the cluster by deploying a container. Attackers who
have permissions to deploy a pod or a controller in the cluster (such as DaemonSet \ ReplicaSet\ Deployment) can
create a new resource for running their code.

• Resource hijacking [12]: Attackers may abuse a compromised resource for running tasks. A common abuse is to use
compromised resources for running digital currency mining. Attackers who have access to a container in the cluster or
have permissions to create new containers may use them for such activity.

Potential risks and impact
Kubernetes introduces potential risks and impacts that organizations need to be aware of. Misconfigurations,
vulnerabilities, and unauthorized access can lead to data breaches, compromising sensitive information and violating
compliance requirements.
Downtime and service disruptions can occur due to cluster failures, resource exhaustion, or malicious attacks, resulting in
financial losses, reputational damage, and customer dissatisfaction. Unauthorized modifications to cluster configurations or
unauthorized access to production environments can lead to unauthorized activities, data tampering, or unauthorized
privilege escalations.
Additionally, the complex nature of Kubernetes requires organizations to invest in skilled personnel, training, and ongoing
maintenance, increasing operational overhead. It is crucial for organizations to address these risks proactively through
robust security measures, proper configuration management, regular vulnerability assessments, and monitoring to ensure
the security, availability and integrity of their Kubernetes environments.

THE INCIDENT

Detection
Our CSIRT Oncall process was triggered because of a security alert in one of our client’s AWS tenants. It was an AWS
GuardDuty alert related to IAM misbehaviour:

Figure 8: Example.

The alert was letting us know that a user API key (programmatic access) was being executed in an unusual way – so, it
could be an attack.
API key compromises are dangerous because if access permissions are not correctly configured, the attacker can gain
access to the whole tenant.
From the alert, we also were able to get important information like the source IP address from the request.

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

9VIRUS BULLETIN CONFERENCE OCTOBER 2023

Figure 9: Example of IP address.
The access key was owned by a DevOps based in Argentina, and the request source IP was executed from a European
country. So it was clearly something real.

Analysis and containment
The first thing we did was to try digging into AWS CloudTrail logs to see what actions had been executed by the attacker, to
understand the criticality and define a response plan. Our client didn’t have CloudTrail enabled, so we needed to search AWS
Event History, a narrowed API logging feature that is always on. We can filter the results based on different parameters.

Figure 10: Filtering by access keys in AWS Event History.

Figure 11: Example of DescribeCluster Event History event.

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

10 VIRUS BULLETIN CONFERENCE OCTOBER 2023

The attacker was able to enumerate the AWS account, and as we can see in this example they were interested in the
Kubernetes cluster, and were executing tasks using AWS CLI, which means they were accessing it programmatically.
Based on this information, we urged the client to disable the access key, stopping the attacker, and in the meantime we
would continue with the research.
We then found that the attacker was attempting to create a login profile, which means they were trying to elevate privileges
to keep attacking using the AWS console.
But the threat didn’t stop there. We discovered from CloudTrail logs that they were trying to interact with the AWS EKS
Kubernetes cluster, so we dug into the EKS logs to understand the impact. What we found was scary. Figure 12 shows an
example of an EKS log.

Figure 12: EKS CloudWatch log example.

From the log we were able to understand that, in a short amount of time, the attacker was able to:
• Create a new service account
• Add a new infected image to the ECR Repository
• Run it into the Kubernetes cluster

This was huge, because the attacker was able to move laterally in a way that is not intended, getting around our initial
containment process of removing the access keys.
From here, we needed to remove the service account and isolate the running pod – first in order to stop it, and then for
forensic purposes.

LESSONS LEARNED AND CONCLUSION
The main conclusion we can draw from this security incident is that cloud environments are complex and it’s hard to be
aware of all the boundaries that exist among different services. The rapid elasticity that cloud providers offer to companies
can be exploited by technical attackers in order to gain an extra advantage in their activities.
That’s why it’s important to understand how our system behaves, what the critical components are, and how they relate
with each other and with the Mitre Threat Matrix [13].
This is hard in the real world when rapidly growing companies often don’t have security teams and rely on security being
implemented in the technology areas, which often tend to give greater priority to time-to-market than to shipping a secure
product.

TALES FROM A CLOUD CSIRT – LET’S DEEP DIVE INTO A KUBERNETES (K8S) INFECTION ABASTANTE

11VIRUS BULLETIN CONFERENCE OCTOBER 2023

Besides that, it’s important to know that there are security practices that can be enabled and configured with minimal effort
that can help those teams to achieve both objectives.
Regarding Kubernetes and AWS specifics, we outline some good practices that could have prevented this attack:

• AWS IAM Entities Least Privilege: The principle of least privilege refers to the practice of granting the minimum set
of permissions necessary for a user, group, or role to perform their required tasks. By applying the principle of least
privilege, you ensure that entities have only the permissions needed to accomplish their specific responsibilities and
nothing more.

• EKS Private Endpoint Configuration: The EKS endpoint allows a user to interact with the Kubernetes cluster API.
This should always be private and only accept requests from trusted internal networks.

• Kubernetes Cluster Hardening: Out of the box, the EKS cluster doesn’t have security practices implemented. This is
why it’s critical to apply security considerations like network segmentation, namespaces segmentation, service account
creation prevention, etc.

• ECR Image Scan on Push: ECR repositories can be configured to scan images before they are stored in order to
detect vulnerabilities and misconfigurations.

• Cloud Workload Protection: AWS GuardDuty or Falco [14] allow us to rapidly detect workload attacks in AWS and
EKS environments, like service account creations, malicious images being executed, assets connecting with malicious
IPs like TOR, etc.

REFERENCES
[1] Kubernetes Components. Kubernetes. https://kubernetes.io/docs/concepts/overview/components/.
[2] Amazon Elastic Kubernetes Service Documentation. Amazon. https://docs.aws.amazon.com/eks/index.html.
[3] AWS Identity and Access Management Documentation. Amazon. https://docs.aws.amazon.com/iam/index.html.
[4] Amazon CloudWatch Documentation. Amazon. https://docs.aws.amazon.com/cloudwatch/index.html.
[5] AWS CloudTrail Documentation. Amazon. https://docs.aws.amazon.com/cloudtrail/index.html.
[6] Amazon GuardDuty. Amazon. https://docs.aws.amazon.com/guardduty/index.html.
[7] Amazon Elastic Container Registry Documentation. Amazon. https://docs.aws.amazon.com/ecr/index.html.
[8] Tactics. Microsoft. https://microsoft.github.io/Threat-Matrix-for-Kubernetes/.
[9] Using cloud credentials. Microsoft. https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/Using%20

Cloud%20Credentials/.
[10] Access the K8S server. Microsoft. https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/Access%20

the%20K8S%20API%20server/.
[11] New Container. Microsoft. https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/New%20

Container/.
[12] Resource hijacking. Microsoft. https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/Resource%20

hijacking/.
[13] MITRE ATT&CK. Cloud Matrix. https://attack.mitre.org/matrices/enterprise/cloud/.
[14] Sysdig. Threat Detection Built on Falco. https://sysdig.com/opensource/falco/.

https://kubernetes.io/docs/concepts/overview/components/
https://docs.aws.amazon.com/eks/index.html
https://docs.aws.amazon.com/iam/index.html
https://docs.aws.amazon.com/cloudwatch/index.html
https://docs.aws.amazon.com/cloudtrail/index.html
https://docs.aws.amazon.com/guardduty/index.html
https://docs.aws.amazon.com/ecr/index.html
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/Using%20Cloud%20Credentials/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/Using%20Cloud%20Credentials/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/Access%20the%20K8S%20API%20server/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/Access%20the%20K8S%20API%20server/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/New%20Container/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/New%20Container/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/Resource%20hijacking/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/techniques/Resource%20hijacking/
https://sysdig.com/opensource/falco/

	_7rdj2uyamyk3
	_ivnh5maecxt
	_tycnamunskbu
	_rl8im1two4wk
	_gg1fm771cuv5
	_ymvhynfsajo9
	_ub6qbv11kbut
	_dbtew63v2jv5
	_a2u3754gtax7
	_wcsw2l7e6zsi
	_ckqpt9uxp1uk
	_lgfl99d40qhu
	_rtq3wceg6t6f
	_w1stb1eg8ew6
	_nt7lb1fhuo29
	_kdlfbr73cxtm
	_fexmlalmyrq3
	_4829tsnmqaeo
	_duj9isgfrpve
	_d8w44vrcl50f
	_j3pbmtcf5h9f
	_vh34obrs8qyn

