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SO That Looks 
Suspicious
Leveraging Process Memory & Kernel/Usermode Probes To 
Detect Shared Object Injection At Scale On Linux
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OVERVIEW
Shared Object Injection & The Linux Threat 
Landscape
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Threat Landscape
(Trends)

IBM X-Force Threat Intelligence Index 
2022

https://research.checkpoint.com/2023/the-platform-matters-a-comparative-study-
on-linux-and-windows-ransomware-attacks/

IBM X-Force Threat Intelligence Index 2024
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Threat Landscape

https://vfeed.io/wp-content/uploads/2021/02/Top-
10-Most-Used-MITRE-ATTCK.pdf

https://www.ncsc.nl/binaries/ncsc/documenten/publicaties/202
4/februari/6/mivd-aivd-advisory-coathanger-tlp-clear/TLP-
CLEAR+MIVD+AIVD+Advisory+COATHANGER.pdf



7

■ Lack of detection maturity compared with Windows desktops.

Threat Landscape

Outdated 
detection 

tooling

Low visibility of 
samples

Less 
research 

and 
analysis



8

■ Lack of detection maturity compared with Windows desktops.

■ Threat groups incorporating opensource code directly into their 
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■ Lack of detection maturity compared with Windows desktops.

■ Threat groups incorporating opensource code directly into their 
malware:

○ Winnti group (HiddenWasp / Azazel)
○ Rocke Group (Monero miner / Libprocess hider)

■ Post exploitation frameworks & state sponsored attackers using SO 
injection techniques:

○ Ninjasec/PupyRAT

■ Open-source tooling & conferences presentations demonstrating 
Usermode memory injection techniques

Threat Landscape

Outdated 
detection 

tooling

Low visibility of 
samples

Less 
research 

and 
analysis
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What Is Shared Object (SO) Injection?

Virtual Memory Layout 
(Legitimate SO usage)
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What Is Shared Object (SO) Injection?

Virtual Memory Layout 
(Malicious SO injection)

Patched Global Offset Table 
(.got) of so_func to 
my_evil_object.so
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What Is Shared Object (SO) Injection?

Virtual Memory Layout 
(Malicious SO injection)
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What Is Shared Object (SO) Injection?

Virtual Memory Layout 
(Malicious SO injection)
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ELF 101
ELF Binary & Process Memory Basics
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Binary Vs Memory Images

ELF Binary 
(Disk)

■ ELF Sections contain large degree of 
forensic value.
○ Symbol Table, Relocation table, 

Constructors/Destructors, Program Data, 
Dynamic linking information
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Binary Vs Memory Images

ELF Binary 
(Disk)

ELF 
(Memory)

■ ELF Sections contain large degree of 
forensic value.
○ Symbol Table, Relocation table, 

Constructors/Destructors, Program Data, 
Dynamic linking information

■ Segments loose Section granularity!
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Binary Vs Memory Images

ELF Binary 
(Disk)

ELF 
(Memory)

■ ELF Sections contain large degree of 
forensic value.
○ Symbol Table, Relocation table, 

Constructors/Destructors, Program Data, 
Dynamic linking information

■ Segments loose Section granularity!

■ Section header table is Optional in mapped 
memory image. Not suitable for use in 
forensic tooling.
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Rebuilding Elf Sections From Memory
(Using The Dynamic Section)

1. Start location of Dynamic 
Segment (PT_DYNAMIC) 
== 1:1 mapping of Dynamic 
section.
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Rebuilding Elf Sections From Memory
(Using The Dynamic Section)

1. Start location of Dynamic 
Segment (PT_DYNAMIC) 
== 1:1 mapping of Dynamic 
section.

2. Contains pointers to ELF 
sections needed by the Dynamic 
Linker

Readelf output of Dynamic section
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Rebuilding Elf Sections From Memory
(Using The Dynamic Section)

3. Use Dynamic section 
metadata to populate start 
locations of sections within 
segments

1. Start location of Dynamic 
Segment (PT_DYNAMIC) 
== 1:1 mapping of Dynamic 
section.

2. Contains pointers to ELF 
sections needed by the Dynamic 
Linker
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DYNAMIC LINKER 
HIJACKING
Preloading & DT_NEEDED Infections
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Abusing The Dynamic Linker To Load Malicious SOs

■ Two types:
○ DT_NEEDED infections
○ Preloading

■ Setup before process execution 

■ Common among Usermode rootkits & 
malware

■ Current detection strategies & limitations.

■ Generating actionable telemetry.

Disk Mem
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DT_NEEDED Entries & The Dynamic Linker

■ Dynamic Segment 1:1 mapping with the Dynamic section

■ Present in all dynamic linked binaries

■ Each entry Dynamic section is required by the dynamic linker 
to load a binary into memory:
○ DT_NEEDED - Dependencies to load.
○ DT_SYMTAB – Dynamic symbol table.
○ DT_FLAGS – How to process shared objects.
○ DT_PLTGOT – Pointer within Global Offset Table (GOT).
○ DT_RPATH/DT_RUNPATH (optional) – Pointer to a directory 

the dynamic linker should look to load libraries from.
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DT_NEEDED Entries & The Dynamic Linker

■ Dynamic Segment 1:1 mapping with the Dynamic section

■ Present in all dynamic linked binaries

■ Each entry Dynamic section is required by the dynamic linker 
to load a binary into memory:
○ DT_NEEDED - Dependencies to load.
○ DT_SYMTAB – Dynamic symbol table.
○ DT_FLAGS – How to process shared objects.
○ DT_PLTGOT – Pointer within Global Offset Table (GOT).
○ DT_RPATH/DT_RUNPATH (optional) – Pointer to a directory 

the dynamic linker should look to load libraries from.



27

DT_NEEDED Infections
(Overwrites)

Legitimate DT_NEEDED 
entry (libc.so)

Empty DT_DEBUG / 
DT_NULL entries
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DT_NEEDED Infections
(Overwrites)

Legitimate DT_NEEDED 
entry (libc.so)

Empty DT_DEBUG / 
DT_NULL entries

Libc.so mapped into the 
process address space
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DT_NEEDED Infections
(Overwrites)

Overwrite DT_DEBUG with 
DT_NEEDED (libevil.so)
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DT_NEEDED Infections
(Overwrites)

Overwrite DT_DEBUG with 
DT_NEEDED (libevil.so)

libevil.so mapped 
into the process 
address space
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DT_NEEDED Infections
(Insertions)
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DT_NEEDED Infections
(Insertions)

libevil.so imports resolved first in 
GOT (Global Offset Table)
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OVERWRITES

o Order of DT_NEEDED entries in 
dynamic section

o Dynamic string table extension

o Missing DT_DEBUG/DT_NULL entries

o Header manipulation

INSERTIONS

o Evidence of Program header relocation

o Dynamic string table extension

o Does SO name ptr point within dynamic 
string table.

o Duplication of Symbol names across 
Shared Objects

DT_NEEDED Infections 
(Detection)
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OVERWRITES

INSERTIONS

DT_NEEDED Infections 
(Detection)
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■ Preloaded SO functions overwrite functions of non-preloaded SOs. 
Acting as a search order hijacking mechanism.

■ Preloading mechanisms:
○ LD_PRELOAD env var
○ Dynamic linker ‘—preload’ flag
○ /etc/ld.so.preload

■ Preloading has legitimate uses: for debugging / compatibility

■ Offers attackers a simple way to install hooks / execute constructor 
code

■ Used by:
○ Azazel, BEURK, Jynx, Vlany. Umbreon Usermode rootkits 
○ HiddenWasp malware & Threat groups.

Preloading Abuse (LD_PRELOAD)

https://vfeed.io/wp-
content/uploads/2021/02/Top-10-Most-Used-

MITRE-ATTCK.pdf
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■ Current detection solutions only monitor ‘existence’ of preloading 
rather than ‘effect’: 
○ Command lines, paths & env variables.
○ Still requires manual analysis

The Problem With Detecting Malicious Preloading
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■ Current detection solutions only monitor ‘existence’ of preloading 
rather than ‘effect’: 
○ Command lines, paths & env variables.
○ Still requires manual analysis

■ More info required to distinguish malicious use of preloading:
○ Identify the individual hooks?
○ Which preloaded SOs are responsible?
○ Where is the location of the hook in memory?

The Problem With Detecting Malicious Preloading
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■ Current detection solutions only monitor ‘existence’ of preloading 
rather than ‘effect’: 
○ Command lines, paths & env variables.
○ Still requires manual analysis

■ More info required to distinguish malicious use of preloading:
○ Identify the individual hooks?
○ Which preloaded SOs are responsible?
○ Where is the location of the hook in memory?

■ We need to provide more context and targeted analysis.

The Problem With Detecting Malicious Preloading
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■ Current detection solutions only monitor ‘existence’ of preloading 
rather than ‘effect’: 
○ Command lines, paths & env variables.
○ Still requires manual analysis

■ More info required to distinguish malicious use of preloading:
○ Identify the individual hooks?
○ Which preloaded SOs are responsible?
○ Where is the location of the hook in memory?

■ We need to provide more context and targeted analysis.

The Problem With Detecting Malicious Preloading

BEURK rootkit
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Step 1: Identifying All Imports
i. ELF executable header fields e_phoff & e_phentsize -> The 

program header table.
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segment.  
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Step 1: Identifying All Imports
i. ELF executable header fields e_phoff & e_phentsize -> The 

program header table.
ii. Header of entry (PT_DYNAMIC) -> points to the Dynamic 

segment.  
iii. Dynamic segment is 1:1 mapping of the .dynamic section

containing pointers to:
 Global offset table (DT_PLTGOT). 
 Relocation table (DT_RELA).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).
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iv. DT_JMPREL points to the first relocation table entry 
responsible for imports. DT_PLTRELSZ contains the total 
size of the relocation entries associated with imports. 
Together they can identify every relocation table entry 
(Elf64_Rela) responsible for an imported symbol. 
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Step 1: Identifying All Imports
i. ELF executable header fields e_phoff & e_phentsize -> The 

program header table.
ii. Header of entry (PT_DYNAMIC) -> points to the Dynamic 

segment.  
iii. Dynamic segment is 1:1 mapping of the .dynamic section

containing pointers to:
 Global offset table (DT_PLTGOT). 
 Relocation table (DT_RELA).
 Dynamic symbol table (DT_SYMTAB).
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iv. DT_JMPREL points to the first relocation table entry 
responsible for imports. DT_PLTRELSZ contains the total 
size of the relocation entries associated with imports. 
Together they can identify every relocation table entry 
(Elf64_Rela) responsible for an imported symbol. 

v. Each import relocation entry (ELF64_Rela) entry contains:
 The address of the associated GOT entry
 The offset inside the Dynamic symbol table an entry 

relates to (Elf64_Sym).
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i. ELF executable header fields e_phoff & e_phentsize -> The 
program header table.

ii. Header of entry (PT_DYNAMIC) -> points to the Dynamic 
segment.  

iii. Dynamic segment is 1:1 mapping of the .dynamic section
containing pointers to:

 Global offset table (DT_PLTGOT). 
 Relocation table (DT_RELA).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

iv. DT_JMPREL points to the first relocation table entry 
responsible for imports. DT_PLTRELSZ contains the total 
size of the relocation entries associated with imports. 
Together they can identify every relocation table entry 
(Elf64_Rela) responsible for an imported symbol. 

v. Each import relocation entry (ELF64_Rela) entry contains:
 The address of the associated GOT entry
 The offset inside the Dynamic symbol table an entry 

relates to (Elf64_Sym).
vi. Elf64_Sym entry contains the offset within the dynamic string 

table associated with the import (symbol) name. 

Step 1: Identifying All Imports
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i. Locate following sections in .dynamic section:
 Global offset table (DT_PLTGOT).
 Debug section (DT_DEBUG).

Step 2: Establish A List Of SOs & Their Base Addresses
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i. Locate following sections in .dynamic section:
 Global offset table (DT_PLTGOT).
 Debug section (DT_DEBUG).

ii. Locate the address of a process’ (link_map) using one of 
two methods:

 Using DT_DEBUG - r_map
 Using the GOT – got[1]

Step 2: Establish A List Of SOs & Their Base Addresses
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i. Locate following sections in .dynamic section:
 Global offset table (DT_PLTGOT).
 Debug section (DT_DEBUG).

ii. Locate the address of a process’ (link_map) using one of 
two methods:

 Using DT_DEBUG - r_map
 Using the GOT – got[1]

iii. Iterate through the link_map linked list and extract the 
loaded base address for each SO in memory.

Step 2: Establish A List Of SOs & Their Base Addresses
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Identify preloaded SOs:
 Reading LD_PRELAOD from the stack.
 Reading /etc/ld.so.preload.

Step 3: Identify Preloaded SOs & Exports
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Identify preloaded SOs:
 Reading LD_PRELAOD from the stack.
 Reading /etc/ld.so.preload.

Resolve exported symbols.

i. Locate following sections in .dynamic section:
 Hash table / GNU Hash table (DT_HASH / 

DT_GNU_HASH).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

Step 3: Identify Preloaded SOs & Exports
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Identify preloaded SOs:
 Reading LD_PRELAOD from the stack.
 Reading /etc/ld.so.preload.

Resolve exported symbols.

i. Locate following sections in .dynamic section:
 Hash table / GNU Hash table (DT_HASH / 

DT_GNU_HASH).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

ii. Determine the number of symbol table entries using 
either:

 Hash table.
 GNU Hash table. 

Step 3: Identify Preloaded SOs & Exports
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Identify preloaded SOs:
 Reading LD_PRELAOD from the stack.
 Reading /etc/ld.so.preload.

Resolve exported symbols.

i. Locate following sections in .dynamic section:
 Hash table / GNU Hash table (DT_HASH / 

DT_GNU_HASH).
 Dynamic symbol table (DT_SYMTAB).
 Dynamic string table (DT_STRTAB).

ii. Determine the number of symbol table entries using 
either:

 Hash table.
 GNU Hash table. 

iii. Only collect exported symbols which are:
 Type - STT_FUNC. 
 Binding  - STB_GLOBAL/STB_WEAK.

Step 3: Identify Preloaded SOs & Exports
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Step 4:
■ Compare imported symbols with exported 

symbols from the any preloaded SOs.

Step 4 & 5: Comparisons & Matching Symbol Names
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Step 4:
■ Compare imported symbols with exported 

symbols from the any preloaded SOs.

Step 5:
■ Resolve exports from non-preloaded SOs.
■ Match legitimate export names with names of 

hooks to identify victim SOs.

Step 4 & 5: Comparisons & Matching Symbol Names
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Step 4:
■ Compare imported symbols with exported 

symbols from the any preloaded SOs.

Step 5:
■ Resolve exports from non-preloaded SOs.
■ Match legitimate export names with names of 

hooks to identify victim SOs.

Step 4 & 5: Comparisons & Matching Symbol Names

Hook identified

Malicious hook code @VA
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ELFieScanner
● Linux process memory scanning tool that detects various forms of:

○ Shared Object injection.
○ Shellcode injection & Process hollowing.
○ Entry point manipulation.
○ API Hooking.

● 43 different heuristics, controllable via configuration file.
● Multithreaded, written in C++, scans both x86/x64 processes.
● Outputs data into NDJSON file
● https://github.com/JanielDary/ELFieScanner
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REALTIME 
INJECTION 

& TARGETING

Reflective Shared Object Injection &
__libc_dlopen_mode()
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Attack Techniques

■ Direct use of __libc_dlopen_mode():
○ Detecting the victim process - Uprobes.
○ Detecting the attacker process – mem 

scan

■ Reflective Shared object injection:
○ Identifying suspicious memory allocations 

- Kprobes
○ Identifying anomalous memory regions 

for injected SOs.
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Existing Real-time Detection Strategies (SO Injection)

■ Solutions include:
○ Monitoring/restricting the use of PTRACE() syscalls.
○ Enumerating /proc/<pid>/maps file for RWX regions.
○ Combining output with file events and command lines on a best effort basis.
○ Blindly scanning memory with Yara signatures.

■ Issues with current solutions:
○ Browsers, debuggers, AVs and interpreters can exhibit the same behaviors in a legitimate way.
○ Solutions do not target SO injection specifically.
○ Can introduce data volume and backend performance issues.
○ Lots of data for an analyst to sift through.
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__libc_dlopen_mode() Injection

■ Two functions can be used to load a SO into a Linux process:
○ dlopen().
○ __libc_dlopen_mode().

■ Force a victim process to call either function ensures the dynamic 
linker does most of the work.
○ __libc_dlopen_mode() almost always targeted over dlopen().
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■ Two functions can be used to load a SO into a Linux process:
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__libc_dlopen_mode() Injection
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■ Two functions can be used to load a SO into a Linux process:
○ dlopen().
○ __libc_dlopen_mode().

■ Force a victim process to call either function ensures the dynamic 
linker does most of the work.
○ __libc_dlopen_mode() almost always targeted over dlopen().

■ Method 1: Writing own injector:
○ Attach to a victim process with LIBC loaded.
○ Resolve the address of __libc_dlopen_mode() & modify the instruction 

pointer.
○ Replace registers (x64) or stack values (x86) with the correct arguments.
○ Resume execution. 

__libc_dlopen_mode() Injection
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■ Two functions can be used to load a SO into a Linux process:
○ dlopen().
○ __libc_dlopen_mode().

■ Force a victim process to call either function ensures the dynamic 
linker does most of the work.
○ __libc_dlopen_mode() almost always targeted over dlopen().

■ Method 1: Writing own injector:
○ Attach to a victim process with LIBC loaded.
○ Resolve the address of __libc_dlopen_mode() & modify the instruction 

pointer.
○ Replace registers (x64) or stack values (x86) with the correct arguments.
○ Resume execution. 

■ Method 2: Using a GDB bash one-liner.

__libc_dlopen_mode() Injection
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LTrace() o Can only target individual / groups of processes.

o Uses PTRACE – (Slow + Invasive)

o Malicious processes can prevent itself being debugged using PTRACE_TRACEME

Monitoring Function Calls
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LTrace() o Can only target individual / groups of processes.

o Uses PTRACE – (Slow + Invasive)

o Malicious processes can prevent itself being debugged using PTRACE_TRACEME

Uprobes
o Introduced in Linux 3.5 

o System wide effect

o DI of User level functions & offsets

o Defining a Uprobe requires:

• Path of SO.
• Offset to target function
• Selected function parameters & 

corresponding register/stack values.

Monitoring Function Calls

Kprobes

o Introduced in Linux 2.69

o System wide effect

o DI of Kernel level functions & offsets

o Often used by eBPF programs

Dynamic Instrumentation (DI)
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Calculating The Offset To __libc_dlopen_mode
(Uprobe)

■ Method 1: Using nm -
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Calculating The Offset To __libc_dlopen_mode
(Uprobe)

■ Method 1: Using nm -

■ Method 2: Manually enumerating the SO on disk:

i. Locate Section Hdrs table via Exe Hdrs.
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Calculating The Offset To __libc_dlopen_mode
(Uprobe)

■ Method 1: Using nm -

■ Method 2: Manually enumerating the SO on disk:

i. Locate Section Hdrs table via Exe Hdrs.

ii. Use Section Hdrs table to locate: 

■ the dynamic symbol table (.dynsym)

■ dynamic string table (.dynstr)
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Calculating The Offset To __libc_dlopen_mode
(Uprobe)

■ Method 1: Using nm -

■ Method 2: Manually enumerating the SO on disk:

i. Locate Section Hdrs table via Exe Hdrs.

ii. Use Section Hdrs table to locate: 

■ the dynamic symbol table (.dynsym)

■ dynamic string table (.dynstr)

iii. Enumerate .dynsym & .dynstr tables to match symbol 
names with Elfxx_Sym entry. 
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■ Method 1: Using nm -

■ Method 2: Manually enumerating the SO on disk:

i. Locate Section Hdrs table via Exe Hdrs.

ii. Use Section Hdrs table to locate: 

■ the dynamic symbol table (.dynsym)

■ dynamic string table (.dynstr)

iii. Enumerate .dynsym & .dynstr tables to match symbol 
names with Elfxx_Sym entry. 

iv. Read ELF64_Sym.st_value for ‘__libc_dlopen_mode’ to 
determine its file offset.

Calculating The Offset To __libc_dlopen_mode
(Uprobe)
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Determining The Function 
Parameters (Uprobe)

● __libc_dlopen_mode() uses same two parameters as dlopen():
 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

Function prototype

Loading method 
flags
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 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

● Definition of Uprobe:

Function prototype

Loading method 
flagsBrendan Gregg’s F-Trace Uprobe wrapper:
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Determining The Function 
Parameters (Uprobe)

● __libc_dlopen_mode() uses same two parameters as dlopen():
 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

● Definition of Uprobe:
 Path to libc.
 Offset to __libc_dlopen_mode().

Function prototype

Loading method 
flagsBrendan Gregg’s F-Trace Uprobe wrapper:



74

Determining The Function 
Parameters (Uprobe)

● __libc_dlopen_mode() uses same two parameters as dlopen():
 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

● Definition of Uprobe:
 Path to libc.
 Offset to __libc_dlopen_mode().
 The first parameter ‘path’ renaming this to ‘injected lib’ from the rdi register.

Function prototype

Loading method 
flagsBrendan Gregg’s F-Trace Uprobe wrapper:
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Determining The Function 
Parameters (Uprobe)

● __libc_dlopen_mode() uses same two parameters as dlopen():
 name - Path of SO (rdi).
 mode - Loading method flag (rsi).

● Identify any variations between GLIBC versions.

● Definition of Uprobe:
 Path to libc.
 Offset to __libc_dlopen_mode().
 The first parameter ‘path’ renaming this to ‘injected lib’ from the rdi register.
 The second parameter mode from the rsi register to a 32bit hexadecimal 

format.

Function prototype

Loading method 
flagsBrendan Gregg’s F-Trace Uprobe wrapper:
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Uprobe Telemetry 
(Victim Process)

Detection
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Uprobe Telemetry 
(Victim Process)

Detection
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1. Using existing telemetry to find the most recent PTRACE_ATTACH event prior to the Uprobe firing. 
This will be the injector process

2. Signature on command line arguments supplied to GDB containing ‘__libc_dlopen_mode’.

3. Search a running process’ .rodata section for references to __libc_dlopen_mode():
 Only works if the injector process still exists.

Methods Of Detecting The Injector Process
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Reflective SO Injection

● The Linux equivilent of Reflective DLL injection on Windows, 
used by:

 InfoSecguerrilla/ReflectiveSOInjection tool.

 N1nj4sec/Pupy framework.

● Facilitates the loading of a SO directly from memory by using a 
custom loader:

 Allocates a RWX anonymous memory region.
 Maps a SO into the region.
 Uses Libc exports to resolve symbols and perform relocations.
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Reflective SO Injection

● Current detection strategies rely on identifying existing RWX regions, this can be easily circumvented by:
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Reflective SO Injection

● Current detection strategies rely on identifying existing RWX regions, this can be easily circumvented by:
 Modifying page permissions - mprotect()

r--xp
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Reflective SO Injection

● Current detection strategies rely on identifying existing RWX regions, this can be easily circumvented by:
 Modifying page permissions - mprotect()
 Spoofing process mappings - /proc/<pid>/maps

r--xp
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Using Kprobes To Target Memory 
Allocations

● Target the initial memory allocation.

● Exported Kernel Symbols found in /proc/kallsyms.

● mmap() not exported:
○ Internally calls sys_mmap->ksys_mmap_pgoff.
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Using Kprobes To Target Memory 
Allocations

● Target the initial memory allocation.

● Exported Kernel Symbols found in /proc/kallsyms.

● mmap() not exported:
○ Internally calls sys_mmap->ksys_mmap_pgoff.



86

The Probe & Telemetry

• A Kprobe can be used to target:
• Anonymous memory allocations.
• With initial RWX / RX permissions.

• Multiple probes can be set for each allocation variation & change 
e.g. mprotect()
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The Probe & Telemetry

• A Kprobe can be used to target:
• Anonymous memory allocations.
• With initial RWX / RX permissions.

• Multiple probes can be set for each allocation variation & change 
e.g. mprotect()

• Capture the memory address & length supplied to 
ksys_mmap_pgoff to trigger a targeted scan.
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HIDE & SEEK 
Hidden Shared Objects 
& Detection Rules
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Hidden Shared Objects

The ‘proc/<pid>/maps’ is the 
pseudo-filesystem 
representation of a process’ 
memory mappings, this 
includes it’s loaded SOs

Process Mappings

Monero miner (libprocesshider)
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Hidden Shared Objects

The ‘proc/<pid>/maps’ is the 
pseudo-filesystem 
representation of a process’ 
memory mappings, this 
includes it’s loaded SOs

Process Mappings

Hook readdir()

Monero miner (libprocesshider)
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Hidden Shared Objects
(Enumeration Methods)

DT_NEEDED
The ‘proc/<pid>/maps’ is the 
pseudo-filesystem 
representation of a process’ 
memory mappings, this 
includes it’s loaded SOs

Process Mappings
.Dynamic Section DT_NEEDED 

entry type contains names of SOs 
to load at runtime via standard 

search order mechanisms.

link_map

GOT[1] / DT_DEBUG Contains the 
address of the link_map structure 

linked list, containing the base 
address & name of loaded SO’s
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Hidden Shared Objects
(Rules)

1. SOs that only appear in either the link_map OR proc/<pid>/maps but not both!

2. SOs with the same name but different base addresses in proc/<pid>/maps & the link_map.

3. DT_NEEDED entries missing from either the link_map or proc/<pid>/maps. 

4. Shared objects not backed on disk.

5. SOs with non-standard paths.
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Cheat Sheet
Search order manipulationPreloading abuseDT_NEEDED

Insertions
DT_NEEDED 
Overwrites

Directories specified in 
/etc/ld.so.conf.d/*.conf or 
LD_CONFIG env var. 

Suspicious use of LD_PRELOAD & 
ld.so.preload file.

Dynamic string table manipulation.Non-sequential DT_NEEDED 
entries.

Custom LD_LIBRARY_PATH, 
LD_RUN_PATH, env vars.

Hooking of common functions in 
LIBC by preloaded SOs.

DT_NEEDED name pointing outside 
the dynamic string table.

Missing DT_NULL/DT_DEBUG.

Custom
DT_RPATH/DT_RUNPATH
Dynamic section entries.

Relocated program headers.
(Not at 52/64 byte offsets).

Non-standard program interpreter 
pointed to by PT_INTERP.

Hidden SOsReflective SO Injection__libc_dlopen_mode()

Shared objects that only appear in either the 
link_map or proc/<pid>/maps but not both. Or 
have different base addresses but the same 
name.

Kprobe monitoring real-time anonymous memory 
allocations with executable permissions.

Uprobe monitoring direct use of 
__libc_dlopen_mode(), specifying path outside /lib 
or RTLD_LAZY flags.

DT_NEEDED entries that don’t appear in either 
the link_map or proc/<pid>/maps. 

Scanning targeted memory regions for executable 
headers. 

__libc_dlopen_mode string in .rodata

Shared object not backed on disk.
Or located in non-standard paths.

__libc_dlopen_mode in GOT

GDB being used to resolve __libc_dlopen_mode().
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KEY 
TAKEAWAYS
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Key Takeaways

3.

Less spotlight on the Linux 
threat landscape leading to 

lower detection maturity when 
compared to Windows

1.

Utilizing K/Uprobes as targeted 
triggers can greatly reduce 

performance overheads when 
running memory scanners, 

opening up their applicable use 
cases.

2.

Telemetry & tooling needs to be 
kept up to date otherwise simple 

modifications can sidestep 
existing rules.
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CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, and infographics & images by Freepik. 
Please keep this slide for attribution.

THANK YOU
JanielDary


