F::RTINET

Don’t flatteN yourself: restoring
malware with Control-Flow
Flattening obfuscation

Geri Révay: who am 1?

Security Researcher at FortiGuard
Ethical Hacking | Malware Research|Threat Intelligence

grevay@fortinet.com

Follow Me:

@geri_revay
m linkedin.com/in/gergelyrevay

© Fortinet Inc. All Rights Reserved.

2

Agenda

* Introduction

» Control-Flow Flattening

* Pattern Matching

 Emulation

- Symbolic Execution J

© Fortinet Inc. All Rights Reserved. | 3

Intro

Bac kg round CRIME SERVICES

e W <& b

Quality Assurance Hosting Botnet Rentals Money Mules Consulting
Crypters / Packers Infections / Drop Zones Installs / Spam / Accounts Receivable
Scanners Management SEO/DDoS

Bank COMPOUNDED CYBERCRIME

Accounts

........>

Credentials
& Data

Digital Real Criminal Sales, Licensing, -
Estate Organizations Maintenance Affiliates
Partnerships

CRIMEWARE @

Copy & paste)
—
(\g

Exploits Packers Special [Junior Affiliate Programs
Platforms Developers Source Code Developers Ransomware / Botnets

3¢5

—_—_——— ——

© Fortinet Inc. All Rights Reserved.

FortiIEDR shows how malware is getting better

Tactic Technique
Defense Evasion

Credential Access

System Binary Proxy Execution
Process Injection

Intial Access Windows Management Instrumentation

Impact Scripting
Execution Mshta
Privilege Escalation Command and Scripting Interpreter
Discovery Input Capture
Collection 05 Credential Dumping

0% 20% 40% &0% 0% 20% 410% &%

Figure 9 - Top malware tactics and techniques in EDR data for 2022-H1

= © Fortinet Inc. All Rights Reserved. 6

https://www.coverbrowser.com/image/action-comics/157-1.jpg

% PRPSI A = =5+ L BT S 717 v ¢ N
-~ > 'y < /
i "YHF N3
| ST AL ¢ DK
| « Y .
/ e y
N » .
= 3! >
¥, __hO s
N

WON'T
LIEVE IT UNTIL

Why Obfuscation?

 No Silver Bullet rather a Ball and Chain

 Cheap for the adversary n:/ e x e
“_SUPERMAN? _/ ‘ “f.‘,'BUO'J'-:.E;".:}k&-‘-.'.'.

« Expensive for the analyst

« Different techniques and different levels
of obfuscation

 There are obfuscators for most
programming languages

B
=
H
s

\

« We will focus on C

s\\\
[13 ST L
L1) - q q
- © Fortinet Inc. All Rights Reserved. 7

Control-Flow Flattening

Control-Flow Flattening

e Obfuscation method

- Cheap for developer, | Dispatcher
expensive for reverse v \
engineer
g P <
* Manipulates the control flow E‘>
of functions — | —
+ Original Basic Block: contain \ ‘ I /
the 0_”g|na| logic of the Original Basic Blocks
function

 Dispatcher: decides which
original basic block comes
next

http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

Control-Flow Flattening

=]

13 = _ readfsgqword(@x28u);
s11 = 16LL;
while (1)
1
switch (w11)
{
case 1LL:
if { stream)
/11 = 18LL;
else
w1l = paLL;
break;
case 3LL:
if (=)
s11 = 12LL;
else
s11 = 18LL;
break;
case 5SLL:
ptrvaH] ~= v3;
/11 = 7LL;
break;
case BLL:
+wdy
/11 = 19LL;
break;
case 7LL:
if (w2 »=n)
s11 = 13LL;
else
y11 = SLL:
break;
case 1@LL:

© Fortinet Inc. All Rights Reserved.

Control-Flow Flattening in Real Life

Gergely Revay @geri_revay - Sep 21
Welcome to Hell! All hail the Great Obfuscator!

{ | ¥ ¥
i T T L S T

P ..;-'--—-;‘.---n-_iiai.i

W e 20 sume sE=SEos g LT oL e .
SEARIE BS SWMS BRI ERER AR 1 vERER 1

© Fortinet Inc. All Rights Reserved. 11

Noobware

void encodefndSaveFiles(char** filePaths, int numFiles) {
const char* postfix = ".noob";
const unsigned char key = @x7F;

Modern day ransomware:
written by ChatGPT

State-Of-the-art 1 byte XOR FILE* originalFile = fopen(filePaths[i], "rb");
EBT]()F)/[)ti()[] if (originalFile == NULL) {

fprintf{stderr, "Unable to open file '%s' for readingin”, filePaths[i]};
continue;

printf(“Starting amazingly secure encryption\n™);

for (int i = @; 1 < numFiles; i++) {

Uses .noob extension

SearCheS the filesyStem fseek(originalFile, @, SEEK_END);

long fileSize = ftell(originalFile);
fseek(originalFile, 8, SEEK SET);

Collects files with specified
EB)(tEBr]ESIC)r]ES unsigned char* fileContent = (unsigned char*)malloc(fileSize);

Encrypts

fread(fileContent, 1, fileSize, originalFile);
fclose(originalFile);

for (long j = 8; j < fileSize; j++) {
fileContent[j] *= key;

TI g reS S il_encndeﬂndSaueFiles_next = 16UL;
https://tigress.witf/ while (1

switch {1 encodeAndSaveFiles next) {

case 12:
fprintf((FILE * ystderr, (char const *
(:)F)Ear]_ssc)ljr(:ea ()t)fl]fS(:Eiti()f] t()()l "Unable to create file \"¥s\' for writing\n”,
. . . newFilePath);
from the University of Arizona {
_1 encodeAndSaveFiles next = 6UL;
Numerous obfuscation modules rosk:
case 14:
Source Code Ievel fprintf((FILE * ystderr, (char const *
"Unable to open file \'%s\" for reading\n”,
o . *(filePaths + 1));
Multiple CFF options {
1 encodeAndSaveFiles next = 6UL;
$ tigress break;
-—Environment=x86 64:Linux:Gcc:4.6 case 15: ;
--Transform=Flatten EEt"E“
--FlattenDispatch=switch c;: -
--Functions=encodeAndSaveFiles furite((void const ¥ fileContent, (size_t)1, (size_t
—-—out=noobware flat switch encode.c fileSize,
noobware linux.c e ol
- printf({{char const * "File was encrypted as: Xs\n",

newFilePath);

fclose(newFile);

free((void *)fileContent);

{

_1 encodeAndSaveFiles next = 6UL;

Ereak;

Countering CFF

How to deal with CFF?

© Fortinet Inc. All Rights Reserved.

15

How to deal with CFF?

Pack your stuff and run!

© Fortinet Inc. All Rights Reserved.

16

How to deal with CFF?

Statically Dynamically

« Restore control-flow in IDA Pro « Sandbox detonation
« Emulation * Finding IOCs
« Symbolic/Concolic Execution » Next stage from memory/file dumps
« Pattern matching . Debugging

» Works but very tedious and slow

« There might be other Anti-Analysis/Debugging
measures in place

Restoring the Control-Flow

1. Identify original basic blocks (OBBs) 4. Map state values to OBBs
2. ldentify decision basic blocks (DBBs) 5. Recover next state values for each OBB

3. ldentify the state variable 6. Reconstruct original control-flow

Pattern Matching

“With visual inspection | determined that the
tire pressure Is adequate.”

Pattern matching

 Static analysis only
» Looking for patterns in the assembly code to identify the different components
» Feels like the most basic, but it can be easily more efficient than the other techniques

« |dentify OBBs: more than 3 instructions, last is a fixed jump, second to lastis a ‘'mov’ to
set the state value

m = © Fortinet Inc. All Rights Reserved.

20

Pattern Matching

if instr_count >= 3 and is _mov_imm(second _last instr) and is_jmp fixed(last instr):
the BB is an OBB, save it as such
print("0OBB found: (Ox{:X} - ox{:X})".format(bb.start ea, bb.end ea))
block = {
"type': 'obb',
"'next _state': second _last instr.Op2.value,
"bb': bb,

}
blocks.append(block)

Pattern Matching: Results

digraph CFG{

"0x1411" -> "0x169b"
"O0x1446" -> "0x169b"
"0x1491" -> "0Ox169b"
"0x1553" -> "0x1647"
"0x1553" -> "0Ox17e8"
"0x1591" -> "0Ox1411"
"0x1591" -> "0Ox1491"
"0x1647" -> "0Ox144¢0"
"O0x1647" -> "Oxl6f7"
"0x169b" -> "0x1647"
"Ox169p" -> "0Ox17e8"
"Ox1lob2" -> "0Oxl6b2"
"Oxloeb2" -> "0x1591"
"Ox1l6f7" -> "Ox1l6b2"
"Ox1lef7" -> "0x1591"

}

© Fortinet Inc. All Rights Reserved. 22

Emulation

Using flare-emu (BTW Flare-On is on, do some reversing)

Going for low hanging fruits this time

Still using pattern matching to identify OBBs

Need to supply usable arguments for the emulated function:
FUNC_ARGS = {"argl":b'test.txt\x00test2.txt\x00', "arg2":2}

def emulate and record basic blocks(func_args, userData):
Create a new emulator instance
eh = flare_emu.EmuHelper()
print("Emulating function at ox{:x}".format(func_ea))

to ensure useful emulation meaningful arguments are needed for the target function
eh.emulateRange(func_ea, instructionHook=instruction_hook, registers=func_args,
hookData=userbData)

Emulation

def instruction_hook(unicornObject, address, instructionSize, userData):
use the instruction block to trace the execution on a BB level

print("Instruction hook called - address: ox{:x}".format(address))
mark instractions that were emulated with color
idc.set color(address, idc.CIC_ITEM, OxD5F5E3)
count instractions to be able to stop after a speficied number of instructions
if "inst ctr" in userData:
userData["inst ctr"] += 1
else:
userData["inst_ctr"] = 1

Get the current basic block start address
bb start = get bb start ea(address, userData['flow chart'])

Check if the basic block has already been recorded
if bb_start != userData['current bb']:
Record the executed basic block
userData['executed blocks'].append(bb_start)
userData['current _bb'] = bb_start

if userData["inst ctr"] >= 10000:
unicornObject.emu stop()

return

Emulation: Results

Creating CFG

Coverage: 51.724137931034484%

OBB Coverage:

44 ,.44444444444444%
digraph CFG{
"O0x1553" -> "Ox1o647"
"Ox1647" -> "Oxloef/"
"Ox1le6f7" -> "Oxlob2"
"Ox1l6b2" -> "Oxlob2"

}

0x1553: Starting the function and logging to the console.

0x1647: Opening a file.

0x16f7: Reading the content of the file.
0x16b2: Encrypting the content of the file.

Symbolic Execution

© Fortinet Inc. All Rights Reserved.

26

Symbolic Execution

* Concolic Execution (Symbolic + Concrete = Concolic)

e Using the angr framework

* It could be an enormous time waster -> know when to give up and go back to pattern matching
* |dentifying OBBs: same as before

* We can skip many steps because the symbolic execution will do them for us

* Map State Values to OBBs:
* Run symbolic execution til the start address of each OBB

* Have the SMT solver get a state value at the known memory location

Symbolic Execution: Map states to OBBs

def get_obb_states(project, func_start, basic_block_addresses):
use symbolic execution to execute into each OBB and check the state value
obb_states = []

initial_state = project.factory.blank_state(addr = func_start)
initial state.options.add(angr.options.CALLLESS)
Start the simulation

iterate through each obb and run symbolic exec to their address
for obb in basic_block_addresses:
simgr = project.factory.simgr(initial_ state)
simgr.explore(find=BASE_ADDR + obb)

if simgr.found:
state = simgr.found[9]

Calculate the address rbp-0x138, the state variable

FILL OUT: state variable -> state.regs.rbp - 0x138

concrete_value = state.mem[state.regs.rbp - 0x138].uint64_t.concrete
bb_address = state.solver.eval(state.regs.rip)

print("State value at is ox{:x} is {} ".format(bb_address, concrete_value))

obb_states.append({'address': bb_address, 'state': concrete_value, 'angr_state':

print(obb_states)
return obb_states

Symbolic Execution: Recovering Next State

« Continue execution from the states we reached previously, the beginning of each OBB.
* We need to concretize the state value in memory to limit possible paths.

* In a while loop, symbolic execution advances one basic block (not one instruction) in
every tracked possible state.

 After each step, we check if we've reached an OBB.

* There may be one or two possible next states, depending on branching, which we
monitor

* We keep stepping until both paths reach an OBB if branching occurs.

 \We focus on the address of the next state's OBB rather than the value of the next state.

Symbolic Execution: Recovering Next State

def find next states(bb_state, obbs):
use symbolic execution to recover the next states for the given OBB (bb_state)
print("Searching next states for ox{:x}".format(bb_state["address']))

we can continue from the saved angr state, which stands when the current OBB 1is
being executed

state = bb_state['angr state']

to make execution simpler we can constrain the current state value to the one
that we already recovered

state.solver.add(state.mem[state.regs.rbp - 0x138].uint64 _t.resolved ==
bb_state['state'])

simgr = project.factory.simgr(state)

ctr =
found_obbs

step the state as long as we have active states
protect against state explosions, the next obb should not be far away
while len(simgr.active) > @ and ctr <= 20:

ctr += 1

simgr.step()

check the active states, there is either 1 or 2
if there is 1 active state and the address is an obb then it is a next state
if there were 2 active states then we recover both next states
for active_state in simgr.active:
print('{} - ox{:x}"'.format(simgr, active state.addr))
if active _state.addr - BASE_ADDR in obbs:
obb_addr = active_state.addr
if obb_addr not in found obbs:
found_obbs.append(obb_addr)
print('Next state found: oOx{:x} ->
Ox{:x}"'.format(bb_state['address'], active state.addr))
if (len(simgr.active) == 1 and len(found obbs) == 1) or len(found obbs) ==

return found obbs
return None

Symbolic Execution: Results

0x40169b

0x401446

DD

0x401591

[selyle)

digraph CFG{

"O0x401411™"
"Ox401440"
"0x401491"
"0x401553"
"0x401591"
"0x401591"
"O0x401e647"
"O0x401647"
"0x40169b"
"O0x401le6b2"
"O0x401le6b2"
"Ox401lof7/"
"Ox401lof7/"

}

->

"0x40169b"
"0x40169p™"
"0x40169b™"
"O0x401e647"
"O0x401411™"
"0x401491"
"O0x401446"
"Ox401e6f7"
"O0x401le047"
"0x401591"
"O0x401leb2"
"0x401591"
"O0x401leb2™"

© Fortinet Inc. All Rights Reserved.

Honorary Mention: Debugging

* |If everything fails just go back to the debugger and single step through the damn thing

* | could be faster than writing a symbolic execution program.

B8 FFDS call rbp ~
e O 3 BF AB040000 ™
& 5 BB4CZ4 44 mov ecx,dword ptr ss:|rsp+44] -
o 5 ES BE2EACC3 mov eax,C3ACZEEE Sety LLLIG AR BEA AL L
ol z 01cl add ecx,eax RBX 0O00000000000188 L'e
MK 5 E9 T1F2FFFF jmp pandora.7FFEEEFI4ETD ECx 0000000000000474 Lo
®|f 31D2 xor edx,edx ERX 0000000000:000001
LA 81F9 4B852Z3E1 cmp ecx,E1Z3854B BEF 00007 FFEEGFCE25E |ﬁpandura.JMP.&FDStQueuedcnnp1etTunEtatusp |
1K OFaFC2 setg dl RSP 0000000CDO3FF&70
o 14, 48:C1EZ 04 shl rdx,4 B R5I 0000000000003 80
& JE 48: 8BE9402 7B8020000 mov rdx,qgword ptr ds:[rdx+rax+2 BDI 000000007 AZCTCSE
| & 4C: 01EZ add rdx,rilz
& 9 FFE2 Jjmp rdx
1K B 81F9 C90B857D8 cmp ecx,D85708C9 v || Default (x64 fastcall)
@ || e = W Y -Tat T ataty! mris adw Imo —
r » 1: rcx 000000000000047 4
- 2: rdx 0000000000000001
rbp=<IMP.&FPostQueuedCompletionstatus> 3: r& 0000000000000001
4: r9 000001B3041D6&3BO
5: [rsp+20] 0000000000000000
pppp: 00007 FFEBGFI5BES pandora.exe: 35BES #0
i i
B Dump 1 B Dump 2 B Dump 3 B Dump 4 B Dump 5 e Watch 1 [x=] Locals Lf,i:' Struct
Address UNICODE _ _
G EERESR L I Ci\Pythonz7\Li1b\si1te-packages \ xdisybinypydisas
DOOD0LE304I0 6430 | M. Py e v @ s s e am e s e s ssnssssnsssssssssssnssssssssssssssssssssssssssss
SRS e T T T T T T T T T T T T T e T T T T T T e T T e T T T T T T e T
LI I i

© Fortinet Inc. All Rights Reserved. 33

Conlusion

« CFF is hell

 This is what you should do if you see:
» Collect as much intel with dynamic analysis (commercial sandbox, own VM) as possible
» Check if simple emulation brings results
* Check if pattern matching would work
« |If time allows go for symbolic execution

34

Thanks and QnA

Security Researcher at FortiGuard
Ethical Hacking | Malware Research|Threat Intelligence

grevay@fortinet.com

Follow Me:

@geri_revay
m linkedin.com/in/gergelyrevay

]
OFFENSIVE
OSCP

© Fortinet Inc. All Rights Reserved.

35

F:=RTINET

	Default Section
	Slide 1: Don’t flatteN yourself: restoring malware with Control-Flow Flattening obfuscation
	Slide 2: Geri Révay: who am I?
	Slide 3: Agenda
	Slide 4: Intro
	Slide 5: Background
	Slide 6: FortiEDR shows how malware is getting better
	Slide 7: Why Obfuscation?
	Slide 8: Control-Flow Flattening
	Slide 9: Control-Flow Flattening
	Slide 10: Control-Flow Flattening
	Slide 11: Control-Flow Flattening in Real Life
	Slide 12: Noobware
	Slide 13: Tigress
	Slide 14: Countering CFF
	Slide 15: How to deal with CFF?
	Slide 16: How to deal with CFF?
	Slide 17: How to deal with CFF?
	Slide 18: Restoring the Control-Flow
	Slide 19: Pattern Matching
	Slide 20: Pattern matching
	Slide 21: Pattern Matching
	Slide 22: Pattern Matching: Results
	Slide 23: Emulation
	Slide 24: Emulation
	Slide 25: Emulation: Results
	Slide 26: Symbolic Execution
	Slide 27: Symbolic Execution
	Slide 28: Symbolic Execution: Map states to OBBs
	Slide 29: Symbolic Execution: Recovering Next State
	Slide 30: Symbolic Execution: Recovering Next State
	Slide 31
	Slide 32: Symbolic Execution: Results
	Slide 33: Honorary Mention: Debugging
	Slide 34: Conlusion

	Default Section
	Slide 35: Thanks and QnA
	Slide 36

