
SUGARCOATING KANDYKORN: A SWEET DIVE INTO
A SOPHISTICATED MACOS BACKDOOR
Salim Bitam
Elastic, The Netherlands

salim.bitam@elastic.co

2 - 4 October, 2024 / Dublin, Ireland

www.virusbulletin.com

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

2 VIRUS BULLETIN CONFERENCE OCTOBER 2024

ABSTRACT
KANDYKORN is a novel macOS backdoor recently discovered by Elastic Security Labs during an intrusion targeting
blockchain engineers at a prominent crypto exchange platform. With macOS devices increasingly becoming prime targets,
the discovery of KANDYKORN sheds light on new trends being adopted by cybercriminals and state-sponsored actors.
Operating covertly, KANDYKORN employs a feature-rich multi-staged loader paired with a custom network protocol to
facilitate a range of post-compromise activities. Its diverse functionality includes capabilities that enable lateral movement
and data exfiltration while allowing the adversary to remain under the radar.
KANDYKORN serves as a prime example of how mature threat groups are adapting to new techniques and targeting their
victims. By leveraging social media platforms like Discord with enticing lures, these actors are finding new paths into
highly targeted environments.

INTRODUCTION
Elastic Security Labs disclosed a novel intrusion in late 2023 that specifically targeted blockchain engineers working for a
cryptocurrency exchange platform. This intrusion exemplifies the advanced tactics employed by threat actors, combining
custom-developed tools with publicly available open-source capabilities to achieve both initial access and post-exploitation
objectives.
This intrusion was discovered during an investigation into attempts to reflectively load a binary into memory on a macOS
endpoint. Further analysis revealed that the intrusion began with a Python application disguised as a cryptocurrency
arbitrage bot, which was distributed through a direct message on a public Discord server. This method of delivery
highlights innovative and deceptive strategies used by attackers to exploit trusted communication channels.
This paper will explore the specifics of the intrusion, detailing how the victim was compromised through social engineering
tactics and the initial code used to achieve the initial stage of compromise. We will provide an in-depth analysis of
KANDYKORN, focusing on its multi-stage loaders, the obfuscation techniques employed, and its diverse capabilities.
Additionally, we will discuss the development of a custom tool designed to interact with KANDYKORN, enabling the
simulation of the threat.

THE INGENIOUS IMPERSONATION: INITIAL COMPROMISE
The threat group behind KANDYKORN impersonated members of the blockchain engineering community on a public
Discord server frequented by the community members. Through social engineering, the attackers convinced an initial
victim to download and decompress a ZIP archive containing malicious code. The victim believed they were installing an
arbitrage bot, a software tool designed to profit from cryptocurrency rate differences between platforms.
The software is a Python application packaged in a ZIP file titled Cross-Platform Bridges.zip. Decompressing it
reveals a main.py script accompanied by a folder named order_book_recorder, housing 13 individual Python scripts.

Figure 1: Extracted ZIP with Python scripts.

The victim ran the Python script (main.py), which initially appeared benign. However, upon closer inspection of the other
files within the downloaded package, a file named watcher.py caught our attention. This Python script contained a
variable with a Google Drive URL, indicating a potential connection to an external resource. The script downloads the
content and saves it to a file in ./_log/testSpeed.py.

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

3VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 2: Python snippet downloading testSpeed.py.

The created file (./_log/testSpeed.py) is then imported as a module, executing the contents of the script. Upon
completion of the execution, the file is deleted to cover its tracks.

Figure 3: Python snippet deletes testSpeed.py.

The first wave: droppers and FinderTools
When executed, the newly dropped file (testSpeed.py) establishes an outbound network connection and fetches another
Python file from a Google Drive URL, named FinderTools. This new file is saved to the /Users/Shared/ directory.

Figure 4: Outbound request to download FinderTools.

Next, testSpeed.py executes FinderTools, initializing a new outbound network connection with the following URL as
an argument: tp-globa[.]xyz//OdhLca1mLUp/lZ5rZPxWsh/7yZKYQI43S/fP7savDX6c/bfC.

Figure 5: Execution of FinderTools.

Figure 6: Outbound connection from FinderTools.

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

4 VIRUS BULLETIN CONFERENCE OCTOBER 2024

FinderTools is yet another dropper, downloading and executing a hidden second-stage payload (.sld) written to the
/Users/Shared/ directory.

Figure 7: Execution of .sld (SUGARLOADER).

SUGARLOADER’s hidden layers: decoding the .sld payload
The .sld file, a 64-bit macOS binary which we named SUGARLOADER, is an obfuscated binary used twice under two
separate names, .sld and .log. The first instance of SUGARLOADER is located at /Users/shared/.sld. The second
instance, renamed to .log, is employed as a persistence mechanism.

Obfuscation
The main code of SUGARLOADER is packed; before the execution of the start function __mod_init_func is
executed, which contains the unpacking code for SUGARLOADER.
Numerous junk instructions, opaque predicates and indirect jumps in memory are present within the packed code,
complicating the analysis of the unpacking process. An easy way to unpack the code is to put a hardware breakpoint at the
start of the packed code. It’s worth noting that a hardware breakpoint is essential due to the preliminary memory checksum
validation performed with the CRC32 algorithm before unpacking occurs.

Figure 8: Assembly code obfuscation with dead code.

At the time of the research in late 2023 the sample had zero detections on VirusTotal, mainly due to the packed code.

Figure 9: SUGARLOADER binary with zero hits in VirusTotal.

Execution flow
SUGARLOADER is a loader that fetches a macOS binary from the command-and-control server (C2) and reflectively
loads it in memory. It can take the configuration (C2 address and port) from the command line or from a configuration file
named /Library/Caches/com.apple.safari.ck.

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

5VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 10: SUGARLOADER arguments handling pseudocode.

This configuration file is encrypted/decrypted using RC4 with a hard-coded 64-byte key and is utilized by both
SUGARLOADER and KANDYKORN for establishing secure network communications.
A C2 server can be identified either by a fully qualified URL (c2_urls) or by an IP address and port (c2_ip_address).
The system supports two C2 servers: a primary server and a secondary fallback server. This redundancy is a common tactic
employed by malicious actors to maintain persistent connectivity with the victim, even if the primary C2 server is taken
down or blocked. Additionally, the malware includes a sleepInterval setting, which defines the default time interval it
waits between executing separate actions.
The last step taken by SUGARLOADER is to download and execute a final stage payload from the C2 server. It takes
advantage of a technique known as reflective binary loading to execute the final stage, leveraging APIs such as
NSCreateObjectFileImageFromMemory or NSLinkModule.

Figure 11: SUGARLOADER code injection.

SUGARLOADER reflectively loads KANDYKORN, creating a new file initially named appname, which we refer to as
HLOADER. This name was taken directly from the process code signature’s signing identifier.

Figure 12: HLOADER code signature signing ID.

HLOADER’s Discord deception: unravelling stage 3
HLOADER was identified through the use of a macOS binary code-signing technique previously associated with the
DPRK’s Lazarus Group, notably seen in the 3CX intrusion [1]. Elastic Security Labs has recognized this technique as an
indicator of DPRK campaigns, as highlighted in our June 2023 research publication on JOKERSPY [2].
HLOADER’s is a self-signed binary written in Swift; it’s main purpose is to create persistence on the system through
execution flow hijacking [3] of the widely used chat application Discord. This application is often configured by users as a
login item and launched when the system boots, making it an attractive target for takeover. It also indicates that the author
had a clear understanding of their victims.

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

6 VIRUS BULLETIN CONFERENCE OCTOBER 2024

The purpose of this loader is to execute both the legitimate Discord bundle and the .log payload (SUGARLOADER), the
latter of which is used to execute Mach-O binary files from memory without writing them to disk.
The legitimate Discord binary, /Applications/Discord.app/Contents/MacOS/Discord, was renamed to .lock
and replaced by HLOADER.

Figure 13: Renaming of Discord binary to .lock.

When executed, HLOADER performs a series of operations. First, it renames itself from Discord to MacOS.tmp. Then,
it renames the legitimate Discord binary from .lock to Discord. Next, it executes both Discord and .log using
NSTask.launchAndReturnError. Finally, it renames both files back to their original names.
The process tree shown in Figure 14 visually depicts how persistence is obtained. The root node Discord is actually
HLOADER disguised as the legitimate app. As presented above, it first runs .lock, which is in fact Discord, and, alongside,
spawns SUGARLOADER as a process named .log.

Figure 14: Process tree analyser.

Final form: unveiling KANDYKORN’s stage 4 payload
KANDYKORN is the final stage of this execution chain and possesses a full-featured set of capabilities to access and
exfiltrate data from the victim’s computer. Elastic Security Labs was able to retrieve this payload from one C2 server which
hadn’t been deactivated yet.
KANDYKORN processes are forked and run in the background as daemons before loading their configuration file from
/Library/Caches/com.apple.safari.ck.

Figure 15: KANDYKORN forking itself after loading its configuration.

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

7VIRUS BULLETIN CONFERENCE OCTOBER 2024

An intriguing aspect worth noting is that the binary of KANDYKORN appears to be compiled in debug mode; it contains
all its symbols, allowing for comprehensive analysis and understanding of its internal structure and functionality.
Additionally, the malware prints debugging information during execution.

Figure 16: KANDYKORN compiled in debug.

The configuration file is read into memory then decrypted using the same RC4 key, and parsed for C2 settings. The
communication protocol is similar to prior stages using the victim ID value for authentication.

Figure 17: Commands handling of KANDYKORN.

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

8 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Below is the KANDYKORN command handler table:

ID Name Description

0xD1 N/A Exit command.

0xD2 resp_basicinfo Gathers information about the system such as hostname, uid, osinfo,
and image path of the current process, and reports back to the server.

0xD3 resp_file_dir Lists content of a directory and formats the output similar to ls -al,
including type, name, permissions, size, acl, path, and access time.

0xD4 resp_file_prop Recursively reads a directory and counts the number of files,
number of subdirectories, and total size.

0xD5 resp_file_upload Used by the adversary to upload a file from their C2 server to the
victim’s computer. This command specifies a path, creates it, and
then proceeds to download the file content and write it to the
victim’s computer.

0xD6 resp_file_down Used by the adversary to transfer a file from the victim’s computer
to their infrastructure.

0xD7 resp_file_zipdown Archives a directory and exfiltrates it to the C2 server. The
newly created archive’s name has the following pattern
/tmp/tempXXXXXXX.

0xD8 resp_file_wipe Overwrites file content to zero and deletes the file. This is a
common technique used to impede recovery of the file through
digital forensics on the filesystem.

0xD9 resp_proc_list Lists all running processes on the system along with their PID, UID
and other information.

0xDA resp_proc_kill Kills a process by specified PID.

0xDB resp_cmd_send Executes a command on the system by using a pseudoterminal.

0xDC resp_cmd_recv Reads the command output from the previous command,
resp_cmd_send.

0xDD resp_cmd_create Spawns a shell on the system and communicates with it via a
pseudoterminal. Once the shell process is executed, commands are
read and written through the /dev/pts device.

0xDE resp_cfg_get Sends the current configuration to the C2 from
/Library/Caches/com.apple.safari.ck.

0xDF resp_cfg_set Downloads a new configuration file to the victim’s machine. This is
used by the adversary to update the C2 hostname that should be
used to retrieve commands from.

0xE0 resp_sleep Sleeps for a number of seconds.

Table 1: KANDYKORN command handler table.

The malware incorporates error code reporting to the C2 server, but with a limited range of values. For instance, the
command process_module::resp_file_zipdown features two distinct error codes: the value 0xFFFFFC1A is
designated to signify an issue encountered during ZIP manipulation, while 0xFFFFFC18 indicates a networking problem
with the C2.

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

9VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 18: Process_module::resp_file_zipdown command pseudocode.

NETWORK PROTOCOL
Both KANDYKORN and SUGARLOADER use the RC4 algorithm to encrypt their communications. When the malware
first connects to the C2 server during the initialization phase, a handshake must be validated to proceed. The client
generates a value using rand(), which, due to the lack of seeding, is predictable. This random value is sent to the C2 server,
which responds with a nonce value. The malware then calculates a challenge by performing a left rotation of 16 bits on the
nonce and doing a bitwise AND operation with the random value. The result is sent back to the server. If the server
validates the challenge and it is correct, it responds with a constant value, 0x41C3372, allowing the malware to continue
execution and establish a connection. Once the connection is established, the client sends its unique ID taken from the
configuration file and awaits commands from the server. Subsequent data exchanges are serialized using a common schema
for binary objects, with the content length sent first, followed by the payload.

Figure 19: Handshake pseudocode.

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

10 VIRUS BULLETIN CONFERENCE OCTOBER 2024

The following is a packet capture showcasing the download of a binary from the C2 by SUGARLOADER.

Figure 20: Packet capture of an instance of KANDYKORN execution.

TOOLS: CUSTOM SERVER
To support the malware analysis process for KANDYKORN, we developed a custom tool using Python that acts as the C2
server. This tool is designed to interact with the malware, allowing us to gain a deeper understanding of KANDYKORN’s
features, control flow, and structures. By emulating the threat in a controlled environment, this tool facilitates the
development of effective detection mechanisms.
In order to simulate the whole flow, the server expects SUGARLOADER to connect first; it will then serve KANDYKORN
from disk. After that, the user is presented with a list of commands to execute.
Figure 21 is a code snippet of the implementation.

Figure 21: Custom server.

SUGARCOATING KANDYKORN: A SWEET DIVE INTO A SOPHISTICATED MACOS BACKDOOR BITAM

11VIRUS BULLETIN CONFERENCE OCTOBER 2024

CONCLUSION
In this paper, we took a deep dive into the inner workings of KANDYKORN, an advanced macOS backdoor uncovered
during an intrusion targeting engineers at a major crypto exchange platform.
KANDYKORN represents a notable evolution in cyber threats, showcasing sophisticated features aimed at infiltrating and
compromising macOS devices, which are increasingly becoming prime targets for cybercriminals. Operating discreetly,
KANDYKORN employs a complex multi-stage loader and a custom network protocol to carry out various
post‑compromise activities.
Additionally, we have developed a custom tool to interact with KANDYKORN throughout our research. This tool not only
facilitates the emulation of the threat in a controlled environment, but also serves as a valuable asset for researchers and
defenders. It enables the ability to validate security measures and devise effective detection mechanisms.

REFERENCES
[1]	 Stepanic, D.; Sprooten, R.; Desimone, J.; Bousseaden, S.; Kerr, D. Elastic users protected from SUDDENICON’s

supply chain attack. Elastic Security Labs. 5 May 2023. https://www.elastic.co/security-labs/elastic-users-
protected-from-suddenicon-supply-chain-attack.

[2]	 Wilhoit, C.; Bitam, S.; Goodwin, S.; Pease, A.; Ungureanu, R. Initial research exposing JOKERSPY.
Elastic Security Labs. 21 June 2023. https://www.elastic.co/security-labs/inital-research-of-jokerspy.

[3]	 MITRE ATT&CK. Hijack Execution Flow. https://attack.mitre.org/techniques/T1574/.
[4]	 Wilhoit, C.; Ungureanu, R.; Goodwin, S.; Pease, A. Elastic catches DPRK passing out KANDYKORN.

Elastic Security Labs. 1 November 2023. https://www.elastic.co/security-labs/elastic-catches-dprk-passing-out-
kandykorn.

INDICATORS OF COMPROMISE (IOCs)

Observable Type Name Reference
3ea2ead8f3cec030906dcbffe3efd5c5d77d5d37
5d4a54cca03bfe8a6cb59940

SHA-256 SUGARLOADER .log
.sld

2360a69e5fd7217e977123c81d3dbb60bf4763a9
dae6949bc1900234f7762df1

SHA-256 HLOADER Discord (fake)
HLOADER

http://tp-globa[.]xyz//OdhLca1mLUp/
lZ5rZPxWsh/7yZKYQI43S/fP7savDX6c/bfC

url FinderTools C2 URL

tp-globa[.]xyz domain-name FinderTools C2 domain
192.119.64[.]43 ipv4-addr tp-globa IP address FinderTools C2 IP
23.254.226[.]90 ipv4-addr SUGARLOADER C2
D9F936CE628C3E5D9B3695694D1CDE79E470E938
064D98FBF4EF980A5558D1C90C7E650C2362A21B
914ABD173ABA5C0E5837C47B89F74C5B23A7294C
C1CFD11B

64 bytes key RC4 key SUGARLOADER
KANDYKORN

https://www.elastic.co/security-labs/elastic-users-protected-from-suddenicon-supply-chain-attack
https://www.elastic.co/security-labs/elastic-users-protected-from-suddenicon-supply-chain-attack
https://www.elastic.co/security-labs/inital-research-of-jokerspy
https://attack.mitre.org/techniques/T1574/
https://www.elastic.co/security-labs/elastic-catches-dprk-passing-out-kandykorn
https://www.elastic.co/security-labs/elastic-catches-dprk-passing-out-kandykorn

	_huuj9yvhhc1m
	_l1h6ep2e3s52
	_9tjxzr5fl281
	_jxmuh7i1kufx
	_vijiyyb46wpb
	_g0uuzl3jo2g7
	_in3nnfdgzo3y
	_p57clnz4smp1
	_waqvhbq2spny
	_dvfsvm5yp56z
	_bv9v0f7kuowu
	_w0zay37839cq
	_r2gznj5b4q1z
	_ygkqakkudc3f
	_n9cigv8nck6l
	_gm498nnbk5n
	_1iwa00tk4pm6

