
Don’t flatteN yourself: restoring
malware with Control-Flow
Flattening obfuscation

2© Fortinet Inc. All Rights Reserved.

Geri Révay: who am I?

Ethical Hacking

Security Researcher at FortiGuard
Malware Research Threat Intelligence

@geri_revay

grevay@fortinet.com

Follow Me:

linkedin.com/in/gergelyrevay

3© Fortinet Inc. All Rights Reserved.

• Introduction

• Control-Flow Flattening

• Pattern Matching

• Emulation

• Symbolic Execution

Agenda

Intro

5© Fortinet Inc. All Rights Reserved.

Background

CRIMEWARE PRODUCERS

Source Code

Junior

Developers

Copy & paste

Senior

Developers

Exploits Packers Special

Platforms

Mobile

CRIME SERVICES ENABLERS

Quality Assurance
Crypters / Packers

Scanners

Hosting
Infections / Drop Zones

Management

Botnet Rentals
Installs / Spam /

SEO / DDoS

Money Mules
Accounts Receivable

Consulting

COMPOUNDED CYBERCRIME

Affiliates
Criminal

Organizations
Sales, Licensing,

Maintenance
Partnerships

Affiliate Programs

Ransomware / Botnets

Victims

Bank

Accounts

Credentials

& Data

Digital Real

Estate

6© Fortinet Inc. All Rights Reserved.

FortiEDR shows how malware is getting better

7© Fortinet Inc. All Rights Reserved.

• No Silver Bullet rather a Ball and Chain

• Cheap for the adversary

• Expensive for the analyst

• Different techniques and different levels
of obfuscation

• There are obfuscators for most
programming languages

• We will focus on C

Why Obfuscation? https://www.coverbrowser.com/image/action-comics/157-1.jpg

Control-Flow Flattening

9© Fortinet Inc. All Rights Reserved.

• Obfuscation method

• Cheap for developer,
expensive for reverse
engineer

• Manipulates the control flow
of functions

• Original Basic Block: contain
the original logic of the
function

• Dispatcher: decides which
original basic block comes
next

Control-Flow Flattening

Dispatcher

Original Basic Blocks

http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

10© Fortinet Inc. All Rights Reserved.

Control-Flow Flattening

11© Fortinet Inc. All Rights Reserved.

Control-Flow Flattening in Real Life

12© Fortinet Inc. All Rights Reserved.

• Modern day ransomware:
written by ChatGPT

• State-of-the-art 1 byte XOR
encryption

• Uses .noob extension

• Searches the filesystem

• Collects files with specified
extensions

• Encrypts

Noobware

13© Fortinet Inc. All Rights Reserved.

• Open-source obfuscation tool
from the University of Arizona

• Numerous obfuscation modules

• Source code level

• Multiple CFF options

https://tigress.wtf/

Tigress

$ tigress

 --Environment=x86_64:Linux:Gcc:4.6

 --Transform=Flatten

 --FlattenDispatch=switch

 --Functions=encodeAndSaveFiles

 --out=noobware_flat_switch_encode.c

noobware_linux.c

Countering CFF

15© Fortinet Inc. All Rights Reserved.

How to deal with CFF?

16© Fortinet Inc. All Rights Reserved.

How to deal with CFF?

Pack your stuff and run!

17© Fortinet Inc. All Rights Reserved.

Statically

• Restore control-flow in IDA Pro

• Emulation

• Symbolic/Concolic Execution

• Pattern matching

Dynamically

• Sandbox detonation

• Finding IOCs

• Next stage from memory/file dumps

• Debugging

• Works but very tedious and slow

• There might be other Anti-Analysis/Debugging
measures in place

How to deal with CFF?

18© Fortinet Inc. All Rights Reserved.

1. Identify original basic blocks (OBBs)

2. Identify decision basic blocks (DBBs)

3. Identify the state variable

Restoring the Control-Flow

4. Map state values to OBBs

5. Recover next state values for each OBB

6. Reconstruct original control-flow

19© Fortinet Inc. All Rights Reserved.

“With visual inspection I determined that the
tire pressure is adequate.”

Pattern Matching

20© Fortinet Inc. All Rights Reserved.

• Static analysis only

• Looking for patterns in the assembly code to identify the different components

• Feels like the most basic, but it can be easily more efficient than the other techniques

• Identify OBBs: more than 3 instructions, last is a fixed jump, second to last is a ‘mov’ to
set the state value

Pattern matching

21© Fortinet Inc. All Rights Reserved.

Pattern Matching

 if instr_count >= 3 and is_mov_imm(second_last_instr) and is_jmp_fixed(last_instr):

 # the BB is an OBB, save it as such

 print("OBB found: (0x{:X} - 0x{:X})".format(bb.start_ea, bb.end_ea))

 block = {

 'type': 'obb',

 'next_state': second_last_instr.Op2.value,

 'bb': bb,

 }

 blocks.append(block)

22© Fortinet Inc. All Rights Reserved.

Pattern Matching: Results

digraph CFG{

"0x1411" -> "0x169b"

"0x1446" -> "0x169b"

"0x1491" -> "0x169b"

"0x1553" -> "0x1647"

"0x1553" -> "0x17e8"

"0x1591" -> "0x1411"

"0x1591" -> "0x1491"

"0x1647" -> "0x1446"

"0x1647" -> "0x16f7"

"0x169b" -> "0x1647"

"0x169b" -> "0x17e8"

"0x16b2" -> "0x16b2"

"0x16b2" -> "0x1591"

"0x16f7" -> "0x16b2"

"0x16f7" -> "0x1591"

}

23© Fortinet Inc. All Rights Reserved.

• Using flare-emu (BTW Flare-On is on, do some reversing)

• Going for low hanging fruits this time

• Still using pattern matching to identify OBBs

• Need to supply usable arguments for the emulated function:

FUNC_ARGS = {"arg1":b'test.txt\x00test2.txt\x00', "arg2":2}

Emulation

def emulate_and_record_basic_blocks(func_args, userData):

 # Create a new emulator instance

 eh = flare_emu.EmuHelper()

 print("Emulating function at 0x{:x}".format(func_ea))

 # to ensure useful emulation meaningful arguments are needed for the target function

 eh.emulateRange(func_ea, instructionHook=instruction_hook, registers=func_args,

hookData=userData)

24© Fortinet Inc. All Rights Reserved.

Emulation
def instruction_hook(unicornObject, address, instructionSize, userData):

 # use the instruction block to trace the execution on a BB level

 print("Instruction hook called - address: 0x{:x}".format(address))

 # mark instractions that were emulated with color

 # idc.set_color(address, idc.CIC_ITEM, 0xD5F5E3)

 # count instractions to be able to stop after a speficied number of instructions

 if "inst_ctr" in userData:

 userData["inst_ctr"] += 1

 else:

 userData["inst_ctr"] = 1

 # Get the current basic block start address

 bb_start = get_bb_start_ea(address, userData['flow_chart'])

 # # Check if the basic block has already been recorded

 if bb_start != userData['current_bb']:

 # Record the executed basic block

 userData['executed_blocks'].append(bb_start)

 userData['current_bb'] = bb_start

 if userData["inst_ctr"] >= 10000:

 unicornObject.emu_stop()

 return

25© Fortinet Inc. All Rights Reserved.

Emulation: Results

Creating CFG

Coverage: 51.724137931034484%

OBB Coverage:

44.44444444444444%

digraph CFG{

"0x1553" -> "0x1647"

"0x1647" -> "0x16f7"

"0x16f7" -> "0x16b2"

"0x16b2" -> "0x16b2"

}

- 0x1553: Starting the function and logging to the console.

- 0x1647: Opening a file.

- 0x16f7: Reading the content of the file.

- 0x16b2: Encrypting the content of the file.

26© Fortinet Inc. All Rights Reserved.

Symbolic Execution

27© Fortinet Inc. All Rights Reserved.

• Concolic Execution (Symbolic + Concrete = Concolic)

• Using the angr framework

• It could be an enormous time waster -> know when to give up and go back to pattern matching

• Identifying OBBs: same as before

• We can skip many steps because the symbolic execution will do them for us

• Map State Values to OBBs:

• Run symbolic execution til the start address of each OBB

• Have the SMT solver get a state value at the known memory location

Symbolic Execution

28© Fortinet Inc. All Rights Reserved.

Symbolic Execution: Map states to OBBs
def get_obb_states(project, func_start, basic_block_addresses):

 # use symbolic execution to execute into each OBB and check the state value

 obb_states = []

 initial_state = project.factory.blank_state(addr = func_start)

 initial_state.options.add(angr.options.CALLLESS)

 # Start the simulation

 # iterate through each obb and run symbolic exec to their address

 for obb in basic_block_addresses:

 simgr = project.factory.simgr(initial_state)

 simgr.explore(find=BASE_ADDR + obb)

 if simgr.found:

 state = simgr.found[0]

 # Calculate the address rbp-0x138, the state variable

 # FILL OUT: state variable -> state.regs.rbp - 0x138

 concrete_value = state.mem[state.regs.rbp - 0x138].uint64_t.concrete

 bb_address = state.solver.eval(state.regs.rip)

 print("State value at is 0x{:x} is {} ".format(bb_address, concrete_value))

 obb_states.append({'address': bb_address, 'state': concrete_value, 'angr_state': state})

 print(obb_states)

 return obb_states

29© Fortinet Inc. All Rights Reserved.

• Continue execution from the states we reached previously, the beginning of each OBB.

• We need to concretize the state value in memory to limit possible paths.

• In a while loop, symbolic execution advances one basic block (not one instruction) in
every tracked possible state.

• After each step, we check if we've reached an OBB.

• There may be one or two possible next states, depending on branching, which we
monitor

• We keep stepping until both paths reach an OBB if branching occurs.

• We focus on the address of the next state's OBB rather than the value of the next state.

Symbolic Execution: Recovering Next State

30© Fortinet Inc. All Rights Reserved.

Symbolic Execution: Recovering Next State

def find_next_states(bb_state, obbs):

 # use symbolic execution to recover the next states for the given OBB (bb_state)

 print("Searching next states for 0x{:x}".format(bb_state['address']))

 # we can continue from the saved angr state, which stands when the current OBB is

being executed

 state = bb_state['angr_state']

 # to make execution simpler we can constrain the current state value to the one

that we already recovered

 state.solver.add(state.mem[state.regs.rbp - 0x138].uint64_t.resolved ==

bb_state['state'])

 simgr = project.factory.simgr(state)

 ctr = 0

 found_obbs = []

31© Fortinet Inc. All Rights Reserved.

 # step the state as long as we have active states

 # protect against state explosions, the next obb should not be far away

 while len(simgr.active) > 0 and ctr <= 20:

 ctr += 1

 simgr.step()

 # check the active states, there is either 1 or 2

 # if there is 1 active state and the address is an obb then it is a next state

 # if there were 2 active states then we recover both next states

 for active_state in simgr.active:

 print('{} - 0x{:x}'.format(simgr, active_state.addr))

 if active_state.addr - BASE_ADDR in obbs:

 obb_addr = active_state.addr

 if obb_addr not in found_obbs:

 found_obbs.append(obb_addr)

 print('Next state found: 0x{:x} ->

0x{:x}'.format(bb_state['address'], active_state.addr))

 if (len(simgr.active) == 1 and len(found_obbs) == 1) or len(found_obbs) ==

2:

 return found_obbs

 return None

32© Fortinet Inc. All Rights Reserved.

Symbolic Execution: Results

digraph CFG{

"0x401411" -> "0x40169b"

"0x401446" -> "0x40169b"

"0x401491" -> "0x40169b"

"0x401553" -> "0x401647"

"0x401591" -> "0x401411"

"0x401591" -> "0x401491"

"0x401647" -> "0x401446"

"0x401647" -> "0x4016f7"

"0x40169b" -> "0x401647"

"0x4016b2" -> "0x401591"

"0x4016b2" -> "0x4016b2"

"0x4016f7" -> "0x401591"

"0x4016f7" -> "0x4016b2"

}

33© Fortinet Inc. All Rights Reserved.

• If everything fails just go back to the debugger and single step through the damn thing

• I could be faster than writing a symbolic execution program.

Honorary Mention: Debugging

34© Fortinet Inc. All Rights Reserved.

• CFF is hell

• This is what you should do if you see:

• Collect as much intel with dynamic analysis (commercial sandbox, own VM) as possible

• Check if simple emulation brings results

• Check if pattern matching would work

• If time allows go for symbolic execution

Conlusion

35© Fortinet Inc. All Rights Reserved.

Thanks and QnA

Ethical Hacking

Security Researcher at FortiGuard
Malware Research Threat Intelligence

@geri_revay

grevay@fortinet.com

Follow Me:

linkedin.com/in/gergelyrevay

	Default Section
	Slide 1: Don’t flatteN yourself: restoring malware with Control-Flow Flattening obfuscation
	Slide 2: Geri Révay: who am I?
	Slide 3: Agenda
	Slide 4: Intro
	Slide 5: Background
	Slide 6: FortiEDR shows how malware is getting better
	Slide 7: Why Obfuscation?
	Slide 8: Control-Flow Flattening
	Slide 9: Control-Flow Flattening
	Slide 10: Control-Flow Flattening
	Slide 11: Control-Flow Flattening in Real Life
	Slide 12: Noobware
	Slide 13: Tigress
	Slide 14: Countering CFF
	Slide 15: How to deal with CFF?
	Slide 16: How to deal with CFF?
	Slide 17: How to deal with CFF?
	Slide 18: Restoring the Control-Flow
	Slide 19: Pattern Matching
	Slide 20: Pattern matching
	Slide 21: Pattern Matching
	Slide 22: Pattern Matching: Results
	Slide 23: Emulation
	Slide 24: Emulation
	Slide 25: Emulation: Results
	Slide 26: Symbolic Execution
	Slide 27: Symbolic Execution
	Slide 28: Symbolic Execution: Map states to OBBs
	Slide 29: Symbolic Execution: Recovering Next State
	Slide 30: Symbolic Execution: Recovering Next State
	Slide 31
	Slide 32: Symbolic Execution: Results
	Slide 33: Honorary Mention: Debugging
	Slide 34: Conlusion

	Default Section
	Slide 35: Thanks and QnA
	Slide 36

