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ABSTRACT
In late 2023, the notorious Pikabot loader reappeared after a break of several months. Its reappearance, coupled with 
striking similarities with QBot in its delivery chain, suggests its role as a replacement family used by threat group TA577. 
Pikabot’s reputation for being evasive precedes it, but its latest variant introduces a new level of sophistication, with 
techniques attempting to bypass AV, EDR, and even sandboxes. The integration of indirect syscalls has left security 
products grappling with detection challenges, as hooks, commonly used in EDRs and sandboxes, won’t be enough to 
inspect the inner workings of such samples during execution.

Our paper aims to delve deep into the world of Pikabot, sharing insights, pitfalls, and thoughts gathered from analysis and 
tracking. We’ll provide an exhaustive analysis of Pikabot’s loader module, dissecting its obfuscation and evasion 
techniques in detail. With a special focus on the intricacies of indirect syscalls, we’ll explore how this technique 
successfully circumvented many sandboxes and how our proof-of-concept reimplementation demonstrates how many more 
enhanced indirect syscall techniques malware developers could already have in their arsenal.

Furthermore, we’ll speculate on future developments and trends in evasion techniques, offering practical recommendations 
for effectively detecting and mitigating threats like Pikabot.

INTRODUCTION
Pikabot has posed significant challenges to many Endpoint Detection and Response (EDR) systems through its 
employment of an advanced technique to hide its malicious activities, known as ‘indirect system calls’ (or ‘indirect 
syscalls’). This is only one of multiple techniques this family employs to evade detection: Pikabot distinguishes itself 
through the use of extensive obfuscation techniques such as inserting irrelevant junk code, hiding strings, and even 
masquerading as benign applications by including their strings. Notably, the extent of obfuscation fluctuates among 
different samples, with recent instances showing less complexity. However, each variation consistently aims to evade 
detection by EDR systems.

Recent observations show an increase in the identification of Pikabot samples, a trend partially attributed to the activities of 
the threat actor group known as TA577. As such, we believe it is important to delve into the sophisticated evasion tactics 
employed by this malware family, with a particular emphasis on its use of indirect syscalls.

Figure 1: VMRay’s dynamic, behavioural analysis reveals the malicious behaviour of Pikabot.
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HOOKING
When Windows applications want to perform certain actions requiring interaction with the Windows kernel – for example to 
start a new process – the operation is similar to the overview shown in Figure 2. 

Figure 2: A simplified overview of the call sequence from sample to the Windows kernel. (Note that many details were 
excluded and adjusted for didactic purposes, e.g. kernelbase.dll was omitted for space purposes.) 

To monitor the behaviour of applications, hooking-based EDRs and sandbox solutions insert hooks into Windows libraries 
or other process components of the malware, allowing them to intercept function calls and extract behavioural, runtime 
information. As an example, consider a script downloading an executable, placing it in the autostart folder and, upon 
execution, writing code into the memory of another process. 
If this malware sample is new, traditional techniques based on signatures may fail to detect it, but the idea behind 
hooking‑based EDRs is to capture the live behaviour and determine whether the activities are benign or indicative of 
malicious intent.
However, Pikabot seeks to circumvent this surveillance by executing calls to the Windows kernel in a manner that avoids 
detection, thus concealing its malicious operations. The strategy involves a sophisticated approach of interacting with 
system calls to communicate with the Windows kernel indirectly.
In the following sections, we will explore the specifics of Pikabot’s evasion techniques, including its use of indirect 
syscalls, and the broader implications of these tactics for cybersecurity defence strategies. Through this analysis, we aim 
to provide not only insights into past and current developments, but also advice on how to combat future evasion 
techniques.

Bypassing hooking
As malware becomes more sophisticated, so too do the methods it uses to evade detection. 
Since the interception mechanism based on userland hooks operates within the malware’s own process space, it is 
inherently more visible – and therefore detectable – by the malware. This visibility allows malware developers to devise 
methods specifically aimed at identifying and circumventing these hooks. 
Pikabot’s evasion strategy exploits this vulnerability in hooking-based EDR systems. By bypassing these hooks, Pikabot 
can carry out its malicious activities without triggering the behavioural alarms that would normally alert the EDR to its 
presence. To demonstrate this, a simple EDR using hooks is highlighted in Figure 3. 

Figure 3: A simple user-land hook installed by an EDR to capture calls to CreateProcessW.

There have been a number of methods employed by malware to avoid detection by userland, hooking-based EDRs.
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Detecting the hooks
As most hooks are installed by redirecting the execution of the Windows API function by replacing the beginning of the 
function call (known as the prologue) with a jump to the monitoring code of the EDR (see Figure 4), in this method the 
malware inspects the bytes at the beginning of API call instructions. 

Figure 4: Native function LdrLoadDll is hooked by an antivirus software via a jump instruction placed at the beginning.

By analysing these CPU instructions, the malware can determine if they have been altered from their original state, which 
would indicate the presence of hooks inserted by an EDR system. This detection mechanism allows malware to identify 
and react to the presence of monitoring tools, thereby evading detection.

Removing the hooks
Another approach taken by malware is to restore the original DLL code, effectively removing the hooks inserted by the 
EDR system. One such method is to create a new, clean copy of the library by re-loading it into memory, thereby 
eliminating the monitoring hooks (see Figure 5):

Figure 5: A technique involves loading a clean copy of a hooked DLL to evade the EDR hooking.
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Calling native functions directly
Some malware families, such as IcedID, employ an evasion technique based on directly invoking the undocumented native 
functions (such as NtCreateProcess), which are low-level system functions provided by the Windows Native API (see Figure 
6). Microsoft did not intend these APIs to be called directly as they are supposed to only be used by Windows libraries 
internally, therefore they are not officially documented and are subject to change, so developers are advised not to rely on them. 
But malware authors usually do not care about longevity of their samples, so they call these functions directly to avoid the 
higher-level API functions that used to be more likely to be monitored and hooked by EDR systems, thereby sidestepping 
detection mechanisms. 

Figure 6: Sample calls native Windows functions directly, sidestepping the hooked Windows API function.

Most modern EDRs no longer just rely on hooks created for non-native functions, and instead hook some of the native 
functions directly.

Calling system calls directly
As calling native functions became widely exploited by malware and EDRs started placing hooks into these native 
functions, a new method to evade these hooks was developed, which involves directly executing system calls (syscalls) 
– basically re-implementing the code from the native function in the application itself (see Figure 7). 

Figure 7: Sample executes syscall instruction directly to create a process, avoiding the hook in the kernel32.dll library as 
well as the one in the native function in ntdll.dll.

Syscalls are the fundamental interface between an application and the operating system kernel, and by invoking them 
directly, malware can perform system-level operations without going through the API functions that are typically monitored 
by EDR systems. 
This method is exemplified by the XLoader malware family, as demonstrated in this analysis report (see Figure 8). 

Figure 8: Direct system calls executed by an XLoader sample and detected by VMRay.
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More recently, a trend towards even more sophisticated evasion techniques has been observed in the wild: indirect 
syscalls.

INDIRECT SYSCALLS
This approach involves the malware making system calls in such a way that they appear to originate from legitimate 
system components, like ntdll.dll, rather than from the malware itself. By doing this, the activity blends in with 
legitimate system operations, making it far more challenging for EDR systems to distinguish between benign and 
malicious behaviour. 

Indirect syscalls represent a significant evolution in malware evasion techniques. They not only complicate the process 
of detection but also underscore the necessity for continuous innovation in cybersecurity defence mechanisms. As 
malware developers refine their strategies to exploit the intricacies of operating systems and detection tools, the 
cybersecurity community must respond with equally sophisticated solutions to protect users and infrastructure from these 
evolving threats. 

This ongoing battle highlights the importance of advanced monitoring techniques, such as those based on recording 
transitions, which offer a more resilient defence against the clever evasion tactics employed by malware like Pikabot.

Diving deeper into the evasion techniques employed by the Pikabot malware family, we reach a critical aspect of its 
strategy: the use of indirect syscalls. This method represents a sophisticated approach to evade detection mechanisms that 
are designed to monitor and analyse system calls. Understanding this technique sheds light on the lengths to which 
malware authors will go to hide their malicious activities.

Detection of direct syscalls

Typically, direct syscalls are a straightforward method for executing system-level operations. However, cybersecurity 
solutions have adapted to this by implementing mechanisms to hook and monitor these calls directly. 

By analysing the call stack, it becomes apparent when a syscall is being made directly by a suspicious sample rather than 
through legitimate system libraries like ntdll.dll. This direct approach, while effective in performing its intended operation, 
leaves a clear trail that security tools can follow to identify malicious activities.

The shift to indirect syscalls

In response to the detection capabilities of modern cybersecurity tools, malware developers have evolved their techniques. 
Indirect syscalls emerge as a cunning solution to this challenge. By executing a jump to a syscall instruction within  
ntdll.dll, malware can make it appear as though the system call is originating from this legitimate library (see Figure 9). 
This method effectively masks the true origin of the call, blending the malicious operation with normal, expected system 
behaviour. 

Figure 9: Sample jumps to syscall instruction in ntdll.dll, thus executing an indirect syscall. 

This approach significantly complicates the task for detection tools. Since ntdll.dll is a critical component of the 
Windows operating system, used extensively by legitimate applications, distinguishing between benign and malicious 
use of its syscalls becomes a complex, nuanced task. The implication is that malware using indirect syscalls can 
operate under the radar of many detection mechanisms that rely on distinguishing between normal and abnormal syscall 
patterns.

A practical illustration of this technique in action is provided in our analysis, as highlighted in our VMRay report 
(Figure 10). 
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Figure 10: Indirect syscalls executed by Pikabot detected by VMRay Platform.

This evidence confirms that Pikabot employs indirect syscalls as part of its evasion strategy, showcasing the malware’s 
sophisticated design aimed at circumventing traditional detection methods.

IMPLEMENTATION
The intricate evasion mechanisms of the Pikabot malware become even more apparent when examining the specifics of its 
implementation of indirect syscalls. This method showcases a high level of sophistication in avoiding detection. The 
process involves several steps, each designed to further obfuscate the malware’s activities and complicate the task of 
cybersecurity defences.

API hashing and selection of Zw* functions

Initially, Pikabot undertakes the collection of Zw* native functions from ntdll.dll. Instead of referencing these functions 
directly, it employs API hashing. This technique involves calculating a unique hash for each API function name, which the 
malware then uses to identify and call the desired functions (see Figure 11). 

Figure 11: API hashing code found in Pikabot sample.

This method of indirect reference makes static analysis and detection significantly more challenging, as the actual function 
names do not appear in the malware’s code.
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Random stub selection for evasion
To further enhance its evasion capabilities, Pikabot doesn’t statically rely on a single native function for its operations. 
Instead, it randomly selects from the pool of collected Zw* functions (see Figure 12). 

Figure 12: Pikabot randomly selects a function whose syscall instruction will be used.

This variability adds another layer of complexity for analysis tools, as it may appear as if the behaviour is changing 
between executions, making the malware’s footprint harder to identify.

Indirect syscall execution
Once a suitable Zw* function is selected, Pikabot meticulously prepares the correct syscall ID required for the intended 
system operation. It then jumps into the middle of the native function, skipping the syscall ID preparation code as this was 
already done by the malware, and finally lets ntdll.dll execute the syscall instruction (see Figure 13 for an overview). 

Figure 13: Main execution of Pikabot regarding syscalls: getting the syscall ID for the API function it wants to call and 
jumping into the middle of a function that uses a syscall.

This indirect execution of the syscall, bypassing the higher-level API layers, minimizes the malware’s trace within the 
system and evades detection mechanisms designed to monitor API calls. By doing this, Pikabot effectively operates 
beneath the radar, carrying out its malicious activities while blending in with legitimate system processes.

Transition-based monitoring
Whenever the malware sample and the EDR run on the same system within reach of each other, there is room for evasion. 
That is why, in contrast to hooking-based EDR systems or sandboxing solutions, our method is based on recording 
transitions, a technique detailed in this paper. Unlike hooking, which involves inserting small pieces of code (hooks) into 
the process of the malware itself, modular transitions are monitored from a more detached, outside perspective (see 
Figure 14). 
When the code executes a call that moves from one memory region to another – effectively transitioning across boundaries 
– this activity triggers a recording mechanism. This process occurs outside the observable range of the malware’s 
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processes, even outside the virtual machine, rendering it invisible and, consequently, more difficult for the malware to 
detect and evade.

Figure 14: VMRay Platform watches the behaviour from the outside without using hooks, thus avoiding detection and also 
allowing us to detect indirect syscalls as malicious behaviour.

CONCLUSION
While not all EDRs are affected by the techniques outlined here, and some have the ability to detect indirect syscalls, our 
research shows that there are already works exploring alternatives to indirect syscalls, which means that hooking-based 
solutions constantly have to be adapted to new techniques. Note that hooking-based sandboxing solutions – those that 
use similar techniques to the ones outlined above to collect behavioural data about samples – are also plagued by the 
same issues. 

This analysis underscores that, no matter the complexity or quantity of evasion tactics employed, they stand little chance 
against our sophisticated, agentless, hook-free, transition and behaviour-based analysis engine. 

While Pikabot is using sophisticated techniques to evade detection, we leverage this to our advantage by focusing on 
detecting these evasion attempts, thereby unmasking the true intent of the malware. 

To provide more insight into Pikabot samples, we’ve developed a config extractor which is now available on our VMRay 
Platform. As adversaries continually seek innovative ways to distribute their malware, the consistent updates to the 
Platform ensure we remain prepared to counteract the latest trends in malware evolution.
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