

‣ Product: ewido security suite

‣ Protection against Trojans, Adware, Spyware, ...

‣ First release: Christmas 2003

‣ Emulation research since 2002

‣ Used for generic unpacking

Who we are

Agenda

‣ Motivation

‣ Generic unpacking

‣ Typical problems

‣ Results

‣ How PE compression engines work

‣ Static unpacking

‣ When static unpacking engines fail

Motivation

How PE compression engines work

‣ Malware is detected by searching for known patterns

‣ Malware is detected by heuristics analysis

‣ PE compression engines compress or encrypt the
content of portable executables

‣ Compression/encryption cause pattern matching and
heuristics analysis fail

How PE compression engines work

‣ Structure of PE compression engines is usually the
same

‣ Look at a very simple one to show the most important
issues

‣ Lamecrypt encrypts the body by XOR

‣ Loader is appended to decrypt at runtime

How PE compression engines work

mob ebx, 0001D600

decryptloop:
xor [ebx+00401000], 90
dec ebx
cmp ebx, -1
jnz decryptloop

jmp 0041DA48

Loader of Lamecrypt

Static unpacking

‣ Analyze decompress-/decrypt-algorithm

‣ Decompress/decrypt with specific routine

‣ Which PE compression engine was employed?

‣ Pick required parameters

‣ Invoke the specific routine

void decrypt_lamecrypt(BYTE* image, DWORD size)
{
� if (checksig(entrypoint+0x0F, “4B83FBFF75F39D”))
 {
 DWORD offset = getDWORD(entryoint+0x0A);
 DWORD size = getDWORD(entrypoint+0x04);
 for (DWORD i=0; i<size; i++)
 image[i] = image[i] ^ 0x90;
 }
}

Static unpacking
Special routine for Lamecrypt

When static unpacking engines fail

‣ Unknown PE compression engine

‣ No specific routine

‣ No way to decrypt/decompress

‣ Modified PE compression engine

‣ Detection fails and required parameters cannot be
extracted

When static unpacking engines fail

‣ Uses its own PE compression engine to hide the
malicious activity

‣ Could be detected easily by heuristics

‣ Even simple compression engines are effective

Bagle

When static unpacking engines fail

decryptloop:
lodsb
xor al, 13
stosb
loop decryptloop

...
mov esi, 00401000
mov edi, esi
mov ecx, 00004F4B
cld

Bagle

When static unpacking engines fail

‣ Modified PE compression engine

‣ Modification is very easy (open source)

‣ Often used with backdoors

Yodacrypter

original loader modified loader

pushad
call +00
pop ebp
sub ebp, 00401DF3
mov ecx, 97B
lea edi, [ebp+00401E3B]

pushad
call +00
pop ebp
sub ebp, 00401F0
mov ecx, 15
add ebp, 3
mov ecx, 97B
lea edi, [ebp+00401E3B]

When static unpacking engines fail
Yodacrypter

When static unpacking engines fail

‣ Unknown PE compression engines

‣ Attacks on detection

‣ Attacks on parameters

Generic unpacking

‣ What do we need?

‣ How to unpack every PE compression engine

‣ CPU simulation

‣ Memory simulation

‣ Operating system simulation

 What do we need?

‣ Decompress/decrypt PE compression engine without
knowing which PE compression engine was employed

‣ Decompress/decrypt without parameters or algorithm

Unpack every PE compression engine

‣ Execute the malware, wait a little and perform a
memory scan

‣ Every PE compression engine needs to unpack/decrypt
its content in memory

‣ Ultimate generic unpacker

Unpack every PE compression engine

‣ Very unsafe!

‣ Extension: instead of execution

‣ Emulation

‣ If the emulation can achieve a near-perfect simulation
of the reality

‣ Ultimate and safe generic unpacker

CPU Simulation

‣ Known to handle polymorphic viruses

‣ Step by step each instruction is simulated

CPU Simulation

mob ebx, 0001D600

decryptloop:

xor [ebx+00401000], 90

dec ebx

cmp ebx, -1

jnz decryptloop

set sim_ebx to
0001D600

calculate
address, map,
xor with 0x90

decrease sim_ebx by
one

CPU Simulation

‣ PE compression engines execute millions of
instructions

‣ All of them have to be emulated!

‣ Speed is the most important problem

‣ 450kb executable packed with UPX

‣ 6 million instructions to unpack

 Memory Simulation

‣ Has to be very fast

‣ Decompression routines transfer lots of bytes

‣ 450kb packed executable

‣ Theoretically 900.000 memory operations

‣ The number of operations often doubles

 Memory Simulation

‣ Need to simulate stack, executable image, heap

‣ Needs to be flexible

‣ Some anti-debugging techniques rely on write access
exceptions

‣ Simulate read/write access

Operating System Simulation

‣ Import table needs to be rewritten

‣ LoadLibrary/GetProcAddress

‣ Some PE compression engines check CRC

‣ File system APIs

‣ Bagle tries to fool emulation with seldom APIs

Operating System Simulation

‣ Simulate each API directly

‣ Our generic unpacker support more than 100 APIs

1000BF88: RegisterWindowMessage(ArmReReadMessage);
1000BF94: PostMessageA
1000F4F7: GetCurrentProcessId
1000F57F: CreateFileA("\\.\SICE", ..., 3, ...)
1000F593: GetLastError -> 2
1000F57F: CreateFileA("\\.\NTICE", ..., 3, ...)
1000F593: GetLastError -> 2
1000F57F: CreateFileA("\\.\SIWDEBUG", ..., 3, ...)
1000F593: GetLastError -> 2
1000F57F: CreateFileA("\\.\SIWVID", ..., 3, ...)
1000F593: GetLastError -> 2

Operating System Simulation

100082BC: RegOpenKeyEx(80000000, CLSID\{C9DC10FD-
D921-13D1B2E4-0060975B8649}, ..);
100078C8: GetSystemTime
10008230: GetTempPath (return c:\temp\)
10008262: CreateFileA("c:\temp\58AB070C.TMP",
..., 3, ...)
100078C8: GetSystemTime
10008113: RegOpenKeyEx(80000002, Software\The
Silicon Realms Toolworks\Armadillo, ..);
1000812C:
RegQueryValueEx(0,{65EED8A09843E1F6},..);
10008143: RegCloseKey

Operating System Simulation

479576: LoadLibraryA(advapi32.dll)
479646: GetProcAddress(77DA0000,
100194A8->RegCloseKey)
479646: GetProcAddress(77DA0000,
100194CA->RegOpenKeyExA)
479646: GetProcAddress(77DA0000,
100194DA->RegSetValueExA)
479646: GetProcAddress(77DA0000,
100194EC->RegCreateKeyExA)
479576: LoadLibraryA(shell32.dll)
479646: GetProcAddress(5,
1001950C->ShellExecuteA)

Operating System Simulation

Typical Problems

‣ Error tracing

‣ When to stop?

‣ Speed

Error Tracing

‣ What do you do if your emulation engine does not
emulate correctly?

‣ Millions of instructions

‣ Error tracing very complex

‣ Solution: automatically debug during emulation

‣ Comparison reveals most errors

Load_Real_Exe();
Start_Debugger_For_Real_Exe();

while (!different)
{
 Emulate_One_Instruction();
 Execute_One_Instruction_With_Debugger();
 Compare_Emulation_With_Reality();
}

Error Tracing

When to stop?

‣ When can we stop the emulation?

‣ Undecidable

‣ Fallback: maximum time-out

‣ Heuristic checks

When to stop?

‣ Entry point signatures from standard entry points

‣ Stop at some API functions

‣ Relationship between emulated opcodes/simulated API
functions

Possible heuristic rules

Speed

‣ Speed is the most important problem

‣ CPU simulation needs to be as fast as possible

‣ Measure speed on AMD64 3000+

‣ Measure speed on Athlon XP 1200

while (true)
{
 Decode_Instruction(r.eip);
 Lookup_Simulation_Function();
 Execute_This_Instruction();
}

Speed
Usual algorithm 1

void Xor_Simulation_Function()
{
 Decode_Mod_Rm(op_1, op_2);
 if (op_2 is memory)
 ReMap_Memory(op_2);
 op_1 = op_1 XOR op_2;
}

Speed
Usual algorithm 2

Speed

CPU Instructions Time(ms)
Speed
(MIPS)

AMD64 5.939.677 859 6,9

Athlon XP 5.939.677 1317 4,5

Usual algorithm - Speed (UPX)

Speed

‣ Code usually does not change

‣ Fast decoding cache

‣ Generate special code at runtime

‣ Reduces conditional jumps

‣ Form blocks and link them together

‣ Reduces unpredictable jumps

while (true)
{
 if (Is_Instruction_In_Cache(r.eip))
 Jump_To_Instruction_Code();
 else
 Translate_Instruction();
}

Speed
Improved emulation algorithm 1

void Translate_Instruction()
{
 Decode_Instruction(r.eip);
 Generate_Individual_Code();
 Insert_Code_Into_Cache();
 Chain_Code_Block();
}

Speed
Improved emulation algorithm 2

Speed

CPU Instructions Time(ms)
Speed
(MIPS)

 AMD64 5.939.677 67 (859) 89 (6,9)

 Athlon XP 5.939.677 104 (1317) 57 (4,5)

Improved algorithm - Speed (UPX) comparison

Results

‣ Generic unpacking not often used in anti-virus engines

‣ Showed that generic unpacking is possible in practise

Results

‣ Armadillo, ASPack, Exegriper, FSG, Lamecrypt, Mew,
Morphine, Neolite, Netwalker, PCShrink, PECompact,
PEPack, Petite, PEX, PKLite32, StonesPECrypter, UPack,
UPX, Winkript, YodaCrypter

‣ Can be unpacked in 20 - 300ms (80-100MIPS)

‣ All variants and modified versions

Recent improvements

‣ Improved code quality

‣ Performed compiler like optimization

‣ Improved perfomance:

‣ Lamecrypt 486 MIPS (34 MIPS)

‣ UPX 553 MIPS (89 MIPS)

Questions/Comments?

You can also write an e-mail to

tobias.graf@ewido.net

