
1

SO That Looks
Suspicious
Leveraging Process Memory & Kernel/Usermode Probes To
Detect Shared Object Injection At Scale On Linux

2

Daniel Jary (@JanielDary) – Security researcher

Previously:
o Senior security researcher @WithSecure/F-Secure.
o Security research & endpoint agent developer @UKGov.
o IR @Mandiant.
o Prev Speaker @BlackHatUSA, BlackHatAsia x2 …

Professional interests:
o OS internals.
o Reverse engineering.
o Tool & Sensor Dev.

- JanielDary

Whoami

3

AGENDA

REALTIME INJECTION
& MONITORING

Reflective Shared Object Injection
& __libc_dlopen_mode()

04 0605

030201

KEY
TAKEAWAYS

HIDE & SEEK
Hidden Shared Objects
& Detection rules

DYNAMIC LINKER
HIJACKING
Preloading and DT_NEEDED
infections

ELF 101
ELF binary & process
memory basics

OVERVIEW
Shared Object Injection &
the Linux threat landscape

4

OVERVIEW
Shared Object Injection & The Linux Threat
Landscape

5

Threat Landscape
(Trends)

IBM X-Force Threat Intelligence Index
2022

https://research.checkpoint.com/2023/the-platform-matters-a-comparative-study-
on-linux-and-windows-ransomware-attacks/

IBM X-Force Threat Intelligence Index 2024

6

Threat Landscape

https://vfeed.io/wp-content/uploads/2021/02/Top-
10-Most-Used-MITRE-ATTCK.pdf

https://www.ncsc.nl/binaries/ncsc/documenten/publicaties/202
4/februari/6/mivd-aivd-advisory-coathanger-tlp-clear/TLP-
CLEAR+MIVD+AIVD+Advisory+COATHANGER.pdf

7

■ Lack of detection maturity compared with Windows desktops.

Threat Landscape

Outdated
detection

tooling

Low visibility of
samples

Less
research

and
analysis

8

■ Lack of detection maturity compared with Windows desktops.

■ Threat groups incorporating opensource code directly into their
malware:

○ Winnti group (HiddenWasp / Azazel)
○ Rocke Group (Monero miner / Libprocess hider)

Threat Landscape

Outdated
detection

tooling

Low visibility of
samples

Less
research

and
analysis

9

■ Lack of detection maturity compared with Windows desktops.

■ Threat groups incorporating opensource code directly into their
malware:

○ Winnti group (HiddenWasp / Azazel)
○ Rocke Group (Monero miner / Libprocess hider)

■ Post exploitation frameworks & state sponsored attackers using SO
injection techniques:

○ Ninjasec/PupyRAT
○ COATHANGER (Chinese FortiGate RAT)

Threat Landscape

Outdated
detection

tooling

Low visibility of
samples

Less
research

and
analysis

10

■ Lack of detection maturity compared with Windows desktops.

■ Threat groups incorporating opensource code directly into their
malware:

○ Winnti group (HiddenWasp / Azazel)
○ Rocke Group (Monero miner / Libprocess hider)

■ Post exploitation frameworks & state sponsored attackers using SO
injection techniques:

○ Ninjasec/PupyRAT

■ Open-source tooling & conferences presentations demonstrating
Usermode memory injection techniques

Threat Landscape

Outdated
detection

tooling

Low visibility of
samples

Less
research

and
analysis

11

What Is Shared Object (SO) Injection?

Virtual Memory Layout
(Legitimate SO usage)

12

What Is Shared Object (SO) Injection?

Virtual Memory Layout
(Malicious SO injection)

Patched Global Offset Table
(.got) of so_func to
my_evil_object.so

13

What Is Shared Object (SO) Injection?

Virtual Memory Layout
(Malicious SO injection)

14

What Is Shared Object (SO) Injection?

Virtual Memory Layout
(Malicious SO injection)

15

ELF 101
ELF Binary & Process Memory Basics

16

Binary Vs Memory Images

ELF Binary
(Disk)

■ ELF Sections contain large degree of
forensic value.
○ Symbol Table, Relocation table,

Constructors/Destructors, Program Data,
Dynamic linking information

17

Binary Vs Memory Images

ELF Binary
(Disk)

ELF
(Memory)

■ ELF Sections contain large degree of
forensic value.
○ Symbol Table, Relocation table,

Constructors/Destructors, Program Data,
Dynamic linking information

■ Segments loose Section granularity!

18

Binary Vs Memory Images

ELF Binary
(Disk)

ELF
(Memory)

■ ELF Sections contain large degree of
forensic value.
○ Symbol Table, Relocation table,

Constructors/Destructors, Program Data,
Dynamic linking information

■ Segments loose Section granularity!

■ Section header table is Optional in mapped
memory image. Not suitable for use in
forensic tooling.

19

Rebuilding Elf Sections From Memory
(Using The Dynamic Section)

1. Start location of Dynamic
Segment (PT_DYNAMIC)
== 1:1 mapping of Dynamic
section.

20

Rebuilding Elf Sections From Memory
(Using The Dynamic Section)

1. Start location of Dynamic
Segment (PT_DYNAMIC)
== 1:1 mapping of Dynamic
section.

2. Contains pointers to ELF
sections needed by the Dynamic
Linker

Readelf output of Dynamic section

21

Rebuilding Elf Sections From Memory
(Using The Dynamic Section)

3. Use Dynamic section
metadata to populate start
locations of sections within
segments

1. Start location of Dynamic
Segment (PT_DYNAMIC)
== 1:1 mapping of Dynamic
section.

2. Contains pointers to ELF
sections needed by the Dynamic
Linker

22

DYNAMIC LINKER
HIJACKING
Preloading & DT_NEEDED Infections

23

Abusing The Dynamic Linker To Load Malicious SOs

■ Two types:
○ DT_NEEDED infections
○ Preloading

■ Setup before process execution

■ Common among Usermode rootkits &
malware

■ Current detection strategies & limitations.

■ Generating actionable telemetry.

Disk Mem

24

DT_NEEDED Entries & The Dynamic Linker

■ Dynamic Segment 1:1 mapping with the Dynamic section

■ Present in all dynamic linked binaries

■ Each entry Dynamic section is required by the dynamic linker
to load a binary into memory:
○ DT_NEEDED - Dependencies to load.
○ DT_SYMTAB – Dynamic symbol table.
○ DT_FLAGS – How to process shared objects.
○ DT_PLTGOT – Pointer within Global Offset Table (GOT).
○ DT_RPATH/DT_RUNPATH (optional) – Pointer to a directory

the dynamic linker should look to load libraries from.

25

DT_NEEDED Entries & The Dynamic Linker

■ Dynamic Segment 1:1 mapping with the Dynamic section

■ Present in all dynamic linked binaries

■ Each entry Dynamic section is required by the dynamic linker
to load a binary into memory:
○ DT_NEEDED - Dependencies to load.
○ DT_SYMTAB – Dynamic symbol table.
○ DT_FLAGS – How to process shared objects.
○ DT_PLTGOT – Pointer within Global Offset Table (GOT).
○ DT_RPATH/DT_RUNPATH (optional) – Pointer to a directory

the dynamic linker should look to load libraries from.

27

DT_NEEDED Infections
(Overwrites)

Legitimate DT_NEEDED
entry (libc.so)

Empty DT_DEBUG /
DT_NULL entries

28

DT_NEEDED Infections
(Overwrites)

Legitimate DT_NEEDED
entry (libc.so)

Empty DT_DEBUG /
DT_NULL entries

Libc.so mapped into the
process address space

29

DT_NEEDED Infections
(Overwrites)

Overwrite DT_DEBUG with
DT_NEEDED (libevil.so)

30

DT_NEEDED Infections
(Overwrites)

Overwrite DT_DEBUG with
DT_NEEDED (libevil.so)

libevil.so mapped
into the process
address space

31

DT_NEEDED Infections
(Insertions)

32

DT_NEEDED Infections
(Insertions)

libevil.so imports resolved first in
GOT (Global Offset Table)

33

OVERWRITES

o Order of DT_NEEDED entries in
dynamic section

o Dynamic string table extension

o Missing DT_DEBUG/DT_NULL entries

o Header manipulation

INSERTIONS

o Evidence of Program header relocation

o Dynamic string table extension

o Does SO name ptr point within dynamic
string table.

o Duplication of Symbol names across
Shared Objects

DT_NEEDED Infections
(Detection)

34

OVERWRITES

INSERTIONS

DT_NEEDED Infections
(Detection)

35

■ Preloaded SO functions overwrite functions of non-preloaded SOs.
Acting as a search order hijacking mechanism.

■ Preloading mechanisms:
○ LD_PRELOAD env var
○ Dynamic linker ‘—preload’ flag
○ /etc/ld.so.preload

■ Preloading has legitimate uses: for debugging / compatibility

■ Offers attackers a simple way to install hooks / execute constructor
code

■ Used by:
○ Azazel, BEURK, Jynx, Vlany. Umbreon Usermode rootkits
○ HiddenWasp malware & Threat groups.

Preloading Abuse (LD_PRELOAD)

https://vfeed.io/wp-
content/uploads/2021/02/Top-10-Most-Used-

MITRE-ATTCK.pdf

36

■ Current detection solutions only monitor ‘existence’ of preloading
rather than ‘effect’:
○ Command lines, paths & env variables.
○ Still requires manual analysis

The Problem With Detecting Malicious Preloading

37

■ Current detection solutions only monitor ‘existence’ of preloading
rather than ‘effect’:
○ Command lines, paths & env variables.
○ Still requires manual analysis

■ More info required to distinguish malicious use of preloading:
○ Identify the individual hooks?
○ Which preloaded SOs are responsible?
○ Where is the location of the hook in memory?

The Problem With Detecting Malicious Preloading

38

■ Current detection solutions only monitor ‘existence’ of preloading
rather than ‘effect’:
○ Command lines, paths & env variables.
○ Still requires manual analysis

■ More info required to distinguish malicious use of preloading:
○ Identify the individual hooks?
○ Which preloaded SOs are responsible?
○ Where is the location of the hook in memory?

■ We need to provide more context and targeted analysis.

The Problem With Detecting Malicious Preloading

39

■ Current detection solutions only monitor ‘existence’ of preloading
rather than ‘effect’:
○ Command lines, paths & env variables.
○ Still requires manual analysis

■ More info required to distinguish malicious use of preloading:
○ Identify the individual hooks?
○ Which preloaded SOs are responsible?
○ Where is the location of the hook in memory?

■ We need to provide more context and targeted analysis.

The Problem With Detecting Malicious Preloading

BEURK rootkit

40

Step 1: Identifying All Imports
i. ELF executable header fields e_phoff & e_phentsize -> The

program header table.

41

Step 1: Identifying All Imports
i. ELF executable header fields e_phoff & e_phentsize -> The

program header table.
ii. Header of entry (PT_DYNAMIC) -> points to the Dynamic

segment.

42

Step 1: Identifying All Imports
i. ELF executable header fields e_phoff & e_phentsize -> The

program header table.
ii. Header of entry (PT_DYNAMIC) -> points to the Dynamic

segment.
iii. Dynamic segment is 1:1 mapping of the .dynamic section

containing pointers to:
 Global offset table (DT_PLTGOT).
 Relocation table (DT_RELA).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

43

Step 1: Identifying All Imports
i. ELF executable header fields e_phoff & e_phentsize -> The

program header table.
ii. Header of entry (PT_DYNAMIC) -> points to the Dynamic

segment.
iii. Dynamic segment is 1:1 mapping of the .dynamic section

containing pointers to:
 Global offset table (DT_PLTGOT).
 Relocation table (DT_RELA).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

iv. DT_JMPREL points to the first relocation table entry
responsible for imports. DT_PLTRELSZ contains the total
size of the relocation entries associated with imports.
Together they can identify every relocation table entry
(Elf64_Rela) responsible for an imported symbol.

44

Step 1: Identifying All Imports
i. ELF executable header fields e_phoff & e_phentsize -> The

program header table.
ii. Header of entry (PT_DYNAMIC) -> points to the Dynamic

segment.
iii. Dynamic segment is 1:1 mapping of the .dynamic section

containing pointers to:
 Global offset table (DT_PLTGOT).
 Relocation table (DT_RELA).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

iv. DT_JMPREL points to the first relocation table entry
responsible for imports. DT_PLTRELSZ contains the total
size of the relocation entries associated with imports.
Together they can identify every relocation table entry
(Elf64_Rela) responsible for an imported symbol.

v. Each import relocation entry (ELF64_Rela) entry contains:
 The address of the associated GOT entry
 The offset inside the Dynamic symbol table an entry

relates to (Elf64_Sym).

45

i. ELF executable header fields e_phoff & e_phentsize -> The
program header table.

ii. Header of entry (PT_DYNAMIC) -> points to the Dynamic
segment.

iii. Dynamic segment is 1:1 mapping of the .dynamic section
containing pointers to:

 Global offset table (DT_PLTGOT).
 Relocation table (DT_RELA).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

iv. DT_JMPREL points to the first relocation table entry
responsible for imports. DT_PLTRELSZ contains the total
size of the relocation entries associated with imports.
Together they can identify every relocation table entry
(Elf64_Rela) responsible for an imported symbol.

v. Each import relocation entry (ELF64_Rela) entry contains:
 The address of the associated GOT entry
 The offset inside the Dynamic symbol table an entry

relates to (Elf64_Sym).
vi. Elf64_Sym entry contains the offset within the dynamic string

table associated with the import (symbol) name.

Step 1: Identifying All Imports

46

i. Locate following sections in .dynamic section:
 Global offset table (DT_PLTGOT).
 Debug section (DT_DEBUG).

Step 2: Establish A List Of SOs & Their Base Addresses

47

i. Locate following sections in .dynamic section:
 Global offset table (DT_PLTGOT).
 Debug section (DT_DEBUG).

ii. Locate the address of a process’ (link_map) using one of
two methods:

 Using DT_DEBUG - r_map
 Using the GOT – got[1]

Step 2: Establish A List Of SOs & Their Base Addresses

48

i. Locate following sections in .dynamic section:
 Global offset table (DT_PLTGOT).
 Debug section (DT_DEBUG).

ii. Locate the address of a process’ (link_map) using one of
two methods:

 Using DT_DEBUG - r_map
 Using the GOT – got[1]

iii. Iterate through the link_map linked list and extract the
loaded base address for each SO in memory.

Step 2: Establish A List Of SOs & Their Base Addresses

49

Identify preloaded SOs:
 Reading LD_PRELAOD from the stack.
 Reading /etc/ld.so.preload.

Step 3: Identify Preloaded SOs & Exports

50

Identify preloaded SOs:
 Reading LD_PRELAOD from the stack.
 Reading /etc/ld.so.preload.

Resolve exported symbols.

i. Locate following sections in .dynamic section:
 Hash table / GNU Hash table (DT_HASH /

DT_GNU_HASH).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

Step 3: Identify Preloaded SOs & Exports

51

Identify preloaded SOs:
 Reading LD_PRELAOD from the stack.
 Reading /etc/ld.so.preload.

Resolve exported symbols.

i. Locate following sections in .dynamic section:
 Hash table / GNU Hash table (DT_HASH /

DT_GNU_HASH).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

ii. Determine the number of symbol table entries using
either:

 Hash table.
 GNU Hash table.

Step 3: Identify Preloaded SOs & Exports

52

Identify preloaded SOs:
 Reading LD_PRELAOD from the stack.
 Reading /etc/ld.so.preload.

Resolve exported symbols.

i. Locate following sections in .dynamic section:
 Hash table / GNU Hash table (DT_HASH /

DT_GNU_HASH).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

ii. Determine the number of symbol table entries using
either:

 Hash table.
 GNU Hash table.

iii. Only collect exported symbols which are:
 Type - STT_FUNC.
 Binding - STB_GLOBAL/STB_WEAK.

Step 3: Identify Preloaded SOs & Exports

53

Step 4:
■ Compare imported symbols with exported

symbols from the any preloaded SOs.

Step 4 & 5: Comparisons & Matching Symbol Names

54

Step 4:
■ Compare imported symbols with exported

symbols from the any preloaded SOs.

Step 5:
■ Resolve exports from non-preloaded SOs.
■ Match legitimate export names with names of

hooks to identify victim SOs.

Step 4 & 5: Comparisons & Matching Symbol Names

55

Step 4:
■ Compare imported symbols with exported

symbols from the any preloaded SOs.

Step 5:
■ Resolve exports from non-preloaded SOs.
■ Match legitimate export names with names of

hooks to identify victim SOs.

Step 4 & 5: Comparisons & Matching Symbol Names

Hook identified

Malicious hook code @VA

56

ELFieScanner
● Linux process memory scanning tool that detects various forms of:

○ Shared Object injection.
○ Shellcode injection & Process hollowing.
○ Entry point manipulation.
○ API Hooking.

● 43 different heuristics, controllable via configuration file.
● Multithreaded, written in C++, scans both x86/x64 processes.
● Outputs data into NDJSON file
● https://github.com/JanielDary/ELFieScanner

57

REALTIME
INJECTION

& TARGETING

Reflective Shared Object Injection &
__libc_dlopen_mode()

58

Attack Techniques

■ Direct use of __libc_dlopen_mode():
○ Detecting the victim process - Uprobes.
○ Detecting the attacker process – mem

scan

■ Reflective Shared object injection:
○ Identifying suspicious memory allocations

- Kprobes
○ Identifying anomalous memory regions

for injected SOs.

59

Existing Real-time Detection Strategies (SO Injection)

■ Solutions include:
○ Monitoring/restricting the use of PTRACE() syscalls.
○ Enumerating /proc/<pid>/maps file for RWX regions.
○ Combining output with file events and command lines on a best effort basis.
○ Blindly scanning memory with Yara signatures.

■ Issues with current solutions:
○ Browsers, debuggers, AVs and interpreters can exhibit the same behaviors in a legitimate way.
○ Solutions do not target SO injection specifically.
○ Can introduce data volume and backend performance issues.
○ Lots of data for an analyst to sift through.

60

__libc_dlopen_mode() Injection

■ Two functions can be used to load a SO into a Linux process:
○ dlopen().
○ __libc_dlopen_mode().

■ Force a victim process to call either function ensures the dynamic
linker does most of the work.
○ __libc_dlopen_mode() almost always targeted over dlopen().

61

■ Two functions can be used to load a SO into a Linux process:
○ dlopen().
○ __libc_dlopen_mode().

■ Force a victim process to call either function ensures the dynamic
linker does most of the work.
○ __libc_dlopen_mode() almost always targeted over dlopen().

__libc_dlopen_mode() Injection

62

■ Two functions can be used to load a SO into a Linux process:
○ dlopen().
○ __libc_dlopen_mode().

■ Force a victim process to call either function ensures the dynamic
linker does most of the work.
○ __libc_dlopen_mode() almost always targeted over dlopen().

■ Method 1: Writing own injector:
○ Attach to a victim process with LIBC loaded.
○ Resolve the address of __libc_dlopen_mode() & modify the instruction

pointer.
○ Replace registers (x64) or stack values (x86) with the correct arguments.
○ Resume execution.

__libc_dlopen_mode() Injection

63

■ Two functions can be used to load a SO into a Linux process:
○ dlopen().
○ __libc_dlopen_mode().

■ Force a victim process to call either function ensures the dynamic
linker does most of the work.
○ __libc_dlopen_mode() almost always targeted over dlopen().

■ Method 1: Writing own injector:
○ Attach to a victim process with LIBC loaded.
○ Resolve the address of __libc_dlopen_mode() & modify the instruction

pointer.
○ Replace registers (x64) or stack values (x86) with the correct arguments.
○ Resume execution.

■ Method 2: Using a GDB bash one-liner.

__libc_dlopen_mode() Injection

64

LTrace() o Can only target individual / groups of processes.

o Uses PTRACE – (Slow + Invasive)

o Malicious processes can prevent itself being debugged using PTRACE_TRACEME

Monitoring Function Calls

65

LTrace() o Can only target individual / groups of processes.

o Uses PTRACE – (Slow + Invasive)

o Malicious processes can prevent itself being debugged using PTRACE_TRACEME

Uprobes
o Introduced in Linux 3.5

o System wide effect

o DI of User level functions & offsets

o Defining a Uprobe requires:

• Path of SO.
• Offset to target function
• Selected function parameters &

corresponding register/stack values.

Monitoring Function Calls

Kprobes

o Introduced in Linux 2.69

o System wide effect

o DI of Kernel level functions & offsets

o Often used by eBPF programs

Dynamic Instrumentation (DI)

66

Calculating The Offset To __libc_dlopen_mode
(Uprobe)

■ Method 1: Using nm -

67

Calculating The Offset To __libc_dlopen_mode
(Uprobe)

■ Method 1: Using nm -

■ Method 2: Manually enumerating the SO on disk:

i. Locate Section Hdrs table via Exe Hdrs.

68

Calculating The Offset To __libc_dlopen_mode
(Uprobe)

■ Method 1: Using nm -

■ Method 2: Manually enumerating the SO on disk:

i. Locate Section Hdrs table via Exe Hdrs.

ii. Use Section Hdrs table to locate:

■ the dynamic symbol table (.dynsym)

■ dynamic string table (.dynstr)

69

Calculating The Offset To __libc_dlopen_mode
(Uprobe)

■ Method 1: Using nm -

■ Method 2: Manually enumerating the SO on disk:

i. Locate Section Hdrs table via Exe Hdrs.

ii. Use Section Hdrs table to locate:

■ the dynamic symbol table (.dynsym)

■ dynamic string table (.dynstr)

iii. Enumerate .dynsym & .dynstr tables to match symbol
names with Elfxx_Sym entry.

70

■ Method 1: Using nm -

■ Method 2: Manually enumerating the SO on disk:

i. Locate Section Hdrs table via Exe Hdrs.

ii. Use Section Hdrs table to locate:

■ the dynamic symbol table (.dynsym)

■ dynamic string table (.dynstr)

iii. Enumerate .dynsym & .dynstr tables to match symbol
names with Elfxx_Sym entry.

iv. Read ELF64_Sym.st_value for ‘__libc_dlopen_mode’ to
determine its file offset.

Calculating The Offset To __libc_dlopen_mode
(Uprobe)

71

Determining The Function
Parameters (Uprobe)

● __libc_dlopen_mode() uses same two parameters as dlopen():
 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

Function prototype

Loading method
flags

72

Determining The Function
Parameters (Uprobe)

● __libc_dlopen_mode() uses same two parameters as dlopen():
 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

● Definition of Uprobe:

Function prototype

Loading method
flagsBrendan Gregg’s F-Trace Uprobe wrapper:

73

Determining The Function
Parameters (Uprobe)

● __libc_dlopen_mode() uses same two parameters as dlopen():
 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

● Definition of Uprobe:
 Path to libc.
 Offset to __libc_dlopen_mode().

Function prototype

Loading method
flagsBrendan Gregg’s F-Trace Uprobe wrapper:

74

Determining The Function
Parameters (Uprobe)

● __libc_dlopen_mode() uses same two parameters as dlopen():
 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

● Definition of Uprobe:
 Path to libc.
 Offset to __libc_dlopen_mode().
 The first parameter ‘path’ renaming this to ‘injected lib’ from the rdi register.

Function prototype

Loading method
flagsBrendan Gregg’s F-Trace Uprobe wrapper:

75

Determining The Function
Parameters (Uprobe)

● __libc_dlopen_mode() uses same two parameters as dlopen():
 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

● Definition of Uprobe:
 Path to libc.
 Offset to __libc_dlopen_mode().
 The first parameter ‘path’ renaming this to ‘injected lib’ from the rdi register.
 The second parameter mode from the rsi register to a 32bit hexadecimal

format.

Function prototype

Loading method
flagsBrendan Gregg’s F-Trace Uprobe wrapper:

76

Uprobe Telemetry
(Victim Process)

Detection

77

Uprobe Telemetry
(Victim Process)

Detection

78

1. Using existing telemetry to find the most recent PTRACE_ATTACH event prior to the Uprobe firing.
This will be the injector process

2. Signature on command line arguments supplied to GDB containing ‘__libc_dlopen_mode’.

3. Search a running process’ .rodata section for references to __libc_dlopen_mode():
 Only works if the injector process still exists.

Methods Of Detecting The Injector Process

79

Reflective SO Injection

● The Linux equivilent of Reflective DLL injection on Windows,
used by:

 InfoSecguerrilla/ReflectiveSOInjection tool.

 N1nj4sec/Pupy framework.

● Facilitates the loading of a SO directly from memory by using a
custom loader:

 Allocates a RWX anonymous memory region.
 Maps a SO into the region.
 Uses Libc exports to resolve symbols and perform relocations.

80

Reflective SO Injection

● Current detection strategies rely on identifying existing RWX regions, this can be easily circumvented by:

81

Reflective SO Injection

● Current detection strategies rely on identifying existing RWX regions, this can be easily circumvented by:
 Modifying page permissions - mprotect()

r--xp

82

Reflective SO Injection

● Current detection strategies rely on identifying existing RWX regions, this can be easily circumvented by:
 Modifying page permissions - mprotect()
 Spoofing process mappings - /proc/<pid>/maps

r--xp

83

Using Kprobes To Target Memory
Allocations

● Target the initial memory allocation.

● Exported Kernel Symbols found in /proc/kallsyms.

● mmap() not exported:
○ Internally calls sys_mmap->ksys_mmap_pgoff.

84

Using Kprobes To Target Memory
Allocations

● Target the initial memory allocation.

● Exported Kernel Symbols found in /proc/kallsyms.

● mmap() not exported:
○ Internally calls sys_mmap->ksys_mmap_pgoff.

85

Using Kprobes To Target Memory
Allocations

● Target the initial memory allocation.

● Exported Kernel Symbols found in /proc/kallsyms.

● mmap() not exported:
○ Internally calls sys_mmap->ksys_mmap_pgoff.

86

The Probe & Telemetry

• A Kprobe can be used to target:
• Anonymous memory allocations.
• With initial RWX / RX permissions.

• Multiple probes can be set for each allocation variation & change
e.g. mprotect()

87

The Probe & Telemetry

• A Kprobe can be used to target:
• Anonymous memory allocations.
• With initial RWX / RX permissions.

• Multiple probes can be set for each allocation variation & change
e.g. mprotect()

• Capture the memory address & length supplied to
ksys_mmap_pgoff to trigger a targeted scan.

88

HIDE & SEEK
Hidden Shared Objects
& Detection Rules

89

Hidden Shared Objects

The ‘proc/<pid>/maps’ is the
pseudo-filesystem
representation of a process’
memory mappings, this
includes it’s loaded SOs

Process Mappings

Monero miner (libprocesshider)

90

Hidden Shared Objects

The ‘proc/<pid>/maps’ is the
pseudo-filesystem
representation of a process’
memory mappings, this
includes it’s loaded SOs

Process Mappings

Hook readdir()

Monero miner (libprocesshider)

91

Hidden Shared Objects
(Enumeration Methods)

DT_NEEDED
The ‘proc/<pid>/maps’ is the
pseudo-filesystem
representation of a process’
memory mappings, this
includes it’s loaded SOs

Process Mappings
.Dynamic Section DT_NEEDED

entry type contains names of SOs
to load at runtime via standard

search order mechanisms.

link_map

GOT[1] / DT_DEBUG Contains the
address of the link_map structure

linked list, containing the base
address & name of loaded SO’s

92

Hidden Shared Objects
(Rules)

1. SOs that only appear in either the link_map OR proc/<pid>/maps but not both!

2. SOs with the same name but different base addresses in proc/<pid>/maps & the link_map.

3. DT_NEEDED entries missing from either the link_map or proc/<pid>/maps.

4. Shared objects not backed on disk.

5. SOs with non-standard paths.

93

Cheat Sheet
Search order manipulationPreloading abuseDT_NEEDED

Insertions
DT_NEEDED
Overwrites

Directories specified in
/etc/ld.so.conf.d/*.conf or
LD_CONFIG env var.

Suspicious use of LD_PRELOAD &
ld.so.preload file.

Dynamic string table manipulation.Non-sequential DT_NEEDED
entries.

Custom LD_LIBRARY_PATH,
LD_RUN_PATH, env vars.

Hooking of common functions in
LIBC by preloaded SOs.

DT_NEEDED name pointing outside
the dynamic string table.

Missing DT_NULL/DT_DEBUG.

Custom
DT_RPATH/DT_RUNPATH
Dynamic section entries.

Relocated program headers.
(Not at 52/64 byte offsets).

Non-standard program interpreter
pointed to by PT_INTERP.

Hidden SOsReflective SO Injection__libc_dlopen_mode()

Shared objects that only appear in either the
link_map or proc/<pid>/maps but not both. Or
have different base addresses but the same
name.

Kprobe monitoring real-time anonymous memory
allocations with executable permissions.

Uprobe monitoring direct use of
__libc_dlopen_mode(), specifying path outside /lib
or RTLD_LAZY flags.

DT_NEEDED entries that don’t appear in either
the link_map or proc/<pid>/maps.

Scanning targeted memory regions for executable
headers.

__libc_dlopen_mode string in .rodata

Shared object not backed on disk.
Or located in non-standard paths.

__libc_dlopen_mode in GOT

GDB being used to resolve __libc_dlopen_mode().

94

KEY
TAKEAWAYS

95

Key Takeaways

3.

Less spotlight on the Linux
threat landscape leading to

lower detection maturity when
compared to Windows

1.

Utilizing K/Uprobes as targeted
triggers can greatly reduce

performance overheads when
running memory scanners,

opening up their applicable use
cases.

2.

Telemetry & tooling needs to be
kept up to date otherwise simple

modifications can sidestep
existing rules.

96

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, and infographics & images by Freepik.
Please keep this slide for attribution.

THANK YOU
JanielDary

