1 2024

DUBLIN

2 - 4 October, 2024 / Dublin, Ireland

AUTOMATICALLY DETECT AND SUPPORT AGAINST
ANTI-DEBUG WITH IDA/GHIDRA TO STREAMLINE
DEBUGGING PROCESS

Takahiro Takeda
LAC Cyber Emergency Center, Japan

takahiro.takeda@lac.co.jp

www.virusbulletin.com

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

ABSTRACT

Malware authors often employ anti-debugging techniques to obstruct analysis. When executed on a debugger, the malware
detects the debugger and either stops its subsequent actions or behaves differently from usual, making analysis difficult.
The number of anti-debugging implementations varies with each malware. Notably, malware spread through mass-mailing
campaigns that affect many organizations, and popular ransomware, have been confirmed to possess multiple
anti-debugging techniques. For example, anti-debugging techniques include VM detection, which checks for a debugging
environment, detection of breakpoints (which temporarily pause program execution during debugging), and time difference
detection, which utilizes the difference in execution time when analysing malware with a debugger.

‘AntiDebugSeeker’ is an open-source plugin for the binary analysis tools IDA and Ghidra, which are frequently utilized by
analysts. It streamlines the malware analysis process by automatically identifying the anti-debugging techniques embedded
within Windows malware. Code with anti-debug capabilities often overlaps with techniques used for anti-analysis, as well
as with the preparatory steps for process injection, which are frequently employed by malware. Therefore, by flexibly
customizing the detection rules, it is possible not only to identify anti-debugging features but also to understand the
functionalities of the malware. Furthermore, the tool also provides functionalities to explain these anti-debugging measures
and approaches to the corresponding functions. This enhances the analyst’s ability to understand and counteract the
malware’s evasion techniques effectively, offering a more comprehensive understanding and response strategy against such
threats. This paper provides a comprehensive explanation of AntiDebugSeeker, detailing its features and usage. It offers an
in-depth understanding of the tool and illustrates how these features can effectively be applied in various threat scenarios.

INTRODUCTION OF ANTIDEBUGSEEKER

AntiDebugSeeker is a program for automatically identifying and extracting potential anti-debugging techniques used by
malware and displaying them in IDA [1] or Ghidra [2].

The main functionalities of this plugin are as follows:
1. Extraction of APIs that are potentially being used by the malware for anti-debugging.

2. In addition to APIs, extraction of anti-debugging techniques based on key phrases that serve as triggers, as some
anti-debugging methods cannot be comprehensively identified by API calls alone.

As a note, for packed samples, it is more effective to run this plugin after unpacking and fixing the Import Address Table.

ANTIDEBUGSEEKER FOR IDA

Files required to run the program

For the purpose of facilitating the detection of anti-debugging techniques using IDA, the following three files must be
placed within the plugin directory of the IDA software:

 anti_debug.config — this file contains a set of rules designed to identify various anti-debugging techniques.
 anti_debug_techniques_descriptions.json — this file provides detailed descriptions of the rules detected.

» AntiDebugSeeker.py — this script serves as the core program for anti-debugging detection.

C:¥Program Files¥IDA Pro 8.3¥plugins

~
A & EHAE

&l

bochs
hexrays_sdk
iconengines
imageformats
platforms
printsupport
sqldrivers

styles
anti_debug.cenfig

E] anti_debug_techniques_descriptions.json
[# AntiDebugSeeker.py

m

|2 arm_mac_stubb4.dll

|2 armlinux_stub.dll

|
i
W W m ™ o

fm

|2 armlinux_stub64.dll

Figure 1: Three files to run in IDA.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

Regarding anti_debug.config

The anti_debug.config file contains rules for detecting anti-debugging features. It is divided into two sections:
Anti_Debug_API and Anti_Debug_Technique.

In the Anti_Debug_API section, you can freely create categories and add any number of APIs you want to detect (exact
match).

###Anti_Debug_API#+## ###Anti_Debug API###

[Category Name] [Debugger check]
CheckRemoteDebuggerPresent

API1 .
DebugActiveProcess

API2 DebugBreak

API3 DbgSetDebugFilterState

! DbgUiDebugActiveProcess

IsDebuggerPresent

Figure 2: Anti_Debug API section.

In the Anti_Debug_Technique section, you can set up to three keywords (partial match) under a single rule name.

###Anti_Debug_Technique### ###Anti_Debug_Technique###
default_search_range=80 default_search_range=80
[Rulel] [NtGlobalFlag_check]

ABC fs:30h

DEF ‘;'g:

GHI

Figure 3: Anti_Debug Technique section.

The basic flow of the search is as follows:

The search begins with the first keyword. If it is found, the second keyword is then searched for within a specified number
of bytes (the default is 80 bytes). This same process is applied when searching for the third keyword.

Search Target:
Disassembly (Opcode, Operand)
Comments
API based on Import Table

Should you wish to alter the predefined default values and tailor the search parameters, append ‘search_range=value’ to the
specified keyword. This adjustment facilitates the customization of the search scope for each established rule within your
configuration.

###Anti_Debug_ Technique# ##
default_search_range=80

[Rulel]

ABC

DEF

GHI
search_range=50

[Rule2]

JKL

MNO
search_range=200

Figure 4: How to specify the search range.

Regarding anti_debug_techniques_descriptions.json

This JSON file provides explanations for the rules defined in the Anti_Debug_Technique section of the anti_debug.config
file, detailing why they were detected and describing the rules themselves. This information can also be useful for reference
in case of false detections. Comments are recorded in IDA for the addresses that were detected.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

f
{

"VMware_I/O_port" : "detect a VM environment based on the VMware I/O port",

"VMware magic value" : "detect a VM environment based on the VMware magic value.",

"HeapTailMarker": "Malware can detect if it's on a debug heap by checking the HeapTailMarker value. ¥nIf
this value is ABABABARB, it indicates execution in a debug environment; otherwise, it's a normal execution.",

"KernelDebuggerMarker": "Detect Kernelmode Debugger(KdDebuggerEnabled)",

"DbgBreakPoint RET": "This detection may be due to the first byte of the DbgBreakPoint function being
replaced with 0xC3, which corresponds to the 'ret' instruction. ¥nThis prevents a debugger from successfully
attaching to the process.",

"DbgUiRemoteBreakin Debugger Terminate": "When a debugger tries to attach to a process, the process
automatically terminates.",

I

I

i
"Commucate_function" : "Detected by characters related to '/ and '443', indicating communication capabilities.
¥nThis suggests potential connections to a C2 server and the ability to detect analysis environments."
1

i

Figure 5: The contents of anti_debug_techniques_descriptions.json.

The functionality of AntiDebugSeeker

Upon activation of the plugin using the keyboard shortcut Ctrl + Shift + D, the system initiates an analysis sequence.
Subsequent to the completion of this analysis, a user interface screen entitled ‘Anti Debug Detection Results’ will be
displayed. This interface presents the findings of the analysis, enabling detailed examination of the detected anti-debugging
techniques.

Category Name Possible Anti-Debug API Address Possible Anti-Debug Technique Address
Analysis Environment Check SetupDiGetClassDevsA 0x401022
Analysis Environment Check SetupDiEnumDevicelnfo 0x401043
Analysis Environment Check SetupDiGetDeviceRegistryPr-- 0x401062
Analysis Environment Check SetupDiGetDeviceRegistryPr-- 0x401068
Analysis Environment Check SetupDiGetDeviceRegistryPr -+ 0x401092

Check Ihvalid Close—>Excsption CloseHandle 0x401410
Check Invalid Close—>Exception CloseHandle 0x401419
Check Invalid Close—>Exception CloseHandle 0x40141E
User Interaction Check GetCursorlnfo 0x40161B
Opened Exclu
Check Invalid Close=>Exception CloseHandle 0x401707
Time Check Sleep 0x40184F
Check Invalid Close—>Exception CloseHandle 0x40185D
Check Invalid Close—> Exception CloseHandle 0x40194D
Time Check Sleep 0x401948
Mermory Manipulation VirtualProte ctEx 0x4019C7
Memory EXECUTE READW 0x4019d1
Memory Manipulation VirtualProtectEx 0x40190D
Memory Manipulation VirtualProtectEx 0x401 A1
Check Invalid Close—>Exception CloseHandle 0x401 E35
Thread Execute ResumeThread 0x402170
Time Check WaitForSingleObject 0x40217E
Thread Manipulation SuspendT hread 0x402191
Thread Execute ResumeThread 0x4022C3
Time Check WaitForSingleObject 0x4022D1
Thread Manipulation SuspendThread 0x4022E4
Thread Execute ResumeThread 0x40235B
Check Invalid Close—>Exception CloseHandle 0x402409
Check Invalid Close—>Exception CloseHandle 0x402423
Opened Exclusiy Check 0x402b73
Check Invalid Close=>Exception CloseHandle 0x402BB3
Check Invalid Close=>Exception CloseHandle 0x402E5D
Time Check GetTickCount 0x402F60
Time Check GetTickCount 0x402F66
Time Check GetTickCount 0x402FCF
Check Ihvalid Close—>Exception CloseHandle 0x40364D

Figure 6: Screen of Anti Debug Detection Results tab.

The column structure of Anti Debug Detection Results is as follows:

» Category Name
API category name defined in the Anti_Debug_API as listed in anti_debug.config.

* Possible Anti-Debug API
List of detected APIs displayed.

* Address
Address where the detected API is being used.

* Possible Anti-Debug Technique
Detection name identified by the keyword defined in Anti_Debug_Technique as listed in anti_debug.config.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

+ Address
Address of the first detected keyword.

* Address Transition
By double-clicking on the detected line, you will jump to the address specified.

After running the plugin, detected APIs and keywords are highlighted in different colours.

Detection Category

Anti_Debug_API Green

Anti_Debug_Technique Orange

Figure 7: Differences in colour by category.

Furthermore, should an API detailed within the Anti Debug_API section be identified, the corresponding category name is
annotated as a comment (Figure 8). Similarly, upon detection of a rule name within the Anti_Debug_Technique section, a
commentary derived from the JSON file illustrated in Figure 5 is appended as a note to the initially detected keyword
(Figure 9).

call sub_401D3@

mov ds:WriteProcessMemory, eax ; Write Data OnTheMemory
mov edx, 9D@@A761lh

mov eax, [ebp+var_8]

call sub_401D38

mov ds:ReadProcessMemory, eax ; MemoryRead,ProcessInspection
mov edx, 9ABFBBAGh

mov eax, [ebp+var_8]

call sub_401D38

mov ds:VirtualAllocEx, eax ; Memory Manipulation
mov edx, 6B416786h

mov eax, [ebp+var_3]

call sub_401D38

mov ds:GetCurrentProcessId, eax

mov edx, 774393E8h

mov eax, [ebp+var_8]

call sub_401D30

mov ds:GetModuleFileNameA, eax

mov edx, 2EE4F1@Dh

mov eax, [ebp+var_8]

call sub_401D30

mov ds:CopyFileA, eax

mov edx, 19F78C96h

mov eax, [ebp+var_8]

call sub_401D30

mov ds:Process32First, eax ; Process Check

mov edx, @D89ADBSh

mov eax, [ebp+var_8]

call sub_401D30

mov ds:GetCurrentProcess, eax

mov edx, @C938EALEh

mov eax, [ebp+var_8]

call sub_401D30

mov ds:Process32Next, eax ; Process Check

mov edx, S5BC1D14Fh

mov eax, [ebp+var_8]

call sub_401D38

mov ds:CreateToolhelp32Snapshot, eax ; Process Check
mov edx, 77CD9567h

Figure 8: Detected in the Anti_Debug API section.

push ebp

mov ebp, esp

and esp, BFFFFFFF8h

mov eax, large fs:30h ; NtGlobalFlag check - The code is checking the NtGlobalFlag value at offset @x68 from the Process Environment Block.

5 The value 7@ is the sum of FLG_HEAP_ENABLE_TAIL_CHECK (©x1@), FLG_HEAP_ENABLE_FREE_CHECK (@x20), and FLG_HEAP_VALIDATE_PARAMETERS (@x4@).

sub esp, 488h

test byte ptr [eax+68h], 7@h

push esi

push edi

jz short loc_4BFFB2

mov [ebp+Context.ContextFlags], 1@@16h ; Hardware_Breakpoints_Check - Check the debug registers DRe, DR1, DR2, and DR3 (CONTEXT_DEBUG_REGISTERS @x10018)

; to determine if a hardware breakpoint has been set.

lea eax, [ebp+Context]

push eax 5 lpContext

call ds:GetCurrentThread

push eax ; hThread

call ds:GetThreadContext ; Thread Manipulation

mov ecx, [ebptvar_4]

xor eax, eax

xor ecx, ebp ; StackCookie

call @ security check_cookie@ ; _ security c

mov esp, ebp

pop ebp

retn

_main endp

push ebp
mov ebp, esp

push ecx
mov eax, large fs:30h ; BeingDebugged_check - The BeingDebugged field in the Process Environment Block (PEB) indicates whether the current process is being debugged or not.
movzx cax, byte ptr [caxi2]
test eax, eax

setnz byte ptr [ebptvar_4]

cmp [ebp+var_4], @

jz short loc_40102E

Figure 9: Detected in the Anti_Debug Technique section.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

Upon initiating the plugin using the Ctrl+Shift+D shortcut, the system not only presents the anti-debug detection results but
also includes a newly added feature that displays a list of detected functions. From the perspectives of the anti-debug
detection results and the detected function list, there is an enhanced understanding of both the detection outcomes and the
overarching code structure. Concurrently, the debugging process is streamlined by systematically organizing information
by function. Collectively, these windows support a dual-perspective approach to malware analysis.

Below is a list of the basic features of the Detected Function List:
+ Display the anti-debug detection results, organized by function.

+ For items detected by the rules in the Anti_Debug_Technique section, displayed in pink text, the rule descriptions can
be viewed by hovering over them with the mouse.

* Clicking on the areas highlighted in yellow under the function names will navigate to those addresses.

* Entering text in the search bar initiates a search, and matching results are highlighted in blue.

1] IDA View-A] Q Anti Debue Detection Resuls £ [Detected Furction tist @ (& Hex View-1 @ Struotures) | @ Enums (= -] Tnports 0 ® Exports
resune
= Double-click o0 8 funotion narms S1artes with St 1o iweatigats L recursively cal
You can search for results. 5
sub_2019C0
VirtualProtectex
Virtualprotectex
ViruaiProtectex
(adetected) e N ewProtect parameter in Vitualprotect i configured with PAGE,EXECUTE_READWRITE (0s40).

sub_401C4A

ClosaHandle

(detected) Mouse over to see rule explanations.

sub_402088

WaitforSingledbject

SuspendThread

ResumeThread
(adetactad)

sub_402215

waitrorsingleobject
SuspendThread
ResumeThread
ResumeThread
(4detected)

Double-click to jump
to a section.

46736 pr

CloseHandle
CloseHandle
(2detected)

dword pte -10n
et

sub_402AEA

Figure 10: Screen of Detected Function List — basic functions.

The Detected Function List, in addition to its basic features, displays the hierarchical structure of where detected functions
are being called from when function names starting with ‘Sub’ are double-clicked. In the hierarchical display, function
names include ‘depth:[number]’ to indicate their depth from the Original Entry Point. If the text is in grey, it indicates that
the function has been detected in the Anti Debug Detection Lists. Furthermore, double-clicking on the displayed function
names navigates to the address where that function is called.

® DA View-A Q8 Anti Debug Detection Resulte () @ oetected Funetion Lt) [T Hex View- 1 > @ ‘Structures B Erume. [k) Imports: # Exports

froume

sub_4019C0
Virtus Protectex Help Information :
e Double Clicking on a functien name starting with
e 'sub’ allows you to recursively check that function.
(adetected)
sub_401C4A
Double-clicking on a function name enables you to trace

CloseHandle
where that function is being called from recursively.

(1detected)
sub_402088

WaitforSingleObject Functions displayed in gray have been
S detected in the Detected Function List.

i 08 Checkthe recuriv cls b, 402215 - i
| Gdetected) — depth: [number]" indicates the depth from
i ot - the Original Entry Point (OEP).
WwaitrorsingleObject 4
| suspendThread ble-click to jump to the location where the ~te ush eai ; Iphodul ehanc|
ResumeThread X function is being called. e
ResumeThread =
(adetected) fle, CloseHandle, Opened_Exclusively. Check
3
e - text: 0941120 call g8 :HeapDestroy
Closetandle Mouse over to see the function's detection results
R from the Detected Function List.
sub_402AEA

Figure 11: Screen of Detected Function List — recursive checking.

List of detectable anti-debugging techniques (all 47 rules)

VMware 1/0O_port NtGlobalFlag_check Memory Region_Tracking
VMware magic_value NtGlobalFlag check 2 Check BreakPoint Memory 1

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

HeapTailMarker HeapFlags

KernelDebuggerMarker HeapForceFlags

DbgBreakPoint RET Combination_of HEAP_ Flags
DbgUiRemoteBreakin Debugger Terminate Combination of HEAP Flags 2
PMCCheck RDPMC ReadHeapFlags

TimingCheck RDTSC ReadHeapFlags 2

SkipPrefixes INT1 DebugPrivilegesCheck

INT2D _interrupt_check CreateMutex_AlreadyExist
INT3_interrupt_check CreateEvent_AlreadyExist
EXCEPTION BREAKPOINT Opened Exclusively Check

ICE interrupt check EXCEPTION INVALID HANDLE 1
DBG PRINTEXCEPTION C EXCEPTION INVALID HANDLE 2
TrapFlag_SingleStepException Memory EXECUTE_READWRITE 1
BeingDebugged check Memory EXECUTE READWRITE 2

ANTIDEBUGSEEKER FOR GHIDRA

The basic search logic is the same across the versions for IDA and Ghidra.

Files required to run the program

+ AntiDebugSeeker.java (for Ghidra script version)

Check BreakPoint Memory 2
Software Breakpoints_Check

Hardware Breakpoints Check
ChildProcess_Check
Enumerate_Running_Processes
ThreadHideFromDebugger
NtQueryInformationProcess PDPort
NtQueryInformationProcess PDFlags
NtQueryInformationProcess PDObjectHandle
NtQuerySystemInformation KD_Check
Extract_Resource Section

Commucate _function_String

Commucate_function

 Zip folder containing the compiled files: ghidra 11.0.1 AntiDebugSeeker.zip (for Ghidra module extension)

 anti_debug_Ghidra.config (converted for Ghidra: a file containing rules for detecting anti-debugging techniques)

 anti_debug_technique descriptions_Ghidra.json (converted for Ghidra: a file containing descriptions of the detected

rules)

How to run in the Ghidra scrip version

When utilizing Ghidra Script, one can select AntiDebugSeeker.java from the Script Manager and proceed to execute it.

&

B e+ BBBPBE JCIDULFYE Gdis-~ J@wa.ﬂa@@ I

%

| Script Manager > AntiDebugSeeker.java

= —s o TP —
s 4 AntiDebugSeskecisva, Script Manager [CodeBromser test/ 00140000 exe]
b
w

i tiep
O Scrict Manage: - | sorpts (of HE: 0 TO/ XA LG =
[Tl Swiss Hane Cuscrtin oy Gaessry P Modited

R =IO RIS

Figure 12: How to run in the Ghidra script version.

When the script is initiated, a prompt entitled ‘Select the Configuration File’ appears. Users are required to specify the
anti_debug_Ghidra.config, which defines the detection rules, before selecting ‘Open’ to proceed.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

1 Select the Configuration File X
o = ﬁ |C:¥Users¥kaihatu¥Desktop¥AntiDebueSeeker Files f; o = EY
@ | @ anti_debug_Ghidra config
e IT anti_debue_techniques descriptions_Ghidra json
My Gomputer
Desktop
——
Home
Recent
File name: Ianti_debug_Ghidraconfig
Type: | Al Files () E|
Open | Cancel |

Figure 13: Select the configuration file, anti_debug Ghidra.config.

Following the selection of the configuration file, a prompt titled ‘Select the JSON Description File’ appears. Users are
required to specify the anti_debug_technique descriptions Ghidra.json file, which contains the descriptions of the
detection rules, and then click ‘Open’ to continue.

8 Select the JSON Description File X
¢ = {} [C¥Users¥kaihatu¥Desktop¥AntiDebugSeeker Files % o B &
@ ¥.) anti debug_Ghidra confie
i @ anti_debug_techniques_descriptions_Ghidra json
Home
Recent
File name: |anli_debug_techniques_descriptions_Ghidra.json
Type: | All Files (¥) il
Open | Cancel |

Figure 14: Select the description file, anti_debug technique_descriptions_Ghidra.json.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

How to set up and execute the Ghidra module extension

To integrate and operate the module version of AntiDebugSeeker within Ghidra, rather than utilizing a script, the following
steps are necessary. The module version features a graphical user interface, which facilitates a visual comprehension of the
analysis results, and is therefore recommended.

1. Select the file > Install Extensions
2. Click + button, then Select Install Extensions.
(ghidra 11.0.1 PUBLIC AntiDebugSeeker.zip)
After Opening CodeBrowser
3. Select the file.
4. In the Configure menu, check ‘Examples.
5. Click ‘Configure,’ select ‘AntiDebugSeekerPlugin,” and click ‘OK.

First, prior to launching Ghidra’s CodeBrowser, we will proceed with the steps necessary to install the AntiDebugSeeker plugin.

@ Ghidra: test - o X
File Edit Project Tools Help

New Project... Ctrl+N

Open Project... Ctrl+O

Reopen »

Close Project Cerl+W

Save Project Ctrl+S

Delete Project...

Archive Current Project...

Configure
Install Extensions
Import File... I
Batch Import...
Open File System... Ctrl+]
Exit Ghidra Ctrl+Q
NFiIler‘. | &)
Tree View | Table View
Running Tools
|Workspace d
Figure 15: Select File > Install Extensions.
L. [Name B | Description l Version l
[~ BSimElasticPlugin Elastic search backend for BSim. 101
" GnuDisassembler GNU Disassembler. Extension is delivered unbuilt. See mo.. 110.1
[Machinelearning Finds functions using ML 101
I~ sample Sample code for extension developers 101
I~ SampleTablePlugin Sample plugin for creating and manipulating a table 1101
[~ SleighDevTools Sleigh language development tools including external disas.. 11.0.1
@ Select Extension X
== g AntiDebugSeeker¥dist b/ = O

[chidra_11.0.1_AntiDebugSeekerzip

§I1ﬁ§|l§(’§.§@

File name: [ghidra_11.0.1_AntiDebugSeeker zip
Type: | Ghidra Extension =1

ok | cancel |

Figure 16: Install a ZIP file (compiled AntiDebugSeeker).

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

File Edit Analysis Graph Navigation Search Select Tools Window Help
Open... -0 PIDULFVEB- @@ »
File > Configure > Check Examples > Click Configure
> Check AntiDebugSeekerPlugin > Click Ok
S c @ Since o .
Open File System... <re o :7[‘lAm u:_:- luuwm M‘: in i Ghats . i —
Add To Program.. - 0 Efﬁ:‘u
Export Program... e
Load PDB File... CE e
Parse C Source... 3 iage
rE e
Print...
Eage Seps veloper
Configure_) e Lu
Save T o
SweT:As... i 4 m
Export r Experimental
Close Tool & ol Finer [2=
Exit Ghidra
[ome]

Analysis

Analysis

Analysis

Analysis

Analysis

Filter: [2 A"‘"‘: 4 J
u[Analys =]

Figure 17: How to integrate the module version of AntiDebugSeeker.

After integration, ‘AntiDebugSeekerPlugin’ will be available in the Window menu; users are advised to click on it to

continue.
File Edit Analysis Graph Navigation Search Select Tools | Window Help
B e = BRBEERPRDE |8 @I DU [&Antdebugsekerlugin | G EBCG..0B®0E~ | @
— Bockmarks Curi+B
AL v
Bundle Manager
= Z7# 00120000 dump_2_SCYexe) Bytes: 00120000 durmp.2 SCY.exe
~[E] Headers Checksum Ge
& coDE FAse Ak 00-ram: 004003££
L @ DATA Comments
“[@ sss 5 Console
A idata [Data Type Manager
e Data Tyme Eretien \DER_00400000 XREF[1
i 's sc'; C¢ Decompile: UndefinedFunction 00412600 Ctrl+E
! Defined Data
24 Defined Strings 1 Mz e _magic
Disassembled View b4l
Equates Table 50n e_cblp
External Programs zh E_wl
h e crle
Funch: _(
unct!onCdll Graph & e cparhdr
|_Proeram Tree X ? Function Call Trees Fn e_minalloc
@ ™ x saw Function Graph EEFFh e_maxalloc
Function Tags oh e_ss
& D Inports) Functions BZh e_sp
& Exports on e_caum
® Functions 13 Listing: _00120000_dump_2_SCY.exe - =
P Labels & Memory Map
=} Classes Program Trees B Categary
R oo [hoabes @ Python Found Gode
fnalysis > Register Manager Found Code
Analysis . Found Code
Analysis Relocation Table Found Gode
Analysis © Script Manager Found Code
Analysis | Symbol References Found Code
Analysis . Found Code
iy (] Symbel Table CurlsT e
Analysis) Symbel Tree Found Code
Analysis Found Code
Analysis Found Code

Figure 18: Select AntiDebugSeekerPlugin from the Window tab.

When the plugin is launched, as illustrated in Figure 19, three clickable buttons are available: ‘Start Analyze’, ‘Display
Only the Detection Results’ and ‘Detected Function List’. Clicking the ‘Start Analyze’ button loads the configuration and
JSON files and initiates the analysis.

VIRUS BULLETIN CONFERENCE OCTOBER 2024

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

%X

Display cnly the detaction resufts Detected Function List |

[T

Figure 19: Startup screen.

A screen with a small dragon and file selection options will appear. ‘Select Config File’ is displayed. Specify the
anti_debug_Ghidra.config file that defines the detection rules, and then click ‘Open’.

84 Select Config File

Look in: I AntiDebugSeeker Files ll " g '

"\{i] anti_debug_Ghidra.config

B{EoH A .

B

Bk

-
PC

L

File name: Janti_debue_Ghidra config

A Files of tpe: [Gonfig Files =] Gancel

Figure 20: Select the config file.

Similar to the Ghidra script version, a prompt to ‘Select JSON File’ will be displayed. Specify the anti_debug_technique
descriptions_Ghidra.json file, which contains the descriptions of the detection rules, and then click ‘Open’.

& Select JSON File

Look in: | AntiDebugSeeker_Files ﬂ 5 il

([i]’ anti_debug_techniques_descriptions_Ghidra.json

RIf{EokIA..

FAON?

]

-
PC

Y
y File name: |anti_debug_tenhn iques_descriptions_Ghidra json Open

Files of type: [JSON Files = ﬂl

Figure 21: Select the JSON file.

VIRUS BULLETIN CONFERENCE OCTOBER 2024 11

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

VERIFYING THE RESULTS, GHIDRA SCRIPT + MODULE EXTENSION

Ghidra script: check console-scripting

The results of the detection can be reviewed from the Console - Scripting screen. The message ‘AntiDebugSeeker Process
Finished’ indicates that the process has successfully completed.

AntiDebugSeeker.java>

AntiDebugSeeker.java>
AntiDebugSesker.java>
AntiDebugSeeker.java>
AntiDebugSeeker. java>
AntiDebugSesker.java>
AntiDebugSeeker. java>
AntiDebugSesker.java>
AntiDebugSesker.java>
AntiDebugSeeker.java>
AntiDebugSesker.java>
AntiDebugSeeker.java>
AntiDebugSeeker.java>
AntiDebugSeeker.java>
AntiDebugSeeker.java>
AntiDebugSeeker.java>
AntiDebugSeeker.java>
AntiDebugSesker.java>
AntiDebugSecker.java>
AntiDebugSssker.java>
AntiDebugSesker.java>
AntiDebugSeeker.java>
AntiDebugSesker.java>

AntiDebugSeeker. java>

Running. ..
Start AntiDebugSeeker Script ...
IsDebuggerPresent API not found.
CutputDebugStringA API not found.
OutputDebug8tringW API not found.
CreateToolhelp32Snapshot API not found.
GetWindowThreadProcessId AFPI not found.
NtQueryInformationPrecess API not found.
Process32First API not found.
Process32Next API not found.
MapViewOfFile API found.

AntiDebugSeeker.java> found Jingle

eyword Rule

0040775£ AntiDebugSeeker.java> Found Single keyword Rule'http'
UnmapViewofFfile API found. hnn%neb-agaeeker.;:a\:a} Found aéngle keyword Rule‘http®
AntiDebugSeeker.java> Found Single keyword Rule'http'

RO20TE0E AntiDebugSeeker.java> Found Single keyword Rule'http’
Virtualhlloc API found. AntiDebugdeeker.java> Found Single keyword Rule'http’
00402042 AntiDebugdesker.java*> Found Single keyword Rule'http'
004016a5 hrtiDabugSesker.java> Found Single keyword Ruls'http'

VirtualaAllocEx API not found.
VirtualProtect API found.

00402035

AntiDebugdesker.java> Found Single keyword Rule'http'
00402053 AntiDebugSeeker.java> Found Single keyword Rule'http'
00402155 hntiDebugdesker.java> Pound Single keyword Rule'http'
004021bE AntiDebugSeeker.java> Found Single keyword Rule'http'
00414ddé AntiDebugSeeker.java> Found Single keyword Rule'http’

AntiDebugSesker.java>

RntilDy ker.java> Finished!

AntibebugSeeker.java> Found Single keyword Rule'http'
AntiDebugSseker.java> Found Single keyword Buls'http'
AntibDebugSeeker.java> Found Single keyword Rule'http'

AntiDebugSesker.java> Found Single keyword Rule'http'
AntiDebugdeeker.java> Found Single keyword Rule'http'
AntiDebugSeeker.java> Found Single keyword Rule'http'
AntiDebugSsaker.java> Found Single keyword Rule'http' at

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

AntiDebugSeeker.java> Searching for keyword group: Commucate_function with search range: 250...

AntiDebugSeeker.java>| 10! Seeker Frocess Finished
Please Check the Results from Bookmarks

00402540
004026de
00402654
0040268
o04026£4
00408933
0040a57k
00411c3l
2041157
004121cd
004131ea
0041364c
00413665
204193£8
004193£fc
00415454
00419458
00419494
00419498

Figure 22: Script analysis completion screen.

Ghidra module extension: check text area

When the analysis is complete, ‘Analysis Complete’ will be displayed. Monitor the progress on the right side of the screen
using the progress bar. Once the bar reaches 100%, the analysis is complete. On the displayed screen, you can review both
the detected and undetected items. At this point, the results are already registered in Ghidra’s Bookmark feature.

L]

Edt Help

|

Stort Arabas_| _ Disloyory o dtectianresolts_| | Deected Frtion it

Found Single keyword Rule ‘hctp' at 00402530 in function Unknown
Found Single keyword Rule 'hctp' at 00402540 in function Unknown
Found Single keyword Rule 'hotp' at 0040264c in function Usknown
Found Single keyword Rule *hoip' at 00402654 in function Unknown
Found Single keyword Rule 'hoip' at 004026e8 in function Unknown
Found Single keyword Rule 'hccp' at 004026f4 in function Unknown
Found Single keyword Rule ‘htcp' at 00408935 in function FUN_0040
Found Single keyword Rule *htep’ at 00408975 in function FUN_
Found Single keyword Rule ‘htep' at 00411c3L in function FUN_00411bdc
Found Single keyword Bule ‘*htep' at 00411c57 in function FUN_00411b9e
Found Single keyword Rule 'http' at 004131cd in function FUN_00413174
Found Single keyword Rule 'http' at 00413lea in function FUN_00413174
Found Single keyword Rule 'http' at 0041364c in function FUN_00413510
Found Single keyword Rule °h:
Found Single keyword Rule 'hi
Found Single keyword Rule °http' T 004193fc in function Unknown Function
Found Single keyword Rule °hi
Found Single keyword Rule 'hccp' at 00419458 in function Unknown Function
Found Single keyword Rule 'http' at 00419484 in function Unknown_Function
Found Single keyword Rule 'http' at 00419498 in function Unknown Function
Searching for keyword group: Commucate_function with search range: 250...
AnciDebugSeeker Process Finished

42+ Flease Check the Results From Bookmarks. **%

s

m s a v
Keyword group Enumerate Running Processes found starcing at: 00402f62 in direct search. In function FUN 00402674
Decected Second Keyword 1s 0040286

Keyword group Enumerate Running Processes found STarcing at: 0041120 in direct search. In functien Unknown Function
Detected Second Keyword 15 0041418

searching for eywors g
Searchin

: ThresdHideFromDebugger with search range: £0..
NtQuerylnformaticnProcess_PDFort with search range:
itQueryInformationProcess_PDFlags with search range:
] with search range: B0...
tQuerySystemlnforsation KD Check with search ranges £0...

¢ Extract_Resource Section with seaxch range: B0...

ng for Commucate_function STring...

A Analysis Complete X

The analysis has comph
ek Plaace Chack the

leted successtully.
Razuits From Boskmarks. ¥ve

00413669 in function FUN_00413510
004193f8 in function Unknown_Function

P T 00413454 1n function Unkmown_Function

Progress Bar

Figure 23: Plugin analysis completion screen.

Upon detection by Anti Debug_Technique, the system will display the name of the detection rule, the position of the
detected keyword within the rule, and the address where the detection occurred.

12

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

Feyword group Memory EXECUTE READWRITE 1 found starting at: 0040203f in direct search. In function FUN_ 00402004
Detected Second Keyword is 00402041

Detected Third Feyword is 0040204a

Searching for keyword group: Memory EXECUTE READWRITE_2 with search range: 20...

Feyword group Memory EXECUTE READWRITE_ 2 found starting at: 0040202d in direct search. In function FUN_00402004
Detected Second Keyword is 00402035

Eeyword group Memory EXECUTE READWRITE 2 found starting at: 0040214d in direct search. In function FUN_00402114
Detected Second Keyword is 00402155

Eeyword group Memory EXECUTE READWRITE 2 found starting at: 00414dc2 in direct search. In function entry
Detected Second Reyword is 00414ddé

Searching for keyword group: Memory Region Tracking with search range: 250...

Searching for keyword group: Check BreakPoint Memory 1 with search range: 80...

Searching for keyword group: Check BreakPoint_Memory 2 with search range: 80...

Searching for keyword group: Software_Breakpoints Check with search range: 300...

Searching for keyword group: Hardware_ Breakpoints Check with search range: B80...

Searching for keyword group: Enumerate Running Processes with search range: 250...

Eeyword group Enumerate Running_Processes found starting at: 00402f62 in direct search. In function FUN_00402c74
Detected Second Feyword is 00402£86

Figure 24: Display when detected by the rules specified in Anti_Debug Technique.

Clicking the ‘Display only the detection results’ button, as shown in Figures 25 and 26, displays only the detected items,
making it easy to review the results.

Start Analyze I Display only the detection resuits Detected Function List

TsDebuggerPresent API not found.
OutputDebugStringA API not found.
outputDebugStringW API not found.
createToolhelp32Snapshot API not found.
GetWindowThreadProcessId API not found.
NtQueryInformationProcess API not found.
Process32First API not found.
Process32Next API not found.
MapViewOfFile API found.

0040775f in function FUN_004076£8
[UnmapviewOfFile API found.

00407606 in function FUN_004075dc
VirtualAlloc API found.

0040204a in function FUN_00402004
004016a3 in function FUN_00401650
[VirtualAllocEx API not found.
VirtualProtect API found.

00402035 in function FUN_00402004
00402099 in function FUN_00402004
00402155 in function FUN_00402114
004021bf in function FUN_00402114
00414dd6é in function entry

b

b

Figure 25: Before processing ‘Display only the detection results’.

Start Aralyze || Display only the detaction results Detected Function List

MapViewOfFile API found.

0040775f in function FUN_004076f8
UnmapViewOfFile API found.

00407606 in function FUN_004075dc
Virtualalloc APT found.

0040204a in function FUN_ 00402004

004016a% in function FUN_00401630
VirtualProtect API found.

00402035 in function FUN_00402004

004020989 in function FUN_00402004

00402155 in functien FUN_00402114

004021b£f in function FUN_00402114

00414ddé in function entry
CreateMutexA API found.

004077£5 in function FUN_004076f8

004149e0 in function FUN 00414338
GetComputerNameA API found.

0040baéf in function FUN_0040ba4dc

00406443 in function FUN_00406420

0040657b in function FUN_00406558
GetSystemTime API found.

0040a7d2 in function FUN_0040a7c8
GetTickCount APT found.

0040b8f7 in function FUN_0040b754

0040b845 in function FUN_0040b754

00414157 in function FUN_00413eb8

0040c581 in function FUN_0040c544

0040cSec in function FUN _0040c544

Figure 26: After processing ‘Display only the detection results’.

14

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

In the states depicted in Figures 25 and 26, before and after processing ‘Display only the detection results’, clicking the
‘Detected Function List’ button groups the detection results by function. This organization facilitates a clearer
understanding of the anti-debugging features at the function level.

AntiDebugSeskerPlugin

Start Anahee Display only the detection results

FUN_004076£8

MapViewOfFile : 0040775f

CreateMutexA : 004077£5S
FUN_004075dc

UnmapViewOfFile : 00407606
FUN_00402004

VirtualAlloc : 0040204a

VirtualProtect : 00402035

Memory EXECUTE_READWRITE_1 : 0040203f

Memory EXECUTE_READWRITE_2 : 0040202d
FUN_0040badc

GetComputerNamei : 0040baéf
FUN_0040a7c8

GetSystemTime : 0040a7d2
FUN_0040b754

GetTickCount : 0040b8£7
FUN_004076d8

WaitForSingleCbject : 004076e3
FUN_0040c614

CreateThread : 0040c63f
FUN_00414938

GetCursorPos : 0041l4c2ec
FUN_00413254

CloseHandle : 004132eb

Opened_Exclusively Check : 0041326éc

Opened Exclusively Check : 0041328e
FUN_004010b8

RDTSC : 004010bc

Figure 27: After processing ‘Detected Function List’.

Ghidra script / module extension: check Bookmarks

In Figures 28 and 29, the detection results are registered in Ghidra’s Bookmark, allowing for easy verification. The
category labelled ‘Potential of Anti Debug API” indicates detections based on the rules specified in the Anti_Debug_API
section of the anti_debug_Ghidra.config file. Similarly, the category labelled ‘Anti Debug Technique’ signifies
detections based on the rules in the Anti_Debug_Technique section. Additionally, entries such as ‘Second Keyword’

or ‘Third Keyword’ under ‘Anti Debug Technique’ denote the specific locations where the defined keywords were
detected.

Tvre E, | Ciategony DCescription Location
Arahysis Potential of Anti Debug APT Werony Manipulation : MapViewOfFile Qo407 7EF
Arahysis Potential of Anti Debug APT rermony Manipulation : UnmapWiewOfFile 00407606
Arahsis Potential of Anti Debug APT Mermory Manipulation : YirtualAlloc OA0EMa
Arahsis Potential of Anti Debug APL Mermory Manipulation : YirtualAlloc 00401 Gal
Arahsis Potential of Anti Debug APT Mermory Manipulation : YirtualProtect Q0402065
Aralysis Potertial of Anti Debug APL Mermory Manipulation : VirtualProtect 00402065
Arahysis Potential of Anti Debug APT Mermony Manipulation : YirtualProtect 00402155
Arahsis Potential of Anti Debug APT Mermony Manipulation : YirtualProtect 004021 bf
Arahsis Potential of Anti Debug APT Mermory Manipulation : YirtualProtect 0041 4ddé
Arahsis Potential of Anti Debug APL Mutual Exclusion : Createhutexd, OOA07TS
Arahsis Potential of Anti Debug APT Mutual Exclusion : Createhutexd, 0041 4920
Aralysis Potertial of Anti Debug APL Arahels Ervironment Check: GetCormputerbarmes 0040ka6f
Arahysis Potential of Anti Debug APT Aralysis Ervironment Check : GetComputerhames 00406443
Arahsis Potential of Anti Debug APT Aralysis Ervironment Check : GetComputerhames 0040657h
Arahsis Potential of Anti Debug APT Time Check : GetSyetemTime OA0a7d2
Arahsis Potential of Anti Debug APL Time Check : GetTickCount OOA0RGFT
Arahsis Potential of Anti Debug APT Time Check : GetTichTount O0A0RE45
Arahsis Potential of Anti Debug APT Time Check : GetTichCount OO HET
Arahysis Potential of Anti Debug APT Time Check : GetTickCount 0040581
Arahsis Potential of Anti Debug APT Time Check : GetTickCount 0405ec
Arahsis Potential of Anti Debug APT Time Check : WaitForSingle Object O0A076e3
Arahsis Potential of Anti Debug APL Time Check : WaitForSingle Object 0407 0ea
Aralysis Patential of Anti Debug AP Tirre Check : WaitForSinge Olject 00413042
Arahsis Potential of Anti Debug APT Time Check : WaltForSinge Chject Q0A0AF20
Aralsis Potential of Anti Debug AP Tire Check : WaitForsinge Object 010018

Figure 28: After processing ‘Detected Function List’.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

Categry Description Location
Arahsis Arti Debug Technigue Timingzheck ROTSC 004 Obc
Arahsis Arti Debug Technigue Opered_Exdusively Check 04061 88
Arahsis Secord Keyword It was detected at 004061 1
Arahsis Anti Debug Technigue Opered_Exclusively Check 004061 a2
Arahsis Second Keyword It was detected at 004061 b3
Arahsis Arti Debug Technigue Opered_Exdusively Check O40cSe3
Arahsis Secord Keyword It was detected at 40cSec
Arahsis Anti Debug Technigue Opered_Exclusively Check 004 326
Arahsis Secand Keyward It was detected at Q0413275
Arahsis Arti Debug Technigue Opered_Exdusively Check 0041 3282
Arahsis Secord Keyword It was detected at 0041 3297
Arahsis Anti Debug Technigue Wernory EXECIUTE READWRITE 1 OCA0206F
Arahsis Second Kewword It was detected at 040204
Arahsis Third Keywaord It was detected at OOA0204a
Arahsis Arti Debug Technigue Mermory EXECILUTE READWRITE 2 Ood0202d
Arahsis Second Keyword It was detected at 00402065
Arahsis Arti Debug Technigue Moy EXECUTE READWRITE 2 004021 4cd
Arahsis Seoord Keyword It was detected at 0402155
Araysis Artti Debug Technigue Wermory EXECUTE REACMRITE 2 00H 4dc2
Arahsis Second Keyword It was detected at 00 dedcle
Arahsis Arti Debug Technigue Enurrerate_Running Processas 00402182
Arahsis Seoord Keyword It was detected at 040286
Arahsis Arti Debug Technigue Enurrerate_Running Processes o dal
Arahsis Second Keyword It was detected at 00l a8

Figure 29: After processing ‘Detected Function List’.

Items detected by the Anti Debug API are highlighted with a green background, and the rule name is annotated as a PRE
comment.

00 00 [2]
- -
Time Check —
TAB 0040bBET XREF[1]: 0040b8d3(3)
0040b8£7 ££f 15 78 CALL dword ptr [—->KERNEL32.DLL::GetTickCouni
d4 41 oo
0040b8£d 2b 45 d4 sUB ERX,dword ptr [EBE + -0x2c] =]
| | |

o Boolmarks ~ (159 bookmarks)

Tyre By H Category Descrintion Location
Arahsis Paotertial of Anti Debug APT Aralhysis Environment Check : GetComputerhamed 00406443
Arahysis Potential of Anti Debug API Aralysis Ervironmert Check: GetComputerhameA 00406570
Arahsis Patertial of Anti Debug AFPT Tire Check : GetSystemTime 004072
Al A i it

Figure 30: Disassembly screen showing detections from the Anti_Debug API section of anti_debug Ghidra.config.

Items detected by the Anti Debug Technique are highlighted with an orange background, and the rule name is annotated as
a PRE comment. The details of the rule are displayed as a POST comment, derived from the data in the loaded JSON file.

S Listing 00120000 dump_2 SCYexe 5
Memory_EXECUTE_READWRITE_1
0040203f 6a 40 PUSH 0x40 : DWORD flProtect for VirtualAlloc
First Kengrd The flProtect parameter of VirtualAlloc is set te PAGE EXECUT...
This enables dynamic writing and executicn of new code in the...
00402041 68 00 30 PUSH 0x3000 ; DWORD flAllocationType for Vir.
Second Keyword PUSH 0x40 : SIZE_T dwSize for VirtualAlloc
00402048 6a 00 PUSH 0x0 ; LPVOID lphAddress for VirtualAl...
Memory Manipulation
@ 00402042 ff 15 ec CALL dword ptr [->KERNEL32.DLL::VirtualAllec]
Third Keyword
RS MOV dword ptr [ESF + local_20],param 1
00402053 &b 45 e0 MoV param_l,dwozrd ptr
—]’ 00402056 &b 55 e4 MOV param_2,dword per
+/ Bookmarks ~ (164 bookmarks)
Type By Gategory Description Location Label
Analysis Potential of Anti Debug API Gheck Invalid Close->Exception : GloseHandle 0041288c
Analysis Potential of Anti Debug API Check Invalid Close->Exception : GloseHandle 00414cd2
Analysis Anti Debug Technique TimingCheck RDTSC 004010bc
Analysis Anti Debug Technique Opened Exclusively Gheck 00406199
Analysis Second Keyword It was detected at 00406191
Analysis Anti Debug Technique Opened Exclusively Check 00406122
Analysis Second Keyword It was detected at 00406 1b3
Analysis Anti Debug Technique Opened Exclusively Check 0040c %3
Analysis Second Keyword It was detected at 0040c%c
Analysis Anti Debug Technique Opened Exclusively Check 0041326
Analysis Second Keyword It was detected at 00413275
Analysis Anti Debug Technique Opened Exclusively Check 0041328
was detecied 0041329
Anti Debug Technique femory ITE_READWRITE | 0040
Second Keyword It was detected at 00402041
It was detected at 00402042
MEmory EXECUTE RERDWRITE 2 TIRT2023
Analysis Second Keyword It was detected at 00402035
Analysis Anti Debug Technique Memory EXEGUTE_READWRITE 2 0040214d
Analysis Second Keyword It was detected at 004021585
Analysis Anti Debug Technique Memory EXEGUTE_READWRITE 2 00414dc2
Analysis Second Keyword It was detected at 00414dd6
Analysis Anti Debug Technique Enumerate_Running_Processes 0040262
Analysis Second Kewword It was detected at 0040286

Figure 31: Disassembly screen showing detections from the Anti_Debug Technique section of anti_debug Ghidra.config.

15

16

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA...

CONCLUSION

AntiDebugSeeker is a tool designed to automatically detect and analyse anti-debugging features commonly found in
malware. For those who have little experience in analysing anti-debugging malware and find it challenging, the detailed
descriptions of the rules in the JSON file can serve as a valuable reference. While this tool specializes in detecting
anti-debugging techniques, it also highlights common malware techniques through its detection rules. To make this tool
accessible to a broader audience, versions have been developed for both IDA and Ghidra. The functional differences
between the IDA and Ghidra versions are minimal, allowing users to choose the version that best suits their preferences.

I will update this work as promptly as possible upon the discovery of new anti-debugging techniques. Alternatively, if you
report a new technique, I will ensure it is incorporated in the updates. Your collaboration in the development of this tool
would be greatly appreciated.

REFERENCES
[1] IDA_Plugin_AntiDebugSeeker. https://github.com/LAC-Japan/IDA_Plugin AntiDebugSecker.
[2] Ghidra_ AntiDebugSeeker. https://github.com/LAC-Japan/Ghidra_AntiDebugSeeker.

https://github.com/LAC-Japan/IDA_Plugin_AntiDebugSeeker
ttps://github.com/LAC-Japan/Ghidra_AntiDebugSeeker

