
AUTOMATICALLY DETECT AND SUPPORT AGAINST
ANTI-DEBUG WITH IDA/GHIDRA TO STREAMLINE
DEBUGGING PROCESS
Takahiro Takeda
LAC Cyber Emergency Center, Japan

takahiro.takeda@lac.co.jp

2 - 4 October, 2024 / Dublin, Ireland

www.virusbulletin.com

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

2 VIRUS BULLETIN CONFERENCE OCTOBER 2024

ABSTRACT
Malware authors often employ anti-debugging techniques to obstruct analysis. When executed on a debugger, the malware
detects the debugger and either stops its subsequent actions or behaves differently from usual, making analysis difficult.
The number of anti-debugging implementations varies with each malware. Notably, malware spread through mass-mailing
campaigns that affect many organizations, and popular ransomware, have been confirmed to possess multiple
anti-debugging techniques. For example, anti-debugging techniques include VM detection, which checks for a debugging
environment, detection of breakpoints (which temporarily pause program execution during debugging), and time difference
detection, which utilizes the difference in execution time when analysing malware with a debugger.
‘AntiDebugSeeker’ is an open-source plugin for the binary analysis tools IDA and Ghidra, which are frequently utilized by
analysts. It streamlines the malware analysis process by automatically identifying the anti-debugging techniques embedded
within Windows malware. Code with anti-debug capabilities often overlaps with techniques used for anti-analysis, as well
as with the preparatory steps for process injection, which are frequently employed by malware. Therefore, by flexibly
customizing the detection rules, it is possible not only to identify anti-debugging features but also to understand the
functionalities of the malware. Furthermore, the tool also provides functionalities to explain these anti-debugging measures
and approaches to the corresponding functions. This enhances the analyst’s ability to understand and counteract the
malware’s evasion techniques effectively, offering a more comprehensive understanding and response strategy against such
threats. This paper provides a comprehensive explanation of AntiDebugSeeker, detailing its features and usage. It offers an
in-depth understanding of the tool and illustrates how these features can effectively be applied in various threat scenarios.

INTRODUCTION OF ANTIDEBUGSEEKER
AntiDebugSeeker is a program for automatically identifying and extracting potential anti-debugging techniques used by
malware and displaying them in IDA [1] or Ghidra [2].
The main functionalities of this plugin are as follows:

1. Extraction of APIs that are potentially being used by the malware for anti-debugging.
2. In addition to APIs, extraction of anti-debugging techniques based on key phrases that serve as triggers, as some

anti-debugging methods cannot be comprehensively identified by API calls alone.
As a note, for packed samples, it is more effective to run this plugin after unpacking and fixing the Import Address Table.

ANTIDEBUGSEEKER FOR IDA

Files required to run the program
For the purpose of facilitating the detection of anti-debugging techniques using IDA, the following three files must be
placed within the plugin directory of the IDA software:

• anti_debug.config – this file contains a set of rules designed to identify various anti-debugging techniques.
• anti_debug_techniques_descriptions.json – this file provides detailed descriptions of the rules detected.
• AntiDebugSeeker.py – this script serves as the core program for anti-debugging detection.

Figure 1: Three files to run in IDA.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

3VIRUS BULLETIN CONFERENCE OCTOBER 2024

Regarding anti_debug.config
The anti_debug.config file contains rules for detecting anti-debugging features. It is divided into two sections:
Anti_Debug_API and Anti_Debug_Technique.
In the Anti_Debug_API section, you can freely create categories and add any number of APIs you want to detect (exact
match).

Figure 2: Anti_Debug_API section.

In the Anti_Debug_Technique section, you can set up to three keywords (partial match) under a single rule name.

Figure 3: Anti_Debug_Technique section.

The basic flow of the search is as follows:
The search begins with the first keyword. If it is found, the second keyword is then searched for within a specified number
of bytes (the default is 80 bytes). This same process is applied when searching for the third keyword.

Search Target:
 Disassembly (Opcode, Operand)
 Comments
 API based on Import Table

Should you wish to alter the predefined default values and tailor the search parameters, append ‘search_range=value’ to the
specified keyword. This adjustment facilitates the customization of the search scope for each established rule within your
configuration.

Figure 4: How to specify the search range.

Regarding anti_debug_techniques_descriptions.json
This JSON file provides explanations for the rules defined in the Anti_Debug_Technique section of the anti_debug.config
file, detailing why they were detected and describing the rules themselves. This information can also be useful for reference
in case of false detections. Comments are recorded in IDA for the addresses that were detected.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

4 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 5: The contents of anti_debug_techniques_descriptions.json.

The functionality of AntiDebugSeeker
Upon activation of the plugin using the keyboard shortcut Ctrl + Shift + D, the system initiates an analysis sequence.
Subsequent to the completion of this analysis, a user interface screen entitled ‘Anti Debug Detection Results’ will be
displayed. This interface presents the findings of the analysis, enabling detailed examination of the detected anti-debugging
techniques.

Figure 6: Screen of Anti Debug Detection Results tab.

The column structure of Anti Debug Detection Results is as follows:
• Category Name

API category name defined in the Anti_Debug_API as listed in anti_debug.config.
• Possible Anti-Debug API

List of detected APIs displayed.
• Address

Address where the detected API is being used.
• Possible Anti-Debug Technique

Detection name identified by the keyword defined in Anti_Debug_Technique as listed in anti_debug.config.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

5VIRUS BULLETIN CONFERENCE OCTOBER 2024

• Address
Address of the first detected keyword.

• Address Transition
By double-clicking on the detected line, you will jump to the address specified.

After running the plugin, detected APIs and keywords are highlighted in different colours.

Figure 7: Differences in colour by category.

Furthermore, should an API detailed within the Anti_Debug_API section be identified, the corresponding category name is
annotated as a comment (Figure 8). Similarly, upon detection of a rule name within the Anti_Debug_Technique section, a
commentary derived from the JSON file illustrated in Figure 5 is appended as a note to the initially detected keyword
(Figure 9).

Figure 8: Detected in the Anti_Debug_API section.

Figure 9: Detected in the Anti_Debug_Technique section.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

6 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Upon initiating the plugin using the Ctrl+Shift+D shortcut, the system not only presents the anti-debug detection results but
also includes a newly added feature that displays a list of detected functions. From the perspectives of the anti-debug
detection results and the detected function list, there is an enhanced understanding of both the detection outcomes and the
overarching code structure. Concurrently, the debugging process is streamlined by systematically organizing information
by function. Collectively, these windows support a dual-perspective approach to malware analysis.
Below is a list of the basic features of the Detected Function List:

• Display the anti-debug detection results, organized by function.
• For items detected by the rules in the Anti_Debug_Technique section, displayed in pink text, the rule descriptions can

be viewed by hovering over them with the mouse.
• Clicking on the areas highlighted in yellow under the function names will navigate to those addresses.
• Entering text in the search bar initiates a search, and matching results are highlighted in blue.

Figure 10: Screen of Detected Function List – basic functions.

The Detected Function List, in addition to its basic features, displays the hierarchical structure of where detected functions
are being called from when function names starting with ‘Sub’ are double-clicked. In the hierarchical display, function
names include ‘depth:[number]’ to indicate their depth from the Original Entry Point. If the text is in grey, it indicates that
the function has been detected in the Anti Debug Detection Lists. Furthermore, double-clicking on the displayed function
names navigates to the address where that function is called.

Figure 11: Screen of Detected Function List – recursive checking.

List of detectable anti-debugging techniques (all 47 rules)

VMware_I/O_port NtGlobalFlag_check Memory_Region_Tracking
VMware_magic_value NtGlobalFlag_check_2 Check_BreakPoint_Memory_1

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

7VIRUS BULLETIN CONFERENCE OCTOBER 2024

HeapTailMarker HeapFlags Check_BreakPoint_Memory_2

KernelDebuggerMarker HeapForceFlags Software_Breakpoints_Check

DbgBreakPoint_RET Combination_of_HEAP_Flags Hardware_Breakpoints_Check

DbgUiRemoteBreakin_Debugger_Terminate Combination_of_HEAP_Flags_2 ChildProcess_Check

PMCCheck_RDPMC ReadHeapFlags Enumerate_Running_Processes

TimingCheck_RDTSC ReadHeapFlags_2 ThreadHideFromDebugger

SkipPrefixes_INT1 DebugPrivileges_Check NtQueryInformationProcess_PDPort

INT2D_interrupt_check CreateMutex_AlreadyExist NtQueryInformationProcess_PDFlags

INT3_interrupt_check CreateEvent_AlreadyExist NtQueryInformationProcess_PDObjectHandle

EXCEPTION_BREAKPOINT Opened_Exclusively_Check NtQuerySystemInformation_KD_Check

ICE_interrupt_check EXCEPTION_INVALID_HANDLE_1 Extract_Resource_Section

DBG_PRINTEXCEPTION_C EXCEPTION_INVALID_HANDLE_2 Commucate_function_String

TrapFlag_SingleStepException Memory_EXECUTE_READWRITE_1 Commucate_function

BeingDebugged_check Memory_EXECUTE_READWRITE_2

ANTIDEBUGSEEKER FOR GHIDRA
The basic search logic is the same across the versions for IDA and Ghidra.

Files required to run the program
• AntiDebugSeeker.java (for Ghidra script version)
• Zip folder containing the compiled files: ghidra_11.0.1_AntiDebugSeeker.zip (for Ghidra module extension)
• anti_debug_Ghidra.config (converted for Ghidra: a file containing rules for detecting anti-debugging techniques)
• anti_debug_technique_descriptions_Ghidra.json (converted for Ghidra: a file containing descriptions of the detected

rules)

How to run in the Ghidra scrip version
When utilizing Ghidra Script, one can select AntiDebugSeeker.java from the Script Manager and proceed to execute it.

Figure 12: How to run in the Ghidra script version.

When the script is initiated, a prompt entitled ‘Select the Configuration File’ appears. Users are required to specify the
anti_debug_Ghidra.config, which defines the detection rules, before selecting ‘Open’ to proceed.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

8 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 13: Select the configuration file, anti_debug_Ghidra.config.

Following the selection of the configuration file, a prompt titled ‘Select the JSON Description File’ appears. Users are
required to specify the anti_debug_technique_descriptions_Ghidra.json file, which contains the descriptions of the
detection rules, and then click ‘Open’ to continue.

Figure 14: Select the description file, anti_debug_technique_descriptions_Ghidra.json.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

9VIRUS BULLETIN CONFERENCE OCTOBER 2024

How to set up and execute the Ghidra module extension
To integrate and operate the module version of AntiDebugSeeker within Ghidra, rather than utilizing a script, the following
steps are necessary. The module version features a graphical user interface, which facilitates a visual comprehension of the
analysis results, and is therefore recommended.

1. Select the file > Install Extensions
2. Click + button, then Select Install Extensions.
 (ghidra_11.0.1_PUBLIC_AntiDebugSeeker.zip)
 After Opening CodeBrowser
3. Select the file.
4. In the Configure menu, check ‘Examples.
5. Click ‘Configure,’ select ‘AntiDebugSeekerPlugin,’ and click ‘OK.

First, prior to launching Ghidra’s CodeBrowser, we will proceed with the steps necessary to install the AntiDebugSeeker plugin.

Figure 15: Select File > Install Extensions.

Figure 16: Install a ZIP file (compiled AntiDebugSeeker).

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

10 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 17: How to integrate the module version of AntiDebugSeeker.

After integration, ‘AntiDebugSeekerPlugin’ will be available in the Window menu; users are advised to click on it to
continue.

Figure 18: Select AntiDebugSeekerPlugin from the Window tab.

When the plugin is launched, as illustrated in Figure 19, three clickable buttons are available: ‘Start Analyze’, ‘Display
Only the Detection Results’ and ‘Detected Function List’. Clicking the ‘Start Analyze’ button loads the configuration and
JSON files and initiates the analysis.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

11VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 19: Startup screen.

A screen with a small dragon and file selection options will appear. ‘Select Config File’ is displayed. Specify the
anti_debug_Ghidra.config file that defines the detection rules, and then click ‘Open’.

Figure 20: Select the config file.

Similar to the Ghidra script version, a prompt to ‘Select JSON File’ will be displayed. Specify the anti_debug_technique_
descriptions_Ghidra.json file, which contains the descriptions of the detection rules, and then click ‘Open’.

Figure 21: Select the JSON file.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

12 VIRUS BULLETIN CONFERENCE OCTOBER 2024

VERIFYING THE RESULTS, GHIDRA SCRIPT + MODULE EXTENSION

Ghidra script: check console-scripting

The results of the detection can be reviewed from the Console - Scripting screen. The message ‘AntiDebugSeeker Process
Finished’ indicates that the process has successfully completed.

Figure 22: Script analysis completion screen.

Ghidra module extension: check text area
When the analysis is complete, ‘Analysis Complete’ will be displayed. Monitor the progress on the right side of the screen
using the progress bar. Once the bar reaches 100%, the analysis is complete. On the displayed screen, you can review both
the detected and undetected items. At this point, the results are already registered in Ghidra’s Bookmark feature.

Figure 23: Plugin analysis completion screen.

Upon detection by Anti_Debug_Technique, the system will display the name of the detection rule, the position of the
detected keyword within the rule, and the address where the detection occurred.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

13VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 24: Display when detected by the rules specified in Anti_Debug_Technique.

Clicking the ‘Display only the detection results’ button, as shown in Figures 25 and 26, displays only the detected items,
making it easy to review the results.

Figure 25: Before processing ‘Display only the detection results’.

Figure 26: After processing ‘Display only the detection results’.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

14 VIRUS BULLETIN CONFERENCE OCTOBER 2024

In the states depicted in Figures 25 and 26, before and after processing ‘Display only the detection results’, clicking the
‘Detected Function List’ button groups the detection results by function. This organization facilitates a clearer
understanding of the anti-debugging features at the function level.

Figure 27: After processing ‘Detected Function List’.

Ghidra script / module extension: check Bookmarks

In Figures 28 and 29, the detection results are registered in Ghidra’s Bookmark, allowing for easy verification. The
category labelled ‘Potential of Anti Debug API’ indicates detections based on the rules specified in the Anti_Debug_API
section of the anti_debug_Ghidra.config file. Similarly, the category labelled ‘Anti Debug Technique’ signifies
detections based on the rules in the Anti_Debug_Technique section. Additionally, entries such as ‘Second Keyword’
or ‘Third Keyword’ under ‘Anti Debug Technique’ denote the specific locations where the defined keywords were
detected.

Figure 28: After processing ‘Detected Function List’.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

15VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 29: After processing ‘Detected Function List’.

Items detected by the Anti Debug API are highlighted with a green background, and the rule name is annotated as a PRE
comment.

Figure 30: Disassembly screen showing detections from the Anti_Debug_API section of anti_debug_Ghidra.config.

Items detected by the Anti Debug Technique are highlighted with an orange background, and the rule name is annotated as
a PRE comment. The details of the rule are displayed as a POST comment, derived from the data in the loaded JSON file.

Figure 31: Disassembly screen showing detections from the Anti_Debug_Technique section of anti_debug_Ghidra.config.

AUTOMATICALLY DETECT AND SUPPORT AGAINST ANTI-DEBUG WITH IDA/GHIDRA... TAKEDA

16 VIRUS BULLETIN CONFERENCE OCTOBER 2024

CONCLUSION
AntiDebugSeeker is a tool designed to automatically detect and analyse anti-debugging features commonly found in
malware. For those who have little experience in analysing anti-debugging malware and find it challenging, the detailed
descriptions of the rules in the JSON file can serve as a valuable reference. While this tool specializes in detecting
anti-debugging techniques, it also highlights common malware techniques through its detection rules. To make this tool
accessible to a broader audience, versions have been developed for both IDA and Ghidra. The functional differences
between the IDA and Ghidra versions are minimal, allowing users to choose the version that best suits their preferences.
I will update this work as promptly as possible upon the discovery of new anti-debugging techniques. Alternatively, if you
report a new technique, I will ensure it is incorporated in the updates. Your collaboration in the development of this tool
would be greatly appreciated.

REFERENCES
[1] IDA_Plugin_AntiDebugSeeker. https://github.com/LAC-Japan/IDA_Plugin_AntiDebugSeeker.
[2] Ghidra_AntiDebugSeeker. https://github.com/LAC-Japan/Ghidra_AntiDebugSeeker.

https://github.com/LAC-Japan/IDA_Plugin_AntiDebugSeeker
ttps://github.com/LAC-Japan/Ghidra_AntiDebugSeeker

