
1

Dancing the Night Away
with Named Pipes

Virus Bulletin 2023

Daniel Stepanic

2

Agenda

Initial Investigation

PIPEDANCE Analysis

Attribution

1

2

3

PIPEDANCE Client 4

Questions 5

Background

Endpoints: 2
Shellcode injection
Makecab.exe
Parent: DbgView.exe Endpoints: 2

Cobalt Strike BEACON
Openfiles.exe
Parent: Typeperf.exe

Endpoints: 4
Suspicious Windows Service Execution
Dbgview.exe
\\127.0.0.1\C$\DbgView

4

Shellcode Triage
• Unbacked code
• Interesting strings
• Rare byte sequences

Interesting Strings:
- bootcfg.exe
- typeperf.exe
- esentutl.exe
- makecab.exe
- w32tm.exe
- %-5d %-30s %-4s %-7d %s
- %s %7.2f MB
- %s %7.2f GB
- --- ---- ---- ------- ----
- bing.com
- \\.\pipe\%s.%d
- \\.\pipe\%s
- C:\Windows\SysWOW64\makecab.exe

Starting Bytes
c43a6b 55: push ebp
c43a6c 8bec: mov ebp, esp
c43a6e 51: push ecx
c43a6f 51: push ecx
c43a70 53: push ebx
c43a71 56: push esi
c43a72 57: push edi
c43a73 e861f3ffff: call 0xc42dd9
c43a78 8bc8: mov ecx, eax
c43a7a 8945f8: mov dword ptr [ebp - 8], eax
c43a7d e89ef3ffff: call 0xc42e20
c43a82 be00000400: mov esi, 0x40000
c43a87 56: push esi

55

PIPEDANCE Overview

6

Summary

• Windows backdoor communicates over named pipes

• Leveraged during post-compromise stage
‒ Used as internal C2 / staging server

• Enables lateral movement, additional execution of implants

• Main functionality
‒ Backdoor / interactive commands
‒ Network connectivity checks
‒ Process injection capabilities

What is PIPEDANCE? How’s it used?

7

Setup

• Compiled with hardcoded string
‒ Serves as the pipe name
‒ RC4 key for data in transit

8

Setup

• Creates named pipe and awaits connection (Server)

• Client - Previously compromised endpoints connect to PIPEDANCE

Example: \\DESKTOP-3C4ILQO\pipe\u0hxc1q44vhhbj5oo4ohjieo8uh7ufxe

• Collects info upon initial check-in
‒ IsWow64 flag
‒ Current Process ID
‒ Domain/Username
‒ Working directory

• Command dispatching begins

9

10

Communication

• 8-byte union

• Workflow
‒ Initial Request

→ RC4
 → Second Request

Request structure

struct packet
{
 union
 {
 uint8_t buffer;
 uint32_t command_id;
 uint32_t is_wow64_check_flag;
 uint32_t pid;
 uint32_t result;

 } _0;
 union
 {
 uint32_t buffer_size;
 uint32_t error_code;
 } _1;
};

11

Process Termination

Server decrypts buffer (RC4)

Passes execution to function based
on Command ID with arguments (PID)

Uses Windows API
(TerminateProcess) to exit process

 8 byte structure sent to server over named pipe
 - Command ID (0x1)
 - Buffer size of command (PID)

 Server allocates memory
based on previous
command buffer

Encrypts buffer (RC4), sends data over named
pipe

Client
Server

Server sends result back to client or error code

12

Communication

• Functionality routed through dispatcher

• Parses provided command ID and arguments

• Conditionals using if/else and switch statements

• Over 20 unique command functions

Command Dispatcher

13

Communication

• Functions return
simple flags

‒ Result codes
‒ Error codes

• Additional named
pipes used for
sending/returning data

Command Dispatcher

14

Communication
Named Pipe Usage

Sending data over additional named pipe (0x2)

Sending data through named pipes tied to StdInput/StdOutput (0x3)

15

Command ID Description

0x1 Terminate process based on provided PID

0x2 Run a single command through cmd.exe, return output

0x3 Terminal shell using stdin/stdout redirection through named
pipes

0x4 File enumeration on current working directory

0x6 Create a new file with content from pipe

0x7 Retrieve current working directory

0x8 Set current working directory

0x9 Get running processes

0x15 (x86) /
0x16 (x64)

Perform injection (thread hijacking or Heaven’s Gate) with
stdin/stdout option for the child process

Command ID Description

0x17 (x86) /
0x18 (x64)

Perform injection from hard-coded list (thread hijacking or
Heaven’s Gate)

0x19 (x86) /
0x1A (x64)

Perform injection on provided PID (thread hijacking or
Heaven’s Gate)

0x3E Clear out global variable/pipe data

0x47 Connectivity check via HTTP Get Request

0x48 Connectivity check via DNS with DNS Server IP provided

0x49 Connectivity check via ICMP

0x4A Connectivity check via TCP

0x4B Connectivity check via DNS without providing DNS Server IP

0x63 Disconnect pipe, close handle, exit thread

0x64 Disconnect pipe, close handle, exit process, exit thread

Command Handling Table

1616

PIPEDANCE Capabilities

17

Backdoor

• Offers standard backdoor capabilities
‒ Process + File Enumeration
‒ Writing Files to Disk
‒ Terminating Processes
‒ Command-Line Execution

• Two main handlers for command-line execution
‒ 0x2 - Single shot command execution
‒ 0x3 - Piped command execution

18

Execution - 0x2 Single execution
• Leverages anonymous pipes with read/write handles
• Configures STARTUPINFO before process creation
• Creates new process in windowless mode
• Sets up thread to read output and send back through named pipe

19

Execution - 0x3 Piped CMD
• Leverages separate named pipes for StdInput/StdOutput

• Places child process (cmd.exe) in suspended state

• Client sends data over named pipe (StdInput) then reads data back from
named pipe (StdOutput)

20

Discovery - 0x9 Process Enumeration

• Process enumeration using CreateToolhelp32Snapshot

• Custom string formatting that outputs
‒ Process ID
‒ Process Name
‒ Process Architecture
‒ Session Type
‒ User

21

Discovery - 0x4 File Enumeration

• Implements “working directory” concept
‒ Retrieve/set current directory

• Capability to list files from working directory

22

Network Checks
• Small, purpose-built functions for testing connectivity

‒ Used before additional implant execution
‒ Exfiltration / staging process

• 5 functions used to verify different protocols
‒ DNS
‒ ICMP
‒ TCP
‒ HTTP

• Return values as Boolean flags
‒ Routable (1)
‒ Not Routable (0)

23

Network Checks - DNS (0x48 / 0x4B)

• Performs DNS Query to bing.com

• Option to provide DNS Server IP or not

24

Network Checks - ICMP (0x49)

• Operator supplies destination IP address

• Loops through alphabet, sends data in ping/echo request

• Successful if echo reply returned

25

Network Checks - HTTP (0x47)

• Operator provides domain

• Generates vanilla GET
request over port 80

• Accept header set to only
text-based content

26

Process Injection - Techniques

• Different injections paths based on architecture
‒ Thread hijacking (32-bit)
‒ Heaven’s Gate / syscalls (64-bit)

x64x86

GetThreadContext SetThreadContext NtGetContextThread NtSetContextThread

VirtualProtectEx WriteProcessMemory NtWriteVirtualMemory RtlCreateUserThread

27

Process Injection - Defense Evasion

• Efforts to disguise process trees using custom function

• Randomly chooses injection target from hardcoded list based on system time
‒ makecab.exe
‒ typeperf.exe
‒ w32tm.exe
‒ bootcfg.exe
‒ diskperf.exe
‒ esentutl.exe

‒

28

Process Injection - StdIn/StdOut
• Capability to execute shellcode through pipes and pass input

• Stealthy approach to evade monitoring, creates reliability if shellcode dies

• Paired with Donut framework

WriteProcessMemory
Command
Command

Mimikatz.exe

Shellcode

Command

RandomBinary
(Spawned)

makecab.exe
typeperf.exe
w32tm.exe
bootcfg.exe
diskperf.exe
esentutl.exe

Read/Write Threads

Named Pipe

u0hxc1q44vhhbj5oo4ohjieo8uh7ufxe.5280

2929

Attribution

30

Attribution - Timeline

PHOREAL
Endpoint #1
April 2022

PHOREAL
Endpoint #2
May 2022

PIPEDANCE loaded
Endpoint #3, Endpoint #4
December 2022

Cobalt Strike BEACON
Endpoint #3, Endpoint #4
December 2022

SPECTRALVIPER
Endpoint #4, Endpoint #2
April 2023

31

Attribution - Overlap

• Shared tooling between intrusion sets

• Supported by third-party data

• Victimology pointed to large public
companies located in Vietnam

Source:
https://www.elastic.co/security-labs/elastic-charms-spectralviper

https://www.elastic.co/security-labs/elastic-charms-spectralviper

32

Attribution - Bismuth/Canvas Cyclone Comparison

• Launching SysInternals DbgView from Service Control Manager (SCM)

• Network verification to yahoo.com

• Launched Mimikatz commands from a hard-coded list of Windows
programs

Research from Microsoft (November 2020)

Source:
https://www.microsoft.com/en-us/security/blog/2020/11/30/threat-actor-leverages-coin-miner-techniques-to-stay-under-the-radar-heres-how-to-spot-them

https://www.microsoft.com/en-us/security/blog/2020/11/30/threat-actor-leverages-coin-miner-techniques-to-stay-under-the-radar-heres-how-to-spot-them

33

Attribution - TIN WOODLAWN Comparison

• Threat profile aligns with APT32

• Describes PIPEDANCE functionality
‒ RC4 + named pipe
‒ Injection using hard-coded list (esentutl.exe)

Research from Secureworks (August 2021)

Source:
https://www.secureworks.com/blog/detecting-cobalt-strike-government-sponsored-threat-groups

https://www.secureworks.com/blog/detecting-cobalt-strike-government-sponsored-threat-groups

34

Attribution - Conclusion

• Assess with moderate confidence to Vietnamese state interests

• Aligns with public reporting
‒ Canvas Cyclone/Bismuth (Microsoft)
‒ APT32 (Google Cloud’s Mandiant)
‒ TIN WOODLAWN (Secureworks)

• Shared tooling and victimology from private/public data

3535

PIPEDANCE Client

36

Client - Research Benefits
• Solidifies understanding of malware

‒ Main features
‒ Control flow
‒ Structures
‒ Input/outputs to event handlers

• Reach different command handlers not observed during intrusion

• Validate detection/prevention against custom tooling

• Provides strong emulation scenario

37

PIPEDANCE Client
• Written in C programming language

‒ Co-authored with colleague: Cyril Francois

• Integrates with 20 functions
‒ Backdoor
‒ Enumeration
‒ Network Checks
‒ Injection

Source:
https://github.com/elastic/PIPEDANCE

https://twitter.com/cyril_t_f
https://github.com/elastic/PIPEDANCE

38

Thank you!

• Links
‒ Repository: PIPEDANCE Client
‒ Blog: Client Release

• Reach out
‒ @DanielStepanic
‒ @elasticseclabs

https://github.com/elastic/PIPEDANCE
https://www.elastic.co/security-labs/dancing-the-night-away-with-named-pipes
https://twitter.com/DanielStepanic
https://twitter.com/elasticseclabs

