
TA577 WALKED JUST PAST YOU: INDIRECT
SYSCALLS IN PIKABOT
Emre Güler & Patrick Staubmann
VMRay, Germany

egueler@vmray.com
pstaubmann@vmray.com

2 - 4 October, 2024 / Dublin, Ireland

www.virusbulletin.com

TA577 WALKED JUST PAST YOU: INDIRECT SYSCALLS IN PIKABOT GÜLER & STAUBMANN

2 VIRUS BULLETIN CONFERENCE OCTOBER 2024

ABSTRACT
In late 2023, the notorious Pikabot loader reappeared after a break of several months. Its reappearance, coupled with
striking similarities with QBot in its delivery chain, suggests its role as a replacement family used by threat group TA577.
Pikabot’s reputation for being evasive precedes it, but its latest variant introduces a new level of sophistication, with
techniques attempting to bypass AV, EDR, and even sandboxes. The integration of indirect syscalls has left security
products grappling with detection challenges, as hooks, commonly used in EDRs and sandboxes, won’t be enough to
inspect the inner workings of such samples during execution.

Our paper aims to delve deep into the world of Pikabot, sharing insights, pitfalls, and thoughts gathered from analysis and
tracking. We’ll provide an exhaustive analysis of Pikabot’s loader module, dissecting its obfuscation and evasion
techniques in detail. With a special focus on the intricacies of indirect syscalls, we’ll explore how this technique
successfully circumvented many sandboxes and how our proof-of-concept reimplementation demonstrates how many more
enhanced indirect syscall techniques malware developers could already have in their arsenal.

Furthermore, we’ll speculate on future developments and trends in evasion techniques, offering practical recommendations
for effectively detecting and mitigating threats like Pikabot.

INTRODUCTION
Pikabot has posed significant challenges to many Endpoint Detection and Response (EDR) systems through its
employment of an advanced technique to hide its malicious activities, known as ‘indirect system calls’ (or ‘indirect
syscalls’). This is only one of multiple techniques this family employs to evade detection: Pikabot distinguishes itself
through the use of extensive obfuscation techniques such as inserting irrelevant junk code, hiding strings, and even
masquerading as benign applications by including their strings. Notably, the extent of obfuscation fluctuates among
different samples, with recent instances showing less complexity. However, each variation consistently aims to evade
detection by EDR systems.

Recent observations show an increase in the identification of Pikabot samples, a trend partially attributed to the activities of
the threat actor group known as TA577. As such, we believe it is important to delve into the sophisticated evasion tactics
employed by this malware family, with a particular emphasis on its use of indirect syscalls.

Figure 1: VMRay’s dynamic, behavioural analysis reveals the malicious behaviour of Pikabot.

TA577 WALKED JUST PAST YOU: INDIRECT SYSCALLS IN PIKABOT GÜLER & STAUBMANN

3VIRUS BULLETIN CONFERENCE OCTOBER 2024

HOOKING
When Windows applications want to perform certain actions requiring interaction with the Windows kernel – for example to
start a new process – the operation is similar to the overview shown in Figure 2.

Figure 2: A simplified overview of the call sequence from sample to the Windows kernel. (Note that many details were
excluded and adjusted for didactic purposes, e.g. kernelbase.dll was omitted for space purposes.)

To monitor the behaviour of applications, hooking-based EDRs and sandbox solutions insert hooks into Windows libraries
or other process components of the malware, allowing them to intercept function calls and extract behavioural, runtime
information. As an example, consider a script downloading an executable, placing it in the autostart folder and, upon
execution, writing code into the memory of another process.
If this malware sample is new, traditional techniques based on signatures may fail to detect it, but the idea behind
hooking‑based EDRs is to capture the live behaviour and determine whether the activities are benign or indicative of
malicious intent.
However, Pikabot seeks to circumvent this surveillance by executing calls to the Windows kernel in a manner that avoids
detection, thus concealing its malicious operations. The strategy involves a sophisticated approach of interacting with
system calls to communicate with the Windows kernel indirectly.
In the following sections, we will explore the specifics of Pikabot’s evasion techniques, including its use of indirect
syscalls, and the broader implications of these tactics for cybersecurity defence strategies. Through this analysis, we aim
to provide not only insights into past and current developments, but also advice on how to combat future evasion
techniques.

Bypassing hooking
As malware becomes more sophisticated, so too do the methods it uses to evade detection.
Since the interception mechanism based on userland hooks operates within the malware’s own process space, it is
inherently more visible – and therefore detectable – by the malware. This visibility allows malware developers to devise
methods specifically aimed at identifying and circumventing these hooks.
Pikabot’s evasion strategy exploits this vulnerability in hooking-based EDR systems. By bypassing these hooks, Pikabot
can carry out its malicious activities without triggering the behavioural alarms that would normally alert the EDR to its
presence. To demonstrate this, a simple EDR using hooks is highlighted in Figure 3.

Figure 3: A simple user-land hook installed by an EDR to capture calls to CreateProcessW.

There have been a number of methods employed by malware to avoid detection by userland, hooking-based EDRs.

TA577 WALKED JUST PAST YOU: INDIRECT SYSCALLS IN PIKABOT GÜLER & STAUBMANN

4 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Detecting the hooks
As most hooks are installed by redirecting the execution of the Windows API function by replacing the beginning of the
function call (known as the prologue) with a jump to the monitoring code of the EDR (see Figure 4), in this method the
malware inspects the bytes at the beginning of API call instructions.

Figure 4: Native function LdrLoadDll is hooked by an antivirus software via a jump instruction placed at the beginning.

By analysing these CPU instructions, the malware can determine if they have been altered from their original state, which
would indicate the presence of hooks inserted by an EDR system. This detection mechanism allows malware to identify
and react to the presence of monitoring tools, thereby evading detection.

Removing the hooks
Another approach taken by malware is to restore the original DLL code, effectively removing the hooks inserted by the
EDR system. One such method is to create a new, clean copy of the library by re-loading it into memory, thereby
eliminating the monitoring hooks (see Figure 5):

Figure 5: A technique involves loading a clean copy of a hooked DLL to evade the EDR hooking.

TA577 WALKED JUST PAST YOU: INDIRECT SYSCALLS IN PIKABOT GÜLER & STAUBMANN

5VIRUS BULLETIN CONFERENCE OCTOBER 2024

Calling native functions directly
Some malware families, such as IcedID, employ an evasion technique based on directly invoking the undocumented native
functions (such as NtCreateProcess), which are low-level system functions provided by the Windows Native API (see Figure
6). Microsoft did not intend these APIs to be called directly as they are supposed to only be used by Windows libraries
internally, therefore they are not officially documented and are subject to change, so developers are advised not to rely on them.
But malware authors usually do not care about longevity of their samples, so they call these functions directly to avoid the
higher-level API functions that used to be more likely to be monitored and hooked by EDR systems, thereby sidestepping
detection mechanisms.

Figure 6: Sample calls native Windows functions directly, sidestepping the hooked Windows API function.

Most modern EDRs no longer just rely on hooks created for non-native functions, and instead hook some of the native
functions directly.

Calling system calls directly
As calling native functions became widely exploited by malware and EDRs started placing hooks into these native
functions, a new method to evade these hooks was developed, which involves directly executing system calls (syscalls)
– basically re-implementing the code from the native function in the application itself (see Figure 7).

Figure 7: Sample executes syscall instruction directly to create a process, avoiding the hook in the kernel32.dll library as
well as the one in the native function in ntdll.dll.

Syscalls are the fundamental interface between an application and the operating system kernel, and by invoking them
directly, malware can perform system-level operations without going through the API functions that are typically monitored
by EDR systems.
This method is exemplified by the XLoader malware family, as demonstrated in this analysis report (see Figure 8).

Figure 8: Direct system calls executed by an XLoader sample and detected by VMRay.

TA577 WALKED JUST PAST YOU: INDIRECT SYSCALLS IN PIKABOT GÜLER & STAUBMANN

6 VIRUS BULLETIN CONFERENCE OCTOBER 2024

More recently, a trend towards even more sophisticated evasion techniques has been observed in the wild: indirect
syscalls.

INDIRECT SYSCALLS
This approach involves the malware making system calls in such a way that they appear to originate from legitimate
system components, like ntdll.dll, rather than from the malware itself. By doing this, the activity blends in with
legitimate system operations, making it far more challenging for EDR systems to distinguish between benign and
malicious behaviour.

Indirect syscalls represent a significant evolution in malware evasion techniques. They not only complicate the process
of detection but also underscore the necessity for continuous innovation in cybersecurity defence mechanisms. As
malware developers refine their strategies to exploit the intricacies of operating systems and detection tools, the
cybersecurity community must respond with equally sophisticated solutions to protect users and infrastructure from these
evolving threats.

This ongoing battle highlights the importance of advanced monitoring techniques, such as those based on recording
transitions, which offer a more resilient defence against the clever evasion tactics employed by malware like Pikabot.

Diving deeper into the evasion techniques employed by the Pikabot malware family, we reach a critical aspect of its
strategy: the use of indirect syscalls. This method represents a sophisticated approach to evade detection mechanisms that
are designed to monitor and analyse system calls. Understanding this technique sheds light on the lengths to which
malware authors will go to hide their malicious activities.

Detection of direct syscalls

Typically, direct syscalls are a straightforward method for executing system-level operations. However, cybersecurity
solutions have adapted to this by implementing mechanisms to hook and monitor these calls directly.

By analysing the call stack, it becomes apparent when a syscall is being made directly by a suspicious sample rather than
through legitimate system libraries like ntdll.dll. This direct approach, while effective in performing its intended operation,
leaves a clear trail that security tools can follow to identify malicious activities.

The shift to indirect syscalls

In response to the detection capabilities of modern cybersecurity tools, malware developers have evolved their techniques.
Indirect syscalls emerge as a cunning solution to this challenge. By executing a jump to a syscall instruction within
ntdll.dll, malware can make it appear as though the system call is originating from this legitimate library (see Figure 9).
This method effectively masks the true origin of the call, blending the malicious operation with normal, expected system
behaviour.

Figure 9: Sample jumps to syscall instruction in ntdll.dll, thus executing an indirect syscall.

This approach significantly complicates the task for detection tools. Since ntdll.dll is a critical component of the
Windows operating system, used extensively by legitimate applications, distinguishing between benign and malicious
use of its syscalls becomes a complex, nuanced task. The implication is that malware using indirect syscalls can
operate under the radar of many detection mechanisms that rely on distinguishing between normal and abnormal syscall
patterns.

A practical illustration of this technique in action is provided in our analysis, as highlighted in our VMRay report
(Figure 10).

TA577 WALKED JUST PAST YOU: INDIRECT SYSCALLS IN PIKABOT GÜLER & STAUBMANN

7VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 10: Indirect syscalls executed by Pikabot detected by VMRay Platform.

This evidence confirms that Pikabot employs indirect syscalls as part of its evasion strategy, showcasing the malware’s
sophisticated design aimed at circumventing traditional detection methods.

IMPLEMENTATION
The intricate evasion mechanisms of the Pikabot malware become even more apparent when examining the specifics of its
implementation of indirect syscalls. This method showcases a high level of sophistication in avoiding detection. The
process involves several steps, each designed to further obfuscate the malware’s activities and complicate the task of
cybersecurity defences.

API hashing and selection of Zw* functions

Initially, Pikabot undertakes the collection of Zw* native functions from ntdll.dll. Instead of referencing these functions
directly, it employs API hashing. This technique involves calculating a unique hash for each API function name, which the
malware then uses to identify and call the desired functions (see Figure 11).

Figure 11: API hashing code found in Pikabot sample.

This method of indirect reference makes static analysis and detection significantly more challenging, as the actual function
names do not appear in the malware’s code.

TA577 WALKED JUST PAST YOU: INDIRECT SYSCALLS IN PIKABOT GÜLER & STAUBMANN

8 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Random stub selection for evasion
To further enhance its evasion capabilities, Pikabot doesn’t statically rely on a single native function for its operations.
Instead, it randomly selects from the pool of collected Zw* functions (see Figure 12).

Figure 12: Pikabot randomly selects a function whose syscall instruction will be used.

This variability adds another layer of complexity for analysis tools, as it may appear as if the behaviour is changing
between executions, making the malware’s footprint harder to identify.

Indirect syscall execution
Once a suitable Zw* function is selected, Pikabot meticulously prepares the correct syscall ID required for the intended
system operation. It then jumps into the middle of the native function, skipping the syscall ID preparation code as this was
already done by the malware, and finally lets ntdll.dll execute the syscall instruction (see Figure 13 for an overview).

Figure 13: Main execution of Pikabot regarding syscalls: getting the syscall ID for the API function it wants to call and
jumping into the middle of a function that uses a syscall.

This indirect execution of the syscall, bypassing the higher-level API layers, minimizes the malware’s trace within the
system and evades detection mechanisms designed to monitor API calls. By doing this, Pikabot effectively operates
beneath the radar, carrying out its malicious activities while blending in with legitimate system processes.

Transition-based monitoring
Whenever the malware sample and the EDR run on the same system within reach of each other, there is room for evasion.
That is why, in contrast to hooking-based EDR systems or sandboxing solutions, our method is based on recording
transitions, a technique detailed in this paper. Unlike hooking, which involves inserting small pieces of code (hooks) into
the process of the malware itself, modular transitions are monitored from a more detached, outside perspective (see
Figure 14).
When the code executes a call that moves from one memory region to another – effectively transitioning across boundaries
– this activity triggers a recording mechanism. This process occurs outside the observable range of the malware’s

TA577 WALKED JUST PAST YOU: INDIRECT SYSCALLS IN PIKABOT GÜLER & STAUBMANN

9VIRUS BULLETIN CONFERENCE OCTOBER 2024

processes, even outside the virtual machine, rendering it invisible and, consequently, more difficult for the malware to
detect and evade.

Figure 14: VMRay Platform watches the behaviour from the outside without using hooks, thus avoiding detection and also
allowing us to detect indirect syscalls as malicious behaviour.

CONCLUSION
While not all EDRs are affected by the techniques outlined here, and some have the ability to detect indirect syscalls, our
research shows that there are already works exploring alternatives to indirect syscalls, which means that hooking-based
solutions constantly have to be adapted to new techniques. Note that hooking-based sandboxing solutions – those that
use similar techniques to the ones outlined above to collect behavioural data about samples – are also plagued by the
same issues.

This analysis underscores that, no matter the complexity or quantity of evasion tactics employed, they stand little chance
against our sophisticated, agentless, hook-free, transition and behaviour-based analysis engine.

While Pikabot is using sophisticated techniques to evade detection, we leverage this to our advantage by focusing on
detecting these evasion attempts, thereby unmasking the true intent of the malware.

To provide more insight into Pikabot samples, we’ve developed a config extractor which is now available on our VMRay
Platform. As adversaries continually seek innovative ways to distribute their malware, the consistent updates to the
Platform ensure we remain prepared to counteract the latest trends in malware evolution.

REFERENCES
[1]	 RedOps. Direct Syscalls: A journey from high to low. https://redops.at/en/blog/direct-syscalls-a-journey-from-high-

to-low.

[2]	 RedOps. Direct Syscalls vs Indirect Syscalls. https://redops.at/en/blog/direct-syscalls-vs-indirect-syscalls.

[3]	 Red Team Notes. Bypassing Cylance and other AVs/EDRs by Unhooking Windows APIs. https://www.ired.team/
offensive-security/defense-evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis.

[4]	 Chechik, O.; Ozer, O. A Deep Dive Into Malicious Direct Syscall Detection. Palo Alto Networks. 13 February 2024.
https://www.paloaltonetworks.com/blog/security-operations/a-deep-dive-into-malicious-direct-syscall-detection/.

[5]	 Mosch, F. A tale of EDR bypass methods. https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/.

[6]	 Hand, M. (2023). Evading EDR: The Definitive Guide to Defeating Endpoint Detection Systems. No Starch Press.

IOCs
Hash:
b025e37611168c0abcc446125a8bd7cb831625338434929febadfcc9cc4c816e

C2 IPs:
103.82.243.5:13785
86.38.225.105:13721
37.60.242.85:9785

https://redops.at/en/blog/direct-syscalls-a-journey-from-high-to-low
https://redops.at/en/blog/direct-syscalls-a-journey-from-high-to-low
https://redops.at/en/blog/direct-syscalls-vs-indirect-syscalls
https://www.ired.team/offensive-security/defense-evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis
https://www.ired.team/offensive-security/defense-evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis
https://www.paloaltonetworks.com/blog/security-operations/a-deep-dive-into-malicious-direct-syscall-detection/
https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/

TA577 WALKED JUST PAST YOU: INDIRECT SYSCALLS IN PIKABOT GÜLER & STAUBMANN

10 VIRUS BULLETIN CONFERENCE OCTOBER 2024

89.117.23.185:2221
104.129.55.106:13783
86.38.225.106:2221
178.18.246.136:2078
154.12.233.66:2224
85.239.243.155:5000
145.239.135.24:5243
23.226.138.161:5242
104.129.55.105:2223
23.226.138.143:2083
57.128.165.176:13721
89.117.23.186:5632

	_bsk11oia6bca
	_8d6zn580n6t6
	_wp1o1uor3hrx
	_3udlja9g96mt
	_jqg7v9if1j7a
	_21yh34dbplua
	_tmuxc7ujqbgo
	_wowtj576jx4w
	_i7rskf28kejd
	_urv9e85qjhh9
	_87owdax4rrcq
	_kyu70gci4dt0
	_573g8cufl2n1
	_rs51de9y8jn1
	_wetb9r1lfgin

