
VB2024 DublinDr. Bramwell Brizendine

Leveraging AI to Enhance the 
Capabilities of SHAREM 

Shellcode Analysis Framework

Shellcode as a 
malevolent being



VB2024 Dublin

• Dr. Bramwell Brizendine is an Assistant Professor at University of 
Alabama in Huntsville

• Founding Director of the VERONA Lab
• Vulnerability and Exploitation Research for Offensive and 

Novel Attacks Lab

• Creator of the JOP ROCKET, ShellWasp, ROP ROCKET,  & 
SHAREM.

• Interests: software exploitation, reverse engineering, code-reuse 
attacks,  malware analysis, and offensive security

• Presenter at DEF CON, Black Hat (USA, Asia, Europe, MEA), Virus 
Bulletin, Hack in the Box Amsterdam, @Hack Riyadh, Wild West 
Hackin’ Fest, National Cyber Summit.

• Education:

• 2019 Ph.D in Cyber Operations

• 2016: M.S. in Applied Computer Science

• 2014: M.S. in Information Assurance

Dr. Bramwell Brizendine

Bramwell.Brizendine@gmail.com,
Bramwell.Brizendine@uah.edu



VB2024 Dublin

Thanks to the Rest of the SHAREM Team!

Austin Babcock, Jake Hince, Shelby VandenHoek, Sascha Walker, 

Evan Read, Dylan Park, Kade Brost, and Tarek Abdelmotaleb.

Thank you also to Max Kersten for his Ghidra Plugin for SHAREM.

In October 2024, new students from UAH will begin work on 

SHAREM as part of the VICEROY program.



VB2024 Dublin

● Shellcode in malware
○ Can be easily obfuscated, complicating 

analysis.

○ Often featured as part in multi-stage samples.

● Shellcode analysis challenges
○ Analysis must be performed on shellcode to 

fully comprehend what is behind malicious 

obfuscation.

○ Unlike PE files, shellcode does not directly 

call WinAPIs in the traditional sense.

○ Makes static analysis difficult.

○ Dynamic analysis (e.g. WinDbg) is possible, 

but time consuming.

Why We Care About Shellcode Analysis

PE file will likely have API 
call labeled

Shellcode

.exe file

Shellcode version: 
What is EDI????



VB2024 Dublin

Enter SHAREM: The Ultimate Shellcode Analysis Tool



VB2024 Dublin

● SHAREM’s game-changing features:
○ Robust Emulator

○ WinAPI and Windows syscall identification.

○ Complete code coverage.

○ Virtualy flawless disassembler.

○ Enhanced by emulation results.

○ Shellcode decoder.

○ Decoding through emulation.

○ Brute force deobfuscation (non-emulation).

● All with these:
○ 32-bit and 64-bit compatibility for Windows 

shellcode analysis

○ Customizable config file for many settings.

○ New! Ghidra plugin (optional, from Trellix).

An Overview of SHAREM’s Game-changing Features

SHAREM https://github.com/bw3ll/sharem



VB2024 Dublin

SHAREM

Shellcode

Emulator



VB2024 Dublin

● Extensive API support
○ Over 30,000 WinAPIs.

○ 60+ DLLs

○ 99% of Windows syscalls.

● Takes in .bin (raw binary) or .txt (hex 

representation) of shellcode as input.

● IOC extraction

● Enhances other SHAREM 

components.

● Built with Unicorn Engine
○ This is just a foundation to emulate CPU 

instructions.

○ We significantly build upon this.

SHAREM Emulator



VB2024 Dublin

● We want the shellcode to think it’s 

running in an actual Windows process.
○ It would not execute properly with vanilla unicorn 

emulation alone.

● SHAREM stubs out important Windows 

structures in memory (ie. PEB, TEB).
○ This allows for techniques such as “PEB walking” 

to succeed in emulation.

○ Essential for accurately assessing shellcode 

behavior

● Implements doubly linked lists for 

structures that provide metadata for 

DLLs.
○ Start addresses, size, etc.

○ Enhances fidelity of emulation and analysis

Windows Structures

⭐ PEB Walking: Process used 

by shellcode authors to 

manually resolve API addresses 

in memory, by traversing 

Windows structures.

Windows PEB Structure
www.vergiliusproject.com



VB2024 Dublin

● Loads real DLLs into memory, 

inflating them according to our 

algorithm.

● Entry for each DLL also added 

with functioning linked list 

pointers.

● Uses pefile to identify API 

addresses; they are saved to 

interconnected lookup 

dictionaries, streamlining API call 

resolution during emulation.
○ Lookup dictionary identifies API at 

runtime

DLLs in Emulation

Emulation 
Memory Space

pefile
https://github.com/erocarrera/pefile

Raw contents of 
DLL loaded into 

memory

PEB_LDR_DATA 
entry made for 

each DLL 

https://github.com/erocarrera/pefile


VB2024 Dublin

● Records each WinAPI call made by 

shellcode, including the API 

address, parameters passed, & 

result 

● Uses a special lookup dictionary 

to accurately map memory 

addresses to WinAPI functions.

● Viewing this information yields 

great insight into the shellcode’s 

behavior.

API Emulation

Bind shell shellcode from Metasploit @hdm 
http://shell-storm.org/shellcode/files/shellcode-173.html

http://shell-storm.org/shellcode/files/shellcode-173.html


VB2024 Dublin

● Subsequent actions taken by the 

shellcode sometimes depend on 

return values of WinAPIs.

● Several hundred Windows APIs 

have hand-written hooks.

○ e.g., a call to VirtualAlloc will 

trigger Unicorn’s mem_map for 

realistic memory allocation.

Handcrafted API Hooks

VirtualAlloc hook

VirtualAlloc hooked and logged from shellcode

VirtualAlloc Stub

VirtualAlloc hooked from shellcode



VB2024 Dublin

● Nearly all user-mode Windows syscalls are accurately emulated.

● Stack cleanup for syscalls is different than with WinAPIs – there is none.

● The shellcode author is responsible for their own stack clean up.

● The user must specify the target OS build, or “release,” to emulate 

syscalls successfully.

Emulation of Syscalls



VB2024 Dublin

● Wherever possible, SHAREM tries to print output in human-readable form, 

such as directly using readable memory flags.
○ e.g., PAGE_EXECUTE_READWRITE instead of hexadecimal values like 0x40

○ All string types are parsed from memory and displayed as strings

Smart Output



VB2024 Dublin

Downloading Live Files 

The original filename – and what the 
shellcode saved it as after downloading it

Paths used in downloading

File created

Md5 hash of downloaded file



VB2024 Dublin

Structures

Structure #1

Structure #2

• Two structures are 
passed as 
parameters for 
CreateProcessA. 
• Instead of just a 

pointer to the 
structure, we see all 
the members of the 
structure.



VB2024 Dublin

Inner Structure 
#1

Inner Structure 
#2

•GetTimeZoneInformation
has only one paramater!
• It is a structure, which has two 

structures as parameters. 

• We see all three of the structures, 
including the nested structures.

Structures 
within Structures



VB2024 Dublin

● SHAREM Registry 

Manager (SRM) has 

registry for shellcode 

to interact with.

○ Stores a list of registry 
values and handles to 
key paths.

● SHAREM simulates 
success, if a WinAPI 
tries to read a registry 
value not yet created.
○ Some dummy values are 

customizable via config.

Registry Emulation

● Uses MITRE framework to identify various 

techniques related to the registry—no AI used.



VB2024 Dublin

Handles to Registry Keys

Actual key, not hex

• For handles, instead 
of hex values, we see 
the actual registry 
keys.

• This makes 
understanding 
what is 
happening easier. 



VB2024 Dublin

Registry Syscalls

• Windows syscalls involving registry 
can be emulated.
• POBJECT_ATTRIBUTES struct 

supported.



VB2024 Dublin

● SHAREM has a timeless 
debugging log that captures 
every CPU instruction emulated, 
with register values.
○ Optional: A snapshot of the 

stack at each instruction can be 
preserved as well.

● Potentially millions of instructions
could be logged.
○ The limit can be set in config or UI.

● Saves to emulationLog.txt file, 
making it easy to search and 
analyze the emulation results.

Timeless Debugging



VB2024 Dublin

Instruction executed

Timeless Debugging



VB2024 Dublin

Timeless Debugging w/ Stack Log



VB2024 Dublin

Handles and Memory Management

• SHAREM Memory Manger (SMM) ensures memory is allocated at correct 
locations without collisions.

• SHAREM Handle Manager (SHM) generates and maintains handles.

• Some handles correspond to specific resources, registry keys, filename, etc.

• SHM can log what the handle maps to – e.g. a specific registry key – rather 
than just a hexadecimal value.

• This makes it easier for the human analyst to understand what is being 
done, without needing to trace different handles.

• Each handle has a name field in the class.

• This name can be displayed in lieu of the hexadecimal value.



VB2024 Dublin

Handles
•The handle for PHANDLE ModuleHandle for LdrLoadDll receives 

the address of the loaded DLL.

• Shows the resource a handle refers to, not just its memory address.

• Automatically converts pointers to handles, directly linking to DLL names

Handle for DLL     
--> DLL name

https://github.com/Bw3ll/sharem



VB2024 Dublin

64-bit Shellcode

• Though uncommon, SHAREM 
can emulate 64-bit shellcode.
• It retains all the features it has 

for 32-bit, such as enumerating 
APIs, discovering artifacts, etc.
• WSASocketA and setsockopt are 

shown.



VB2024 Dublin

Complete

Code

Coverage



VB2024 Dublin

● What happens if there are parts of code 

that is completely unreachable?

● This is not uncommon, as some 

shellcode will check for the success or 

failure of previous WinAPI’s before 

advancing forward.

○ Complete Code coverage ensures 

we don’t miss this functionality.

● With SHAREM, we provide a ground-

breaking, game-changing innovation: 

complete code coverage.

● Instantiated at the Assembly level, we 

ensure that all code paths are traversed 

and emulated, and all functionality is 

discovered – including that which should 

be impossible to be be reached!

Complete Code Coverage



VB2024 Dublin

• Inspired by evolutionary fuzzers, e.g. AFL, SHAREM records all control flow 

paths, both taken and not taken.

• SHAREM maintains a list of those which have been traversed.

• Each time SHAREM encounters a change in control flow, it records 

important metadata on the original location. 
• SHAREM preserves the current register CPU state and stack values.

• Once the shellcode terminates, SHAREM revisits any unvisited code paths.
• For each, the original CPU context is restored.

• Restarts shellcode to achieve full code coverage, restoring all registers and memory.

Complete Code Coverage



VB2024 Dublin

• Improved speed and functionality in code coverage processes.

• Added capabilities and customizable settings for advanced users.

• Replaces large .tmp files with direct memory snapshots from ESP, adjustable in size.

• This is a big performance boost.

• Users can increase default snapshot size of 4000 bytes, giving greater flexibility for memory snapshots used for 

code coverage.

• Tracks CALL instructions for possible code execution. 

• Users can exclude specific addresses via a JSON config to avoid including non-executable data.

• Verbose debugging available; visual cues distinguish between executed and non-executed code (green for 

executed, cyan for data) in printed disassembly.

• Settings adjustable via UI with changes savable directly to the config.

• Can handle jump tables.

Complete Code Coverage



VB2024 Dublin

Without Complete Code Coverage With Complete Code Coverage

Complete Code Coverage



VB2024 Dublin

Encoded 

Shellcode 



VB2024 Dublin

Self-Modifying Code

▪ SHAREM using fuzzy hashing to determine if a 
shellcode is self-modifying – i.e. it is perhaps 
decrypting itself.
▪ SSDeep

▪ If shellcode is encoded and decrypts itself, its 
decoded form is what is analyzed is directly fed to 
the disassembler.
▪ Its APIs or Windows syscalls are already logged without 

needing to do anything special. 



VB2024 Dublin

Encoded 
Shellcode

• By default, SHAREM 
displays the deobfuscated
form of encoded shellcode.
• The disassembly here 

clearly is not encoded, but 
the shellcode is.

• If SHAREM decodesa
shellcode, it automatically 
displays its deobfuscated
form.

• SHAREM is a game 
changer for dealing with 
encoded shellcode.



VB2024 Dublin
https://github.com/Bw3ll/sharem

• We are viewing a similar portion of the 
shellcode.
• Gotta love those mystery bytes!

• We would not expect a traditional 
disassembler like to be able to 
disassemble a shellcode’s decoded 
form.

Same Shellcode 
in IDA Pro



VB2024 Dublin

Leveraging

AI to Enhance

Shellcode

Analysis



VB2024 Dublin

MITRE ATT&CK Techniques

• SHAREM uses AI to analyze WinAPIs, Syscalls, artifacts, 
strings, and disassembly, looking for MITRE ATT&CK 
Techniques.

• SHAREM highlights specific techniques, and the APIs or 
registry keys associated with each technique.



VB2024 Dublin

MITRE ATT&CK Techniques

• By identifying specific MITRE ATT&CK techniques, such as "Indicator Removal on Host" or 
"Boot or Logon Autostart Execution," SHAREM highlights tactics used by threat actors.

• Specific MITRE ATT&CK techniques can also allow for improved incident response.



VB2024 Dublin

MITRE ATT&CK Techniques

• Identifies URLDownloadToFileA used in BITS Jobs.
• Detects CreateProcessA executing commands via Windows Command Shell (T1059.003).
• Spots DeleteFileA being used to remove files to hide evidence (T1070.004).



VB2024 Dublin

MITRE ATT&CK Techniques

• Detects MITRE techniques, such as registry manipulation, 
system information harvesting, & clipboard data interception.



VB2024 DublinMITRE ATT&CK Techniques

• SHAREM shows techniques focusing on clipboard 
data interception and registry manipulation.



VB2024 DublinMost Critical Technique

• SHAREM uses AI to try to determine which MITRE attack 
technique is most critical.



VB2024 DublinMITRE Techniques Summary

• SHAREM uses AI to prepare a summary as it pertains to MITRE ATT&CK techniques.
• Concise summary provides high-level overview of malicious activities.



VB2024 Dublin

Correlating WinAPIs with MITRE

•

• SHAREM uses AI to firstly obtain a definition of relevant APIs.
• It analyzes API usage, correlating it to MITRE ATT&CK 

techniques.
• SHAREM gives specific details from the shellcode sample..



VB2024 DublinCorrelating WinAPIs with MITRE



VB2024 DublinCorrelating WinAPIs with MITRE



VB2024 Dublin

Correlating Windows Syscalls with MITRE

• Uses AI to obtain a definition of relevant Windows syscalls.
• Analyzes usage of Windows syscalls, correlating it to MITRE ATT&CK techniques.



VB2024 DublinExecutive Summary

• Uses AI to create a high-level overview of malicious functionality.
• Executive summary does not try to make correlations to MITRE ATT&CK techniques.



VB2024 DublinArtifacts Summary

• Uses AI to analyze artifacts discovered by SHAREM, creating a summary. 
• Provides artifact identification coupled with specific details about what the 

artifacts do.
• Discusses security impact.



VB2024 DublinOverview of Disassembly and Data

• SHAREM uses AI to analyze the disassembly and to create an overview.
• This may deal with mechanics of the shellcode that are more low-level and may not 

relate directly to malicious functionality, e.g. tasks the shellcode must complete.



VB2024 DublinAnalyzing Strings and Data

• Analyzes the string to determine if there 
could be malicious usages, given context.

VB2024 Dublin



VB2024 DublinAdditional Strings



VB2024 DublinYet More Strings



VB2024 Dublin
Yet More Strings



VB2024 DublinOther Comments

• Analyzes all aspects of the disassembly to identify other areas of note.

• Here it speculates what may be done with the connect
WinAPI.



VB2024 DublinSuggested Function Names

• Analyzes the disassembly to suggest function names.
• These names are based on what is done internally within the function.



VB2024 Dublin

SHAREM’s 

Disassembler



VB2024 Dublin

SHAREM’s Disassembler

• Using IDA Pro, Ghidra, etc., I noticed that often there 
would be very significant portions of the 
disassembly that were wrong. 
• Root cause? Misclassifying data blocks as executable 

instructions, starting disassembly at incorrect offsets.
• Some data misclassified can have a cascading effect, causing 

subsequent instructions to be disassembled at incorrect 
offsets.

• Even simple strings would be misclassified as 
instructions!



VB2024 Dublin

Identifying Functions 
in Disassembly

API identified

API Identified

•SHAREM is able to identify 
WinAPIs and parameters
used in disassembly.
• This data is obtained via 

emulation.
• More than 30,000 WinAPIs 

can be identified in this 
fashion.
• Rather than just call eax, we 

see the actual function.



VB2024 Dublin

PEB walking  features

Disassembly Annotations



VB2024 Dublin
https://github.com/Bw3ll/sharem

Disassembly Annotations



VB2024 Dublin

●

SHAREM determines 
much invaluable data 
about shellcode.

API Identified

API Not 
Identified

PEB features 
identified

PEB Not 
Identified

IDA Pro vs. SHAREM

IDA cannot
determine 
APIs.

API Not 
Identified



VB2024 Dublin

Disassembly: Strings

https://github.com/Bw3ll/sharem

▪ SHAREM has its own algorithms to discover strings.

▪ ASCII: These bytes are classified as data – a comment denotes the value

▪ Unicode:  These bytes are classified as data – a comment denotes the value

▪ Push Stack Strings: Stack strings that formed by a series of pushes.

▪ These are instructions—a comment follows at the end.

Push stack string identified



VB2024 Dublin

Using Emulation Data to Enhance Disassembly

• SHAREM is able to merge emulation data with the disassembler to achieve 
potentially flawless disassembly.
• This can be used to override what the disassembly engine may have found via static 

analysis.

• If instructions were successfully emulated, we definitively know where each 
emulated instruction starts and ends.
• Thus, we may conclude that it was, in fact, an instruction/code and not data.

• SHAREM can track data by logging locations for memory accesses and writes.
• If not used as instructions, these bytes are classified as data.

• SHAREM can identify dword arrays – i.e. placeholders that later store runtime 
addresses of functions.
• The corresponding function name is provided.



VB2024 Dublin

Distinguishing between 
Data and Instructions

String

Instructions

Data

Checksums

API Pointers

API Pointer



VB2024 Dublin

Decoded Shellcode
Emulation let’s 
us reveal its 
decrypted form.

• The shellcode shown here is actually 

encoded.

• It was decoded via emulation.

• SHAREM displays its decoded form 

automatically in the disassembler.

• URLDownloadToFileA, WinExec, 

and ExitProcess are identified 

with parameters. 

• PEB features are identified and 

given as comments.



VB2024 Dublin

Ghidra’s

SHAREM

Plugin



VB2024 Dublin

Running scriptsGhidra Plugin for SHAREM

• This is part of a set of Ghidra Scripts 
by Max Kersten, for Trellix.
• https://github.com/advanced-threat-

research/GhidraScripts/
• SHAREM must be run headless.

https://github.com/advanced-threat-research/GhidraScripts/


VB2024 Dublin

Comments - BeforeGhidra Plugin for SHAREM

• This is part of a set of Ghidra Scripts 
by Max Kersten, for Trellix.
• https://github.com/advanced-threat-

research/GhidraScripts/

https://github.com/advanced-threat-research/GhidraScripts/


VB2024 Dublin

Comments - AfterGhidra Plugin for SHAREM

• This is part of a set of Ghidra Scripts 
by Max Kersten, for Trellix.
• https://github.com/advanced-threat-

research/GhidraScripts/

https://github.com/advanced-threat-research/GhidraScripts/


VB2024 Dublin

Data Types - AfterGhidra Plugin for SHAREM



VB2024 Dublin

Data Types - BeforeGhidra Plugin for SHAREM

• This is part of a set of Ghidra Scripts 
by Max Kersten, for Trellix.
• https://github.com/advanced-threat-

research/GhidraScripts/

https://github.com/advanced-threat-research/GhidraScripts/


VB2024 Dublin

Reporting



VB2024 Dublin

Reporting

• SHAREM aggregates and reports on numerous features related to 
shellcode in in extraordinary detail.
• Identifies shellcode techniques such as Call/Pop (GetPC), Heaven’s 

Gate, walking the PEB, each with several unique data points.

• APIs and syscalls found are enumerated with relevant data.

• Determination on if binary sample is shellcode.
• SHAREM has highly complex evaluation criteria.

• Several hashes related to shellcode

• Determination if shellcode is self-modifying code

• PE file – SHAREM also analyzes PE files
• Reports on numerous, traditional PE file features.



VB2024 Dublin

SHAREM Outputs

ASCII text 
representation 

of bytes

Raw 
Binary

Text 
format 
output

JSON 
output

A C tester is 
generated.

This can be compiled, 
and debugged in 
tool like WinDbg.

Prints to 
screen



VB2024 Dublin

Thank You!

❖ Download and try out SHAREM!

❖ https://github.com/Bw3ll/sharem

❖ Give it a star if you like it!

This research and some co-authors have been 
supported by NSA Grant H98230-20-1-0326.

https://github.com/Bw3ll/sharem

