
Writing malware
configuration
parsers
Mark Lim & Zong-Yu Wu

Mark Lim
● Principal Malware

Researcher
at Palo Alto Networks

● Based in Singapore
● Love to go for long jogs

Zong-Yu Wu
● Reverse engineer
● Based in London
● Joined Palo Alto Networks since

2022
● Experienced in malware detection

and threat intelligence

OUTLINE

● Introduction

● MCE workflow

● Case Study 1 - Guloader

● Case Study 2 - RedLine

● Summary

WARNING!

1. Isolate infected systems: Disconnect
from networks and external devices.

2. Utilize virtual machines

3. Backup data: Ensure critical data is
safely backed up.

4. You release and hold harmless Palo Alto
Networks and Virus Bulletin, its affiliates,
and contributors from any liability,
claims, or damages arising from
handling live computer viruses.

Get the stuff!

● https://tinyurl.com/VB2024MCE

Background

● Similar to ‘settings’ or ‘preferences’
in software

● Malware configuration defines the
uniqueness of each instance

● C&C addresses, encryption keys,
attack parameters and other IOCs

● Tough to obtain statically
● But can be extracted from process

memory.

What are malware configurations?

Sandbox

Snapshot
Data

Memory Analysis and
Malware

Configuration Parsing

Malware Analysts
Create Malware

Config Extractors

Malware Configs
indexed

Malware Configuration Extraction Workflow

Decrypting Malware Configuration

Encryption
routine

Encryption
key

Ciphertext

Case study:

 Guloader

Evolutionary Journey Of Guloader’s Configuration
Tactics

Q4
2022

Ciphertext Splitting
Ciphertext has to be decoded in
blocks from a function before it can
be used Q1

2023

Control flow obfuscation
Control flow obfuscation progressively applied
to increase the complexity of retrieving the
ciphertext

Q3
2023

3 Exceptions
Handlers Q3

2024

???

2024 August

https://x.com/Unit42_Intel/status/1828444963001995599

Dump Memory

1. Use System Informer (a.k.a.
Process Hacker)

2. VBS -> Ps1 -> wab.exe
3. Look for wab.exe after

Guloader is injected
4. Locate the RWX memory

pages
5. Dump the memory pages

after the sample has
detonated

Control Flow Obfuscation

?

Diving into implementation of control flow obfuscation

1. SEH vs VEH
2. Locating the Vectored

Exception Handler
(VEH)

3. No easy way to do it via
debugger unlike SEH

4. Locate VEH from
NTDLL.dll walking the
structure

Demo 1.
● Locating VEH via the IDApython script

Diving into implementation of control flow obfuscation

Analysing the VEH

1. How VEH handles the
exceptions ?

2. How many junk bytes to skip ?
(offset)

3. How is the EIP updated ?

Analysing the VEH

EXCEPTION_BREAKPOINT

EXCEPTION_ACCESS_VIOLATION

Analysing the VEH

EXCEPTION_ILLEGAL_INSTRUCTION

EXCEPTION_PRIV_INSTRUCTION

EXCEPTION_SINGLE_STEP

Analysing the VEH

Analysing the VEH

1. How VEH handles the
exceptions ?

2. How many junk bytes to skip
? (offset)

3. How is the EIP updated ?

Analysing the VEH

Trigger !

Junk
bytes

???

Updated EIP

Analysing the VEH

Analysing the VEH

Analysing the VEH

Analysing the VEH

Trigger !

Updated EIP

Encrypted
count

0xC

Analysing the VEH

Analysing the VEH

Decrypting Malware Configuration

Simple
XOR

Predictable location of
encryption key

???

1. Ciphertext splitted into multiple
DWORD

2. Each DWORD is encoded with
different arithmetic operations

3. Stored as local variables in
functions

Ciphertext Splitting A1CD2379F530FA9458A71CE2EED42D1BA3C125D9

A1CD2379 F530FA94 58A71CE2 EED42D1B A3C125D9

BC24D7A1 DE14CFD3 78CD13EF 34DABC34 EF3A32FD

{+-&*&} {^-^*} {+-*&} {&-^&} {^&^*}

Ciphertext Splitting

● Function starts with loading of
address of encrypted cipher
text

● Values from local variables are
written into the address

Ciphertext Splitting

First DWORD is the length of the ciphertext!

Locating the Encrypted Configs

● Function starts with

“0x8B ?? 24 04”

● Yara it ?

● FP prone ?

Locating the Encrypted Configs

Demo 2 (DIY)
● Writing a yara rule to locate functions

containing the encrypted configuration

● Using “Findcrypt-yara” IDA Pro plug-in
https://github.com/polymorf/findcrypt-yara

Decrypting Malware Configuration

Simple
XOR

Predictable location of
encryption key

???

Locating the Decryption key

Demo 3
● Locate the decryption routine

● Locate the decryption key

● Locate the decryption key length

The Solution!

The Solution!
Demo 4

Putting it all together!

1. Using memory dump

2. Locate function containing splitted
cipher text using yara

3. Using Unicorn CPU emulator
framework

4. Emulate the function containing
the DWORD

5. Handle the 5 types of exceptions

The Solution!

Analysing the VEH

Analysing the VEH

The Solution! (unicorn_hello_world.py)

The Solution! (unicorn_hello_world.py)

The Solution! (emulate_config_dump.py)

Agenda for part 2

● We will deep dive into .NET and how configuration extraction can be achieved

● Most of the samples are not very difficult to extract config, but we got to learn .NET

runtime to achieve it.

● We will be going through:

○ Identify .NET
○ .NET structure
○ Tools
○ Sources for research
○ Unpacking .NET payloads
○ Locate configs
○ Understanding CLR tokens
○ Extract configs

Introduction to .NET

● .NET is a free and open-source application platform supported by Microsoft.

○ The initial .NET release was 2016. It’s also getting attentions among threat actors.

● C# is the main programming language for .NET

● Terminology:

○ CLR (Common Language Runtime)

○ CIL: Common Intermediate Language is the bytecode language that the just-in-time (JIT)

compiler of the .NET Framework interprets.

● There are awful lot of malwares written in .NET (especially infostealer)

How to identify .NET?

Cmd command: $ file sample.exe

YARA has is_donet in dotnet module. Let’s take a look at how it’s implemented

.NET header structure

● Reuse PE structure

● A special .NET data directory

IMAGE_DIRECTORY_ENTRY_COM_DESC

RIPTOR can be found for referencing the

Cor20 header

.NET malware analysis tool I personally like

● dnSpy: a debugger and .NET assembly editor

○ The decompliation function is provided by ILSpy

○ The repo was archived since 2020; but it’s still arguably the most popular tool for analysing .NET

malware

● Megadumper: a handy .NET payload memory dump tool.

○ Very useful for unpacking

● IDAPro: not necessary, it’s just my prefer tool to show CIL and decompiled code

side-by-side.

● x32/x64 dbg: sometimes, when sample jumps from managed into unmanaged and vice

versa. Most of the time I use dnSpy to debug .NET malwares.

Where to find .NET samples for research

● VirusTotal

● Malware bazaar Abuse.ch https://bazaar.abuse.ch/browse/

https://bazaar.abuse.ch/browse/

Fact is most of the samples are packed

● This means the Redline sample you downloaded from VT or malware bazaar doesn’t look

like Redline.

● However, configuration extractor requires Redline payload to work on.

● To defeat packing, in a production environment, the extractor is run on top of memory

analysis framework:

Today, let’s exercise unpack .NET samples

Terminology:

● packer/crypter/protector: the tool hides the real payload

 Pre-requirement:

● A windows Virtual Machine with dnSpy installed

Sample:

● 458e5bd8e3508c15449bfd4c9931a59cd2a6a95ed9e6bb5b0090aa6641a29c77
○ It’s a fresh sample on malware bazaar which is labeled as Agent-Tesla

Let’s exercise how to unpack .NET samples (cont)

Step 1. Throw the sample into dnSpy and find the entrypoint

Step 2. Search for dynamic IL loading APIs and place a breakpoint at the instruction

● typeof(Assembly).InvokeMember, assembly.GetTypes, .CurrentDomain.Load(), etc

Let’s exercise how to unpack .NET samples (cont)

Step 3. Run the sample and hope we are lucky enough to intercept the payload.

Let’s exercise how to unpack .NET samples (cont)

Step 4. Right click on the `array2` and save it to the disk. Reload the payload back to dnSpy.

● It is not Agent-Tesla that we long for. We demonstrated that malware nowadays are
multistage and manually unpack them seems not easy to scale up. So what’s now?

Let’s exercise how to unpack .NET samples (cont)

● Use my holy grail .NET unpacking tool: MegaDumper!

Let’s exercise how to unpack .NET samples (cont)

Preparing to extract a configuration

Sample: 101b9564ba11aa44372b37b1143eac0d5dd1e3f38c6a35517de843b9f23b3704

Family: RedLine v2

Unpacks to 47d6bf807e275d25a63015ef106fb2548b5394342ec8fdfc7f809e1699810330

The sample gives away it’s a RedLine:

Where is the configuration:

Each malware family has their own design; but a general approach to find the config is:

● Configuration entries are always together. Because config controls the program, config is

prepared altogether when sample is produced.

○ In .NET sample, configs can likely to be all in one class

● If the configuration is encrypted, malware is likely calling a same decryption routine

over-and-over.

● Configuration often is associated with network connection part.

○ A trick is to locate the API that is related network and trace where the argument come from.

Where is the configuration in the sampe:

Sample: 101b9564ba11aa44372b37b1143eac0d5dd1e3f38c6a35517de843b9f23b3704

Network related proc

The
argument

Where is the configuration in the sampe (cont):

● Config entries are together

● Config is encrypted

○ call the same decryption func

How config works?

● Set BreakPoint at line 22 and step over until line 24

Observations:
1. Key prep.
2. Ciphertext prep.
3. Decryption

Steps to extract config

● Config init.

1. Get the ciphertext from binary

2. Prepare the key

3. Reverse engineer the decryption

Extract config: get the ciphertext

Ciphertext is at <PrivateImplementationDetails>.F495C9…DA

PrivateImplementationDetails is a class with all the structure inside:

Pay attention to the comment in dnSpy.

Extract config: get the ciphertext, CIL view, p1

dnSpy decompiled view of accessing C&C ciphertext

In C, every object is reference by pointer. However, in .NET, ever object is accessed by token.

Token(little endian) = 04 00 02 1F

● 04 is referencing Field Table Stream in #~
● The token is indexed 0x021F in Field Table

Extract config: get the ciphertext, CIL view, p2

In order to get the token, we want to anchor the code

where C&C ciphertext token is access.

● Here is an example of YARA rule which we can

use to anchor the offset of the instr

○ Or you can use regex

● Access the offset of YARA rule matches + 25 for

the opcode of D0 (ldtoken), then the followed 4

bytes are ciphertext token

Extract config: get the ciphertext, CIL view, p3

To get the data from the token, I found two different library are achievable

● https://github.com/pan-unit42/dotnetfile

● https://github.com/malwarefrank/dnfile

I’m using dnfile as an example for today. But they worked quite the same way.

By calling get_field_data_from_token, we get the actual data of C&C ciphertext

https://github.com/pan-unit42/dotnetfile
https://github.com/malwarefrank/dnfile

Steps to extract config

● Config init.

1. Get the ciphertext from binary

2. Prepare the key

3. Reverse engineer the decryption

Extract config: prepare the key and implement decryption, part 1

There’s no trick, just pure reverse engineering.

One tip is debugger is helpful. I always make some guess, and prove my assumptions in
debugging.

Extract config: prepare the key and implement decryption, part 2

Now, the same problem. We need to get the data for key prep.

These data looks plaintext and static. However, we can expect every sample comes with
different keys.

So, same approach. Looking at CIL first.

Token: 07 00 02 A7

07 is US (user) Table

Extract config: prepare the key and implement decryption, part 3

To access the US stream, refer to this example:

Steps to extract config for .NET: rewind

1. Locate the config and analyse the configuration

2. Study CIL and prepare the anchor to get the token for ciphertext and keys

3. Get the data that token is pointing by the help of dnfile or dotnetfile

4. Reverse engineer the decryption routine

5. Put everything together

Thank you

